rust/compiler/rustc_codegen_llvm/src/coverageinfo/mapgen.rs

391 lines
18 KiB
Rust

use crate::common::CodegenCx;
use crate::coverageinfo;
use crate::llvm;
use llvm::coverageinfo::CounterMappingRegion;
use rustc_codegen_ssa::coverageinfo::map::{Counter, CounterExpression, FunctionCoverage};
use rustc_codegen_ssa::traits::ConstMethods;
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet};
use rustc_hir::def_id::{DefId, DefIdSet, LOCAL_CRATE};
use rustc_llvm::RustString;
use rustc_middle::mir::coverage::CodeRegion;
use rustc_middle::ty::{Instance, TyCtxt};
use rustc_span::Symbol;
use std::ffi::CString;
use tracing::debug;
/// Generates and exports the Coverage Map.
///
/// This Coverage Map complies with Coverage Mapping Format version 4 (zero-based encoded as 3),
/// as defined at [LLVM Code Coverage Mapping Format](https://github.com/rust-lang/llvm-project/blob/rustc/11.0-2020-10-12/llvm/docs/CoverageMappingFormat.rst#llvm-code-coverage-mapping-format)
/// and published in Rust's current (November 2020) fork of LLVM. This version is supported by the
/// LLVM coverage tools (`llvm-profdata` and `llvm-cov`) bundled with Rust's fork of LLVM.
///
/// Consequently, Rust's bundled version of Clang also generates Coverage Maps compliant with
/// version 3. Clang's implementation of Coverage Map generation was referenced when implementing
/// this Rust version, and though the format documentation is very explicit and detailed, some
/// undocumented details in Clang's implementation (that may or may not be important) were also
/// replicated for Rust's Coverage Map.
pub fn finalize<'ll, 'tcx>(cx: &CodegenCx<'ll, 'tcx>) {
let tcx = cx.tcx;
// Ensure LLVM supports Coverage Map Version 4 (encoded as a zero-based value: 3).
// If not, the LLVM Version must be less than 11.
let version = coverageinfo::mapping_version();
if version != 3 {
tcx.sess.fatal("rustc option `-Z instrument-coverage` requires LLVM 11 or higher.");
}
debug!("Generating coverage map for CodegenUnit: `{}`", cx.codegen_unit.name());
let mut function_coverage_map = match cx.coverage_context() {
Some(ctx) => ctx.take_function_coverage_map(),
None => return,
};
if function_coverage_map.is_empty() {
// This module has no functions with coverage instrumentation
return;
}
add_unreachable_coverage(tcx, &mut function_coverage_map);
let mut mapgen = CoverageMapGenerator::new();
// Encode coverage mappings and generate function records
let mut function_data = Vec::new();
for (instance, function_coverage) in function_coverage_map {
debug!("Generate function coverage for {}, {:?}", cx.codegen_unit.name(), instance);
let mangled_function_name = tcx.symbol_name(instance).to_string();
let function_source_hash = function_coverage.source_hash();
let (expressions, counter_regions) =
function_coverage.get_expressions_and_counter_regions();
let coverage_mapping_buffer = llvm::build_byte_buffer(|coverage_mapping_buffer| {
mapgen.write_coverage_mapping(expressions, counter_regions, coverage_mapping_buffer);
});
debug_assert!(
coverage_mapping_buffer.len() > 0,
"Every `FunctionCoverage` should have at least one counter"
);
function_data.push((mangled_function_name, function_source_hash, coverage_mapping_buffer));
}
// Encode all filenames referenced by counters/expressions in this module
let filenames_buffer = llvm::build_byte_buffer(|filenames_buffer| {
coverageinfo::write_filenames_section_to_buffer(&mapgen.filenames, filenames_buffer);
});
let filenames_size = filenames_buffer.len();
let filenames_val = cx.const_bytes(&filenames_buffer[..]);
let filenames_ref = coverageinfo::hash_bytes(filenames_buffer);
// Generate the LLVM IR representation of the coverage map and store it in a well-known global
let cov_data_val = mapgen.generate_coverage_map(cx, version, filenames_size, filenames_val);
for (mangled_function_name, function_source_hash, coverage_mapping_buffer) in function_data {
save_function_record(
cx,
mangled_function_name,
function_source_hash,
filenames_ref,
coverage_mapping_buffer,
);
}
// Save the coverage data value to LLVM IR
coverageinfo::save_cov_data_to_mod(cx, cov_data_val);
}
struct CoverageMapGenerator {
filenames: FxIndexSet<CString>,
}
impl CoverageMapGenerator {
fn new() -> Self {
Self { filenames: FxIndexSet::default() }
}
/// Using the `expressions` and `counter_regions` collected for the current function, generate
/// the `mapping_regions` and `virtual_file_mapping`, and capture any new filenames. Then use
/// LLVM APIs to encode the `virtual_file_mapping`, `expressions`, and `mapping_regions` into
/// the given `coverage_mapping` byte buffer, compliant with the LLVM Coverage Mapping format.
fn write_coverage_mapping(
&mut self,
expressions: Vec<CounterExpression>,
counter_regions: impl Iterator<Item = (Counter, &'a CodeRegion)>,
coverage_mapping_buffer: &RustString,
) {
let mut counter_regions = counter_regions.collect::<Vec<_>>();
if counter_regions.is_empty() {
return;
}
let mut virtual_file_mapping = Vec::new();
let mut mapping_regions = Vec::new();
let mut current_file_name = None;
let mut current_file_id = 0;
// Convert the list of (Counter, CodeRegion) pairs to an array of `CounterMappingRegion`, sorted
// by filename and position. Capture any new files to compute the `CounterMappingRegion`s
// `file_id` (indexing files referenced by the current function), and construct the
// function-specific `virtual_file_mapping` from `file_id` to its index in the module's
// `filenames` array.
counter_regions.sort_unstable_by_key(|(_counter, region)| *region);
for (counter, region) in counter_regions {
let CodeRegion { file_name, start_line, start_col, end_line, end_col } = *region;
let same_file = current_file_name.as_ref().map_or(false, |p| *p == file_name);
if !same_file {
if current_file_name.is_some() {
current_file_id += 1;
}
current_file_name = Some(file_name);
let c_filename = CString::new(file_name.to_string())
.expect("null error converting filename to C string");
debug!(" file_id: {} = '{:?}'", current_file_id, c_filename);
let (filenames_index, _) = self.filenames.insert_full(c_filename);
virtual_file_mapping.push(filenames_index as u32);
}
debug!("Adding counter {:?} to map for {:?}", counter, region);
mapping_regions.push(CounterMappingRegion::code_region(
counter,
current_file_id,
start_line,
start_col,
end_line,
end_col,
));
}
// Encode and append the current function's coverage mapping data
coverageinfo::write_mapping_to_buffer(
virtual_file_mapping,
expressions,
mapping_regions,
coverage_mapping_buffer,
);
}
/// Construct coverage map header and the array of function records, and combine them into the
/// coverage map. Save the coverage map data into the LLVM IR as a static global using a
/// specific, well-known section and name.
fn generate_coverage_map(
self,
cx: &CodegenCx<'ll, 'tcx>,
version: u32,
filenames_size: usize,
filenames_val: &'ll llvm::Value,
) -> &'ll llvm::Value {
debug!("cov map: filenames_size = {}, 0-based version = {}", filenames_size, version);
// Create the coverage data header (Note, fields 0 and 2 are now always zero,
// as of `llvm::coverage::CovMapVersion::Version4`.)
let zero_was_n_records_val = cx.const_u32(0);
let filenames_size_val = cx.const_u32(filenames_size as u32);
let zero_was_coverage_size_val = cx.const_u32(0);
let version_val = cx.const_u32(version);
let cov_data_header_val = cx.const_struct(
&[zero_was_n_records_val, filenames_size_val, zero_was_coverage_size_val, version_val],
/*packed=*/ false,
);
// Create the complete LLVM coverage data value to add to the LLVM IR
cx.const_struct(&[cov_data_header_val, filenames_val], /*packed=*/ false)
}
}
/// Construct a function record and combine it with the function's coverage mapping data.
/// Save the function record into the LLVM IR as a static global using a
/// specific, well-known section and name.
fn save_function_record(
cx: &CodegenCx<'ll, 'tcx>,
mangled_function_name: String,
function_source_hash: u64,
filenames_ref: u64,
coverage_mapping_buffer: Vec<u8>,
) {
// Concatenate the encoded coverage mappings
let coverage_mapping_size = coverage_mapping_buffer.len();
let coverage_mapping_val = cx.const_bytes(&coverage_mapping_buffer[..]);
let func_name_hash = coverageinfo::hash_str(&mangled_function_name);
let func_name_hash_val = cx.const_u64(func_name_hash);
let coverage_mapping_size_val = cx.const_u32(coverage_mapping_size as u32);
let func_hash_val = cx.const_u64(function_source_hash);
let filenames_ref_val = cx.const_u64(filenames_ref);
let func_record_val = cx.const_struct(
&[
func_name_hash_val,
coverage_mapping_size_val,
func_hash_val,
filenames_ref_val,
coverage_mapping_val,
],
/*packed=*/ true,
);
// At the present time, the coverage map for Rust assumes every instrumented function `is_used`.
// Note that Clang marks functions as "unused" in `CodeGenPGO::emitEmptyCounterMapping`. (See:
// https://github.com/rust-lang/llvm-project/blob/de02a75e398415bad4df27b4547c25b896c8bf3b/clang%2Flib%2FCodeGen%2FCodeGenPGO.cpp#L877-L878
// for example.)
//
// It's not yet clear if or how this may be applied to Rust in the future, but the `is_used`
// argument is available and handled similarly.
let is_used = true;
coverageinfo::save_func_record_to_mod(cx, func_name_hash, func_record_val, is_used);
}
/// When finalizing the coverage map, `FunctionCoverage` only has the `CodeRegion`s and counters for
/// the functions that went through codegen; such as public functions and "used" functions
/// (functions referenced by other "used" or public items). Any other functions considered unused,
/// or "Unreachable" were still parsed and processed through the MIR stage.
///
/// We can find the unreachable functions by the set difference of all MIR `DefId`s (`tcx` query
/// `mir_keys`) minus the codegenned `DefId`s (`tcx` query `collect_and_partition_mono_items`).
///
/// *HOWEVER* the codegenned `DefId`s are partitioned across multiple `CodegenUnit`s (CGUs), and
/// this function is processing a `function_coverage_map` for the functions (`Instance`/`DefId`)
/// allocated to only one of those CGUs. We must NOT inject any "Unreachable" functions's
/// `CodeRegion`s more than once, so we have to pick which CGU's `function_coverage_map` to add
/// each "Unreachable" function to.
///
/// Some constraints:
///
/// 1. The file name of an "Unreachable" function must match the file name of the existing
/// codegenned (covered) function to which the unreachable code regions will be added.
/// 2. The function to which the unreachable code regions will be added must not be a genaric
/// function (must not have type parameters) because the coverage tools will get confused
/// if the codegenned function has more than one instantiation and additional `CodeRegion`s
/// attached to only one of those instantiations.
fn add_unreachable_coverage<'tcx>(
tcx: TyCtxt<'tcx>,
function_coverage_map: &mut FxHashMap<Instance<'tcx>, FunctionCoverage<'tcx>>,
) {
// FIXME(#79622): Can this solution be simplified and/or improved? Are there other sources
// of compiler state data that might help (or better sources that could be exposed, but
// aren't yet)?
// Note: If the crate *only* defines generic functions, there are no codegenerated non-generic
// functions to add any unreachable code to. In this case, the unreachable code regions will
// have no coverage, instead of having coverage with zero executions.
//
// This is probably still an improvement over Clang, which does not generate any coverage
// for uninstantiated template functions.
let has_non_generic_def_ids =
function_coverage_map.keys().any(|instance| instance.def.attrs(tcx).len() == 0);
if !has_non_generic_def_ids {
// There are no non-generic functions to add unreachable `CodeRegion`s to
return;
}
let all_def_ids: DefIdSet =
tcx.mir_keys(LOCAL_CRATE).iter().map(|local_def_id| local_def_id.to_def_id()).collect();
let (codegenned_def_ids, _) = tcx.collect_and_partition_mono_items(LOCAL_CRATE);
let mut unreachable_def_ids_by_file: FxHashMap<Symbol, Vec<DefId>> = FxHashMap::default();
for &non_codegenned_def_id in all_def_ids.difference(codegenned_def_ids) {
// Make sure the non-codegenned (unreachable) function has a file_name
if let Some(non_codegenned_file_name) = tcx.covered_file_name(non_codegenned_def_id) {
let def_ids = unreachable_def_ids_by_file
.entry(*non_codegenned_file_name)
.or_insert_with(Vec::new);
def_ids.push(non_codegenned_def_id);
}
}
if unreachable_def_ids_by_file.is_empty() {
// There are no unreachable functions with file names to add (in any CGU)
return;
}
// Since there may be multiple `CodegenUnit`s, some codegenned_def_ids may be codegenned in a
// different CGU, and will be added to the function_coverage_map for each CGU. Determine which
// function_coverage_map has the responsibility for publishing unreachable coverage
// based on file name:
//
// For each covered file name, sort ONLY the non-generic codegenned_def_ids, and if
// covered_def_ids.contains(the first def_id) for a given file_name, add the unreachable code
// region in this function_coverage_map. Otherwise, ignore it and assume another CGU's
// function_coverage_map will be adding it (because it will be first for one, and only one,
// of them).
let mut sorted_codegenned_def_ids: Vec<DefId> =
codegenned_def_ids.iter().map(|def_id| *def_id).collect();
sorted_codegenned_def_ids.sort_unstable();
let mut first_covered_def_id_by_file: FxHashMap<Symbol, DefId> = FxHashMap::default();
for &def_id in sorted_codegenned_def_ids.iter() {
// Only consider non-generic functions, to potentially add unreachable code regions
if tcx.generics_of(def_id).count() == 0 {
if let Some(covered_file_name) = tcx.covered_file_name(def_id) {
// Only add files known to have unreachable functions
if unreachable_def_ids_by_file.contains_key(covered_file_name) {
first_covered_def_id_by_file.entry(*covered_file_name).or_insert(def_id);
}
}
}
}
// Get the set of def_ids with coverage regions, known by *this* CoverageContext.
let cgu_covered_def_ids: DefIdSet =
function_coverage_map.keys().map(|instance| instance.def.def_id()).collect();
let mut cgu_covered_files: FxHashSet<Symbol> = first_covered_def_id_by_file
.iter()
.filter_map(
|(&file_name, def_id)| {
if cgu_covered_def_ids.contains(def_id) { Some(file_name) } else { None }
},
)
.collect();
// Find the first covered, non-generic function (instance) for each cgu_covered_file. Take the
// unreachable code regions for that file, and add them to the function.
//
// There are three `for` loops here, but (a) the lists have already been reduced to the minimum
// required values, the lists are further reduced (by `remove()` calls) when elements are no
// longer needed, and there are several opportunities to branch out of loops early.
for (instance, function_coverage) in function_coverage_map.iter_mut() {
if instance.def.attrs(tcx).len() > 0 {
continue;
}
// The covered function is not generic...
let covered_def_id = instance.def.def_id();
if let Some(covered_file_name) = tcx.covered_file_name(covered_def_id) {
if !cgu_covered_files.remove(&covered_file_name) {
continue;
}
// The covered function's file is one of the files with unreachable code regions, so
// all of the unreachable code regions for this file will be added to this function.
for def_id in
unreachable_def_ids_by_file.remove(&covered_file_name).into_iter().flatten()
{
// Note, this loop adds an unreachable code regions for each MIR-derived region.
// Alternatively, we could add a single code region for the maximum span of all
// code regions here.
//
// Observed downsides of this approach are:
//
// 1. The coverage results will appear inconsistent compared with the same (or
// similar) code in a function that is reached.
// 2. If the function is unreachable from one crate but reachable when compiling
// another referencing crate (such as a cross-crate reference to a
// generic function or inlined function), actual coverage regions overlaid
// on a single larger code span of `Zero` coverage can appear confusing or
// wrong. Chaning the unreachable coverage from a `code_region` to a
// `gap_region` can help, but still can look odd with `0` line counts for
// lines between executed (> 0) lines (such as for blank lines or comments).
for &region in tcx.covered_code_regions(def_id) {
function_coverage.add_unreachable_region(region.clone());
}
}
if cgu_covered_files.is_empty() {
break;
}
}
}
}