rust/compiler/rustc_mir_build/src/build/mod.rs

1077 lines
39 KiB
Rust

use crate::build;
use crate::build::expr::as_place::PlaceBuilder;
use crate::build::scope::DropKind;
use crate::thir::{build_thir, Arena, BindingMode, Expr, LintLevel, Pat, PatKind};
use rustc_attr::{self as attr, UnwindAttr};
use rustc_errors::ErrorReported;
use rustc_hir as hir;
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_hir::lang_items::LangItem;
use rustc_hir::{GeneratorKind, HirIdMap, Node};
use rustc_index::vec::{Idx, IndexVec};
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_middle::hir::place::PlaceBase as HirPlaceBase;
use rustc_middle::middle::region;
use rustc_middle::mir::*;
use rustc_middle::ty::subst::Subst;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeFoldable, TypeckResults};
use rustc_span::symbol::{kw, sym};
use rustc_span::Span;
use rustc_target::spec::abi::Abi;
use rustc_target::spec::PanicStrategy;
use super::lints;
crate fn mir_built<'tcx>(
tcx: TyCtxt<'tcx>,
def: ty::WithOptConstParam<LocalDefId>,
) -> &'tcx rustc_data_structures::steal::Steal<Body<'tcx>> {
if let Some(def) = def.try_upgrade(tcx) {
return tcx.mir_built(def);
}
let mut body = mir_build(tcx, def);
if def.const_param_did.is_some() {
assert!(matches!(body.source.instance, ty::InstanceDef::Item(_)));
body.source = MirSource::from_instance(ty::InstanceDef::Item(def.to_global()));
}
tcx.alloc_steal_mir(body)
}
/// Construct the MIR for a given `DefId`.
fn mir_build(tcx: TyCtxt<'_>, def: ty::WithOptConstParam<LocalDefId>) -> Body<'_> {
let id = tcx.hir().local_def_id_to_hir_id(def.did);
let body_owner_kind = tcx.hir().body_owner_kind(id);
let typeck_results = tcx.typeck_opt_const_arg(def);
// Figure out what primary body this item has.
let (body_id, return_ty_span, span_with_body) = match tcx.hir().get(id) {
Node::Expr(hir::Expr { kind: hir::ExprKind::Closure(_, decl, body_id, _, _), .. }) => {
(*body_id, decl.output.span(), None)
}
Node::Item(hir::Item {
kind: hir::ItemKind::Fn(hir::FnSig { decl, .. }, _, body_id),
span,
..
})
| Node::ImplItem(hir::ImplItem {
kind: hir::ImplItemKind::Fn(hir::FnSig { decl, .. }, body_id),
span,
..
})
| Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Fn(hir::FnSig { decl, .. }, hir::TraitFn::Provided(body_id)),
span,
..
}) => {
// Use the `Span` of the `Item/ImplItem/TraitItem` as the body span,
// since the def span of a function does not include the body
(*body_id, decl.output.span(), Some(*span))
}
Node::Item(hir::Item {
kind: hir::ItemKind::Static(ty, _, body_id) | hir::ItemKind::Const(ty, body_id),
..
})
| Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Const(ty, body_id), .. })
| Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Const(ty, Some(body_id)),
..
}) => (*body_id, ty.span, None),
Node::AnonConst(hir::AnonConst { body, hir_id, .. }) => {
(*body, tcx.hir().span(*hir_id), None)
}
_ => span_bug!(tcx.hir().span(id), "can't build MIR for {:?}", def.did),
};
// If we don't have a specialized span for the body, just use the
// normal def span.
let span_with_body = span_with_body.unwrap_or_else(|| tcx.hir().span(id));
let arena = Arena::default();
tcx.infer_ctxt().enter(|infcx| {
let body = if let Some(ErrorReported) = typeck_results.tainted_by_errors {
build::construct_error(&infcx, def, id, body_id, body_owner_kind)
} else if body_owner_kind.is_fn_or_closure() {
// fetch the fully liberated fn signature (that is, all bound
// types/lifetimes replaced)
let fn_sig = typeck_results.liberated_fn_sigs()[id];
let fn_def_id = tcx.hir().local_def_id(id);
let safety = match fn_sig.unsafety {
hir::Unsafety::Normal => Safety::Safe,
hir::Unsafety::Unsafe => Safety::FnUnsafe,
};
let body = tcx.hir().body(body_id);
let thir = build_thir(tcx, def, &arena, &body.value);
let ty = tcx.type_of(fn_def_id);
let mut abi = fn_sig.abi;
let implicit_argument = match ty.kind() {
ty::Closure(..) => {
// HACK(eddyb) Avoid having RustCall on closures,
// as it adds unnecessary (and wrong) auto-tupling.
abi = Abi::Rust;
vec![ArgInfo(liberated_closure_env_ty(tcx, id, body_id), None, None, None)]
}
ty::Generator(..) => {
let gen_ty = tcx.typeck_body(body_id).node_type(id);
// The resume argument may be missing, in that case we need to provide it here.
// It will always be `()` in this case.
if body.params.is_empty() {
vec![
ArgInfo(gen_ty, None, None, None),
ArgInfo(tcx.mk_unit(), None, None, None),
]
} else {
vec![ArgInfo(gen_ty, None, None, None)]
}
}
_ => vec![],
};
let explicit_arguments = body.params.iter().enumerate().map(|(index, arg)| {
let owner_id = tcx.hir().body_owner(body_id);
let opt_ty_info;
let self_arg;
if let Some(ref fn_decl) = tcx.hir().fn_decl_by_hir_id(owner_id) {
opt_ty_info = fn_decl.inputs.get(index).map(|ty| ty.span);
self_arg = if index == 0 && fn_decl.implicit_self.has_implicit_self() {
match fn_decl.implicit_self {
hir::ImplicitSelfKind::Imm => Some(ImplicitSelfKind::Imm),
hir::ImplicitSelfKind::Mut => Some(ImplicitSelfKind::Mut),
hir::ImplicitSelfKind::ImmRef => Some(ImplicitSelfKind::ImmRef),
hir::ImplicitSelfKind::MutRef => Some(ImplicitSelfKind::MutRef),
_ => None,
}
} else {
None
};
} else {
opt_ty_info = None;
self_arg = None;
}
// C-variadic fns also have a `VaList` input that's not listed in `fn_sig`
// (as it's created inside the body itself, not passed in from outside).
let ty = if fn_sig.c_variadic && index == fn_sig.inputs().len() {
let va_list_did = tcx.require_lang_item(LangItem::VaList, Some(arg.span));
tcx.type_of(va_list_did).subst(tcx, &[tcx.lifetimes.re_erased.into()])
} else {
fn_sig.inputs()[index]
};
ArgInfo(ty, opt_ty_info, Some(&arg), self_arg)
});
let arguments = implicit_argument.into_iter().chain(explicit_arguments);
let (yield_ty, return_ty) = if body.generator_kind.is_some() {
let gen_ty = tcx.typeck_body(body_id).node_type(id);
let gen_sig = match gen_ty.kind() {
ty::Generator(_, gen_substs, ..) => gen_substs.as_generator().sig(),
_ => span_bug!(tcx.hir().span(id), "generator w/o generator type: {:?}", ty),
};
(Some(gen_sig.yield_ty), gen_sig.return_ty)
} else {
(None, fn_sig.output())
};
let mut mir = build::construct_fn(
&infcx,
def,
id,
arguments,
safety,
abi,
return_ty,
return_ty_span,
body,
thir,
span_with_body,
);
if yield_ty.is_some() {
mir.generator.as_mut().unwrap().yield_ty = yield_ty;
}
mir
} else {
// Get the revealed type of this const. This is *not* the adjusted
// type of its body, which may be a subtype of this type. For
// example:
//
// fn foo(_: &()) {}
// static X: fn(&'static ()) = foo;
//
// The adjusted type of the body of X is `for<'a> fn(&'a ())` which
// is not the same as the type of X. We need the type of the return
// place to be the type of the constant because NLL typeck will
// equate them.
let return_ty = typeck_results.node_type(id);
let ast_expr = &tcx.hir().body(body_id).value;
let thir = build_thir(tcx, def, &arena, ast_expr);
build::construct_const(&infcx, thir, def, id, return_ty, return_ty_span)
};
lints::check(tcx, &body);
// The borrow checker will replace all the regions here with its own
// inference variables. There's no point having non-erased regions here.
// The exception is `body.user_type_annotations`, which is used unmodified
// by borrow checking.
debug_assert!(
!(body.local_decls.has_free_regions()
|| body.basic_blocks().has_free_regions()
|| body.var_debug_info.has_free_regions()
|| body.yield_ty().has_free_regions()),
"Unexpected free regions in MIR: {:?}",
body,
);
body
})
}
///////////////////////////////////////////////////////////////////////////
// BuildMir -- walks a crate, looking for fn items and methods to build MIR from
fn liberated_closure_env_ty(
tcx: TyCtxt<'_>,
closure_expr_id: hir::HirId,
body_id: hir::BodyId,
) -> Ty<'_> {
let closure_ty = tcx.typeck_body(body_id).node_type(closure_expr_id);
let (closure_def_id, closure_substs) = match *closure_ty.kind() {
ty::Closure(closure_def_id, closure_substs) => (closure_def_id, closure_substs),
_ => bug!("closure expr does not have closure type: {:?}", closure_ty),
};
let closure_env_ty = tcx.closure_env_ty(closure_def_id, closure_substs).unwrap();
tcx.erase_late_bound_regions(closure_env_ty)
}
#[derive(Debug, PartialEq, Eq)]
enum BlockFrame {
/// Evaluation is currently within a statement.
///
/// Examples include:
/// 1. `EXPR;`
/// 2. `let _ = EXPR;`
/// 3. `let x = EXPR;`
Statement {
/// If true, then statement discards result from evaluating
/// the expression (such as examples 1 and 2 above).
ignores_expr_result: bool,
},
/// Evaluation is currently within the tail expression of a block.
///
/// Example: `{ STMT_1; STMT_2; EXPR }`
TailExpr {
/// If true, then the surrounding context of the block ignores
/// the result of evaluating the block's tail expression.
///
/// Example: `let _ = { STMT_1; EXPR };`
tail_result_is_ignored: bool,
/// `Span` of the tail expression.
span: Span,
},
/// Generic mark meaning that the block occurred as a subexpression
/// where the result might be used.
///
/// Examples: `foo(EXPR)`, `match EXPR { ... }`
SubExpr,
}
impl BlockFrame {
fn is_tail_expr(&self) -> bool {
match *self {
BlockFrame::TailExpr { .. } => true,
BlockFrame::Statement { .. } | BlockFrame::SubExpr => false,
}
}
fn is_statement(&self) -> bool {
match *self {
BlockFrame::Statement { .. } => true,
BlockFrame::TailExpr { .. } | BlockFrame::SubExpr => false,
}
}
}
#[derive(Debug)]
struct BlockContext(Vec<BlockFrame>);
struct Builder<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
infcx: &'a InferCtxt<'a, 'tcx>,
typeck_results: &'tcx TypeckResults<'tcx>,
region_scope_tree: &'tcx region::ScopeTree,
param_env: ty::ParamEnv<'tcx>,
cfg: CFG<'tcx>,
def_id: DefId,
hir_id: hir::HirId,
check_overflow: bool,
fn_span: Span,
arg_count: usize,
generator_kind: Option<GeneratorKind>,
/// The current set of scopes, updated as we traverse;
/// see the `scope` module for more details.
scopes: scope::Scopes<'tcx>,
/// The block-context: each time we build the code within an thir::Block,
/// we push a frame here tracking whether we are building a statement or
/// if we are pushing the tail expression of the block. This is used to
/// embed information in generated temps about whether they were created
/// for a block tail expression or not.
///
/// It would be great if we could fold this into `self.scopes`
/// somehow, but right now I think that is very tightly tied to
/// the code generation in ways that we cannot (or should not)
/// start just throwing new entries onto that vector in order to
/// distinguish the context of EXPR1 from the context of EXPR2 in
/// `{ STMTS; EXPR1 } + EXPR2`.
block_context: BlockContext,
/// The current unsafe block in scope, even if it is hidden by
/// a `PushUnsafeBlock`.
unpushed_unsafe: Safety,
/// The number of `push_unsafe_block` levels in scope.
push_unsafe_count: usize,
/// The vector of all scopes that we have created thus far;
/// we track this for debuginfo later.
source_scopes: IndexVec<SourceScope, SourceScopeData<'tcx>>,
source_scope: SourceScope,
/// The guard-context: each time we build the guard expression for
/// a match arm, we push onto this stack, and then pop when we
/// finish building it.
guard_context: Vec<GuardFrame>,
/// Maps `HirId`s of variable bindings to the `Local`s created for them.
/// (A match binding can have two locals; the 2nd is for the arm's guard.)
var_indices: HirIdMap<LocalsForNode>,
local_decls: IndexVec<Local, LocalDecl<'tcx>>,
canonical_user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
upvar_mutbls: Vec<Mutability>,
unit_temp: Option<Place<'tcx>>,
var_debug_info: Vec<VarDebugInfo<'tcx>>,
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
fn is_bound_var_in_guard(&self, id: hir::HirId) -> bool {
self.guard_context.iter().any(|frame| frame.locals.iter().any(|local| local.id == id))
}
fn var_local_id(&self, id: hir::HirId, for_guard: ForGuard) -> Local {
self.var_indices[&id].local_id(for_guard)
}
}
impl BlockContext {
fn new() -> Self {
BlockContext(vec![])
}
fn push(&mut self, bf: BlockFrame) {
self.0.push(bf);
}
fn pop(&mut self) -> Option<BlockFrame> {
self.0.pop()
}
/// Traverses the frames on the `BlockContext`, searching for either
/// the first block-tail expression frame with no intervening
/// statement frame.
///
/// Notably, this skips over `SubExpr` frames; this method is
/// meant to be used in the context of understanding the
/// relationship of a temp (created within some complicated
/// expression) with its containing expression, and whether the
/// value of that *containing expression* (not the temp!) is
/// ignored.
fn currently_in_block_tail(&self) -> Option<BlockTailInfo> {
for bf in self.0.iter().rev() {
match bf {
BlockFrame::SubExpr => continue,
BlockFrame::Statement { .. } => break,
&BlockFrame::TailExpr { tail_result_is_ignored, span } => {
return Some(BlockTailInfo { tail_result_is_ignored, span });
}
}
}
None
}
/// Looks at the topmost frame on the BlockContext and reports
/// whether its one that would discard a block tail result.
///
/// Unlike `currently_within_ignored_tail_expression`, this does
/// *not* skip over `SubExpr` frames: here, we want to know
/// whether the block result itself is discarded.
fn currently_ignores_tail_results(&self) -> bool {
match self.0.last() {
// no context: conservatively assume result is read
None => false,
// sub-expression: block result feeds into some computation
Some(BlockFrame::SubExpr) => false,
// otherwise: use accumulated is_ignored state.
Some(
BlockFrame::TailExpr { tail_result_is_ignored: ignored, .. }
| BlockFrame::Statement { ignores_expr_result: ignored },
) => *ignored,
}
}
}
#[derive(Debug)]
enum LocalsForNode {
/// In the usual case, a `HirId` for an identifier maps to at most
/// one `Local` declaration.
One(Local),
/// The exceptional case is identifiers in a match arm's pattern
/// that are referenced in a guard of that match arm. For these,
/// we have `2` Locals.
///
/// * `for_arm_body` is the Local used in the arm body (which is
/// just like the `One` case above),
///
/// * `ref_for_guard` is the Local used in the arm's guard (which
/// is a reference to a temp that is an alias of
/// `for_arm_body`).
ForGuard { ref_for_guard: Local, for_arm_body: Local },
}
#[derive(Debug)]
struct GuardFrameLocal {
id: hir::HirId,
}
impl GuardFrameLocal {
fn new(id: hir::HirId, _binding_mode: BindingMode) -> Self {
GuardFrameLocal { id }
}
}
#[derive(Debug)]
struct GuardFrame {
/// These are the id's of names that are bound by patterns of the
/// arm of *this* guard.
///
/// (Frames higher up the stack will have the id's bound in arms
/// further out, such as in a case like:
///
/// match E1 {
/// P1(id1) if (... (match E2 { P2(id2) if ... => B2 })) => B1,
/// }
///
/// here, when building for FIXME.
locals: Vec<GuardFrameLocal>,
}
/// `ForGuard` indicates whether we are talking about:
/// 1. The variable for use outside of guard expressions, or
/// 2. The temp that holds reference to (1.), which is actually what the
/// guard expressions see.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum ForGuard {
RefWithinGuard,
OutsideGuard,
}
impl LocalsForNode {
fn local_id(&self, for_guard: ForGuard) -> Local {
match (self, for_guard) {
(&LocalsForNode::One(local_id), ForGuard::OutsideGuard)
| (
&LocalsForNode::ForGuard { ref_for_guard: local_id, .. },
ForGuard::RefWithinGuard,
)
| (&LocalsForNode::ForGuard { for_arm_body: local_id, .. }, ForGuard::OutsideGuard) => {
local_id
}
(&LocalsForNode::One(_), ForGuard::RefWithinGuard) => {
bug!("anything with one local should never be within a guard.")
}
}
}
}
struct CFG<'tcx> {
basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
}
rustc_index::newtype_index! {
struct ScopeId { .. }
}
///////////////////////////////////////////////////////////////////////////
/// The `BlockAnd` "monad" packages up the new basic block along with a
/// produced value (sometimes just unit, of course). The `unpack!`
/// macro (and methods below) makes working with `BlockAnd` much more
/// convenient.
#[must_use = "if you don't use one of these results, you're leaving a dangling edge"]
struct BlockAnd<T>(BasicBlock, T);
trait BlockAndExtension {
fn and<T>(self, v: T) -> BlockAnd<T>;
fn unit(self) -> BlockAnd<()>;
}
impl BlockAndExtension for BasicBlock {
fn and<T>(self, v: T) -> BlockAnd<T> {
BlockAnd(self, v)
}
fn unit(self) -> BlockAnd<()> {
BlockAnd(self, ())
}
}
/// Update a block pointer and return the value.
/// Use it like `let x = unpack!(block = self.foo(block, foo))`.
macro_rules! unpack {
($x:ident = $c:expr) => {{
let BlockAnd(b, v) = $c;
$x = b;
v
}};
($c:expr) => {{
let BlockAnd(b, ()) = $c;
b
}};
}
fn should_abort_on_panic(tcx: TyCtxt<'_>, fn_def_id: LocalDefId, abi: Abi) -> bool {
// Validate `#[unwind]` syntax regardless of platform-specific panic strategy.
let attrs = &tcx.get_attrs(fn_def_id.to_def_id());
let unwind_attr = attr::find_unwind_attr(&tcx.sess, attrs);
// We never unwind, so it's not relevant to stop an unwind.
if tcx.sess.panic_strategy() != PanicStrategy::Unwind {
return false;
}
match unwind_attr {
// If an `#[unwind]` attribute was found, we should adhere to it.
Some(UnwindAttr::Allowed) => false,
Some(UnwindAttr::Aborts) => true,
// If no attribute was found and the panic strategy is `unwind`, then we should examine
// the function's ABI string to determine whether it should abort upon panic.
None if tcx.features().c_unwind => {
use Abi::*;
match abi {
// In the case of ABI's that have an `-unwind` equivalent, check whether the ABI
// permits unwinding. If so, we should not abort. Otherwise, we should.
C { unwind } | Stdcall { unwind } | System { unwind } | Thiscall { unwind } => {
!unwind
}
// Rust and `rust-call` functions are allowed to unwind, and should not abort.
Rust | RustCall => false,
// Other ABI's should abort.
Cdecl
| Fastcall
| Vectorcall
| Aapcs
| Win64
| SysV64
| PtxKernel
| Msp430Interrupt
| X86Interrupt
| AmdGpuKernel
| EfiApi
| AvrInterrupt
| AvrNonBlockingInterrupt
| CCmseNonSecureCall
| RustIntrinsic
| PlatformIntrinsic
| Unadjusted => true,
}
}
// If the `c_unwind` feature gate is not active, follow the behavior that was in place
// prior to #76570. This is a special case: some functions have a C ABI but are meant to
// unwind anyway. Don't stop them.
None => false, // FIXME(#58794); should be `!(abi == Abi::Rust || abi == Abi::RustCall)`
}
}
///////////////////////////////////////////////////////////////////////////
/// the main entry point for building MIR for a function
struct ArgInfo<'tcx>(
Ty<'tcx>,
Option<Span>,
Option<&'tcx hir::Param<'tcx>>,
Option<ImplicitSelfKind>,
);
fn construct_fn<'tcx, A>(
infcx: &InferCtxt<'_, 'tcx>,
fn_def: ty::WithOptConstParam<LocalDefId>,
fn_id: hir::HirId,
arguments: A,
safety: Safety,
abi: Abi,
return_ty: Ty<'tcx>,
return_ty_span: Span,
body: &'tcx hir::Body<'tcx>,
expr: &Expr<'_, 'tcx>,
span_with_body: Span,
) -> Body<'tcx>
where
A: Iterator<Item = ArgInfo<'tcx>>,
{
let arguments: Vec<_> = arguments.collect();
let tcx = infcx.tcx;
let span = tcx.hir().span(fn_id);
let mut builder = Builder::new(
infcx,
fn_def,
fn_id,
span_with_body,
arguments.len(),
safety,
return_ty,
return_ty_span,
body.generator_kind,
);
let call_site_scope =
region::Scope { id: body.value.hir_id.local_id, data: region::ScopeData::CallSite };
let arg_scope =
region::Scope { id: body.value.hir_id.local_id, data: region::ScopeData::Arguments };
let source_info = builder.source_info(span);
let call_site_s = (call_site_scope, source_info);
unpack!(builder.in_scope(call_site_s, LintLevel::Inherited, |builder| {
let arg_scope_s = (arg_scope, source_info);
// Attribute epilogue to function's closing brace
let fn_end = span_with_body.shrink_to_hi();
let return_block =
unpack!(builder.in_breakable_scope(None, Place::return_place(), fn_end, |builder| {
Some(builder.in_scope(arg_scope_s, LintLevel::Inherited, |builder| {
builder.args_and_body(
START_BLOCK,
fn_def.did.to_def_id(),
&arguments,
arg_scope,
expr,
)
}))
}));
let source_info = builder.source_info(fn_end);
builder.cfg.terminate(return_block, source_info, TerminatorKind::Return);
let should_abort = should_abort_on_panic(tcx, fn_def.did, abi);
builder.build_drop_trees(should_abort);
return_block.unit()
}));
let spread_arg = if abi == Abi::RustCall {
// RustCall pseudo-ABI untuples the last argument.
Some(Local::new(arguments.len()))
} else {
None
};
debug!("fn_id {:?} has attrs {:?}", fn_def, tcx.get_attrs(fn_def.did.to_def_id()));
let mut body = builder.finish();
body.spread_arg = spread_arg;
body
}
fn construct_const<'a, 'tcx>(
infcx: &'a InferCtxt<'a, 'tcx>,
expr: &Expr<'_, 'tcx>,
def: ty::WithOptConstParam<LocalDefId>,
hir_id: hir::HirId,
const_ty: Ty<'tcx>,
const_ty_span: Span,
) -> Body<'tcx> {
let tcx = infcx.tcx;
let span = tcx.hir().span(hir_id);
let mut builder =
Builder::new(infcx, def, hir_id, span, 0, Safety::Safe, const_ty, const_ty_span, None);
let mut block = START_BLOCK;
unpack!(block = builder.expr_into_dest(Place::return_place(), block, &expr));
let source_info = builder.source_info(span);
builder.cfg.terminate(block, source_info, TerminatorKind::Return);
builder.build_drop_trees(false);
builder.finish()
}
/// Construct MIR for a item that has had errors in type checking.
///
/// This is required because we may still want to run MIR passes on an item
/// with type errors, but normal MIR construction can't handle that in general.
fn construct_error<'a, 'tcx>(
infcx: &'a InferCtxt<'a, 'tcx>,
def: ty::WithOptConstParam<LocalDefId>,
hir_id: hir::HirId,
body_id: hir::BodyId,
body_owner_kind: hir::BodyOwnerKind,
) -> Body<'tcx> {
let tcx = infcx.tcx;
let span = tcx.hir().span(hir_id);
let ty = tcx.ty_error();
let generator_kind = tcx.hir().body(body_id).generator_kind;
let num_params = match body_owner_kind {
hir::BodyOwnerKind::Fn => tcx.hir().fn_decl_by_hir_id(hir_id).unwrap().inputs.len(),
hir::BodyOwnerKind::Closure => {
if generator_kind.is_some() {
// Generators have an implicit `self` parameter *and* a possibly
// implicit resume parameter.
2
} else {
// The implicit self parameter adds another local in MIR.
1 + tcx.hir().fn_decl_by_hir_id(hir_id).unwrap().inputs.len()
}
}
hir::BodyOwnerKind::Const => 0,
hir::BodyOwnerKind::Static(_) => 0,
};
let mut builder =
Builder::new(infcx, def, hir_id, span, num_params, Safety::Safe, ty, span, generator_kind);
let source_info = builder.source_info(span);
// Some MIR passes will expect the number of parameters to match the
// function declaration.
for _ in 0..num_params {
builder.local_decls.push(LocalDecl::with_source_info(ty, source_info));
}
builder.cfg.terminate(START_BLOCK, source_info, TerminatorKind::Unreachable);
let mut body = builder.finish();
body.generator.as_mut().map(|gen| gen.yield_ty = Some(ty));
body
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
fn new(
infcx: &'a InferCtxt<'a, 'tcx>,
def: ty::WithOptConstParam<LocalDefId>,
hir_id: hir::HirId,
span: Span,
arg_count: usize,
safety: Safety,
return_ty: Ty<'tcx>,
return_span: Span,
generator_kind: Option<GeneratorKind>,
) -> Builder<'a, 'tcx> {
let tcx = infcx.tcx;
let attrs = tcx.hir().attrs(hir_id);
// Some functions always have overflow checks enabled,
// however, they may not get codegen'd, depending on
// the settings for the crate they are codegened in.
let mut check_overflow = tcx.sess.contains_name(attrs, sym::rustc_inherit_overflow_checks);
// Respect -C overflow-checks.
check_overflow |= tcx.sess.overflow_checks();
// Constants always need overflow checks.
check_overflow |= matches!(
tcx.hir().body_owner_kind(hir_id),
hir::BodyOwnerKind::Const | hir::BodyOwnerKind::Static(_)
);
let lint_level = LintLevel::Explicit(hir_id);
let mut builder = Builder {
tcx,
infcx,
typeck_results: tcx.typeck_opt_const_arg(def),
region_scope_tree: tcx.region_scope_tree(def.did),
param_env: tcx.param_env(def.did),
def_id: def.did.to_def_id(),
hir_id,
check_overflow,
cfg: CFG { basic_blocks: IndexVec::new() },
fn_span: span,
arg_count,
generator_kind,
scopes: scope::Scopes::new(),
block_context: BlockContext::new(),
source_scopes: IndexVec::new(),
source_scope: OUTERMOST_SOURCE_SCOPE,
guard_context: vec![],
push_unsafe_count: 0,
unpushed_unsafe: safety,
local_decls: IndexVec::from_elem_n(LocalDecl::new(return_ty, return_span), 1),
canonical_user_type_annotations: IndexVec::new(),
upvar_mutbls: vec![],
var_indices: Default::default(),
unit_temp: None,
var_debug_info: vec![],
};
assert_eq!(builder.cfg.start_new_block(), START_BLOCK);
assert_eq!(
builder.new_source_scope(span, lint_level, Some(safety)),
OUTERMOST_SOURCE_SCOPE
);
builder.source_scopes[OUTERMOST_SOURCE_SCOPE].parent_scope = None;
builder
}
fn finish(self) -> Body<'tcx> {
for (index, block) in self.cfg.basic_blocks.iter().enumerate() {
if block.terminator.is_none() {
span_bug!(self.fn_span, "no terminator on block {:?}", index);
}
}
Body::new(
MirSource::item(self.def_id),
self.cfg.basic_blocks,
self.source_scopes,
self.local_decls,
self.canonical_user_type_annotations,
self.arg_count,
self.var_debug_info,
self.fn_span,
self.generator_kind,
)
}
fn args_and_body(
&mut self,
mut block: BasicBlock,
fn_def_id: DefId,
arguments: &[ArgInfo<'tcx>],
argument_scope: region::Scope,
expr: &Expr<'_, 'tcx>,
) -> BlockAnd<()> {
// Allocate locals for the function arguments
for &ArgInfo(ty, _, arg_opt, _) in arguments.iter() {
let source_info =
SourceInfo::outermost(arg_opt.map_or(self.fn_span, |arg| arg.pat.span));
let arg_local = self.local_decls.push(LocalDecl::with_source_info(ty, source_info));
// If this is a simple binding pattern, give debuginfo a nice name.
if let Some(arg) = arg_opt {
if let Some(ident) = arg.pat.simple_ident() {
self.var_debug_info.push(VarDebugInfo {
name: ident.name,
source_info,
value: VarDebugInfoContents::Place(arg_local.into()),
});
}
}
}
let tcx = self.tcx;
let tcx_hir = tcx.hir();
let hir_typeck_results = self.typeck_results;
// In analyze_closure() in upvar.rs we gathered a list of upvars used by a
// indexed closure and we stored in a map called closure_min_captures in TypeckResults
// with the closure's DefId. Here, we run through that vec of UpvarIds for
// the given closure and use the necessary information to create upvar
// debuginfo and to fill `self.upvar_mutbls`.
if hir_typeck_results.closure_min_captures.get(&fn_def_id).is_some() {
let closure_env_arg = Local::new(1);
let mut closure_env_projs = vec![];
let mut closure_ty = self.local_decls[closure_env_arg].ty;
if let ty::Ref(_, ty, _) = closure_ty.kind() {
closure_env_projs.push(ProjectionElem::Deref);
closure_ty = ty;
}
let upvar_substs = match closure_ty.kind() {
ty::Closure(_, substs) => ty::UpvarSubsts::Closure(substs),
ty::Generator(_, substs, _) => ty::UpvarSubsts::Generator(substs),
_ => span_bug!(self.fn_span, "upvars with non-closure env ty {:?}", closure_ty),
};
let capture_tys = upvar_substs.upvar_tys();
let captures_with_tys =
hir_typeck_results.closure_min_captures_flattened(fn_def_id).zip(capture_tys);
self.upvar_mutbls = captures_with_tys
.enumerate()
.map(|(i, (captured_place, ty))| {
let capture = captured_place.info.capture_kind;
let var_id = match captured_place.place.base {
HirPlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
_ => bug!("Expected an upvar"),
};
let mutability = captured_place.mutability;
// FIXME(project-rfc-2229#8): Store more precise information
let mut name = kw::Empty;
if let Some(Node::Binding(pat)) = tcx_hir.find(var_id) {
if let hir::PatKind::Binding(_, _, ident, _) = pat.kind {
name = ident.name;
}
}
let mut projs = closure_env_projs.clone();
projs.push(ProjectionElem::Field(Field::new(i), ty));
match capture {
ty::UpvarCapture::ByValue(_) => {}
ty::UpvarCapture::ByRef(..) => {
projs.push(ProjectionElem::Deref);
}
};
self.var_debug_info.push(VarDebugInfo {
name,
source_info: SourceInfo::outermost(tcx_hir.span(var_id)),
value: VarDebugInfoContents::Place(Place {
local: closure_env_arg,
projection: tcx.intern_place_elems(&projs),
}),
});
mutability
})
.collect();
}
let mut scope = None;
// Bind the argument patterns
for (index, arg_info) in arguments.iter().enumerate() {
// Function arguments always get the first Local indices after the return place
let local = Local::new(index + 1);
let place = Place::from(local);
let &ArgInfo(_, opt_ty_info, arg_opt, ref self_binding) = arg_info;
// Make sure we drop (parts of) the argument even when not matched on.
self.schedule_drop(
arg_opt.as_ref().map_or(expr.span, |arg| arg.pat.span),
argument_scope,
local,
DropKind::Value,
);
if let Some(arg) = arg_opt {
let pat = match tcx.hir().get(arg.pat.hir_id) {
Node::Pat(pat) | Node::Binding(pat) => pat,
node => bug!("pattern became {:?}", node),
};
let pattern = Pat::from_hir(tcx, self.param_env, self.typeck_results, pat);
let original_source_scope = self.source_scope;
let span = pattern.span;
self.set_correct_source_scope_for_arg(arg.hir_id, original_source_scope, span);
match *pattern.kind {
// Don't introduce extra copies for simple bindings
PatKind::Binding {
mutability,
var,
mode: BindingMode::ByValue,
subpattern: None,
..
} => {
self.local_decls[local].mutability = mutability;
self.local_decls[local].source_info.scope = self.source_scope;
self.local_decls[local].local_info = if let Some(kind) = self_binding {
Some(box LocalInfo::User(ClearCrossCrate::Set(
BindingForm::ImplicitSelf(*kind),
)))
} else {
let binding_mode = ty::BindingMode::BindByValue(mutability);
Some(box LocalInfo::User(ClearCrossCrate::Set(BindingForm::Var(
VarBindingForm {
binding_mode,
opt_ty_info,
opt_match_place: Some((Some(place), span)),
pat_span: span,
},
))))
};
self.var_indices.insert(var, LocalsForNode::One(local));
}
_ => {
scope = self.declare_bindings(
scope,
expr.span,
&pattern,
matches::ArmHasGuard(false),
Some((Some(&place), span)),
);
let place_builder = PlaceBuilder::from(local);
unpack!(
block = self.place_into_pattern(block, pattern, place_builder, false)
);
}
}
self.source_scope = original_source_scope;
}
}
// Enter the argument pattern bindings source scope, if it exists.
if let Some(source_scope) = scope {
self.source_scope = source_scope;
}
self.expr_into_dest(Place::return_place(), block, &expr)
}
fn set_correct_source_scope_for_arg(
&mut self,
arg_hir_id: hir::HirId,
original_source_scope: SourceScope,
pattern_span: Span,
) {
let tcx = self.tcx;
let current_root = tcx.maybe_lint_level_root_bounded(arg_hir_id, self.hir_id);
let parent_root = tcx.maybe_lint_level_root_bounded(
self.source_scopes[original_source_scope]
.local_data
.as_ref()
.assert_crate_local()
.lint_root,
self.hir_id,
);
if current_root != parent_root {
self.source_scope =
self.new_source_scope(pattern_span, LintLevel::Explicit(current_root), None);
}
}
fn get_unit_temp(&mut self) -> Place<'tcx> {
match self.unit_temp {
Some(tmp) => tmp,
None => {
let ty = self.tcx.mk_unit();
let fn_span = self.fn_span;
let tmp = self.temp(ty, fn_span);
self.unit_temp = Some(tmp);
tmp
}
}
}
}
///////////////////////////////////////////////////////////////////////////
// Builder methods are broken up into modules, depending on what kind
// of thing is being lowered. Note that they use the `unpack` macro
// above extensively.
mod block;
mod cfg;
mod expr;
mod matches;
mod misc;
mod scope;