//===== Copyright © 1996-2005, Valve Corporation, All rights reserved. ======// // // Purpose: // // $NoKeywords: $ // // A growable memory class. //===========================================================================// #ifndef UTLBLOCKMEMORY_H #define UTLBLOCKMEMORY_H #ifdef _WIN32 #pragma once #endif #pragma warning (disable:4100) #pragma warning (disable:4514) //----------------------------------------------------------------------------- // The CUtlBlockMemory class: // A growable memory class that allocates non-sequential blocks, but is indexed sequentially //----------------------------------------------------------------------------- template< class T, class I > class CUtlBlockMemory { public: // constructor, destructor CUtlBlockMemory( int nGrowSize = 0, int nInitSize = 0 ); ~CUtlBlockMemory(); // Set the size by which the memory grows - round up to the next power of 2 void Init( int nGrowSize = 0, int nInitSize = 0 ); // here to match CUtlMemory, but only used by ResetDbgInfo, so it can just return NULL T* Base() { return NULL; } const T* Base() const { return NULL; } class Iterator_t { public: Iterator_t( I i ) : index( i ) {} I index; bool operator==( const Iterator_t it ) const { return index == it.index; } bool operator!=( const Iterator_t it ) const { return index != it.index; } }; Iterator_t First() const { return Iterator_t( IsIdxValid( 0 ) ? 0 : InvalidIndex() ); } Iterator_t Next( const Iterator_t &it ) const { return Iterator_t( IsIdxValid( it.index + 1 ) ? it.index + 1 : InvalidIndex() ); } I GetIndex( const Iterator_t &it ) const { return it.index; } bool IsIdxAfter( I i, const Iterator_t &it ) const { return i > it.index; } bool IsValidIterator( const Iterator_t &it ) const { return IsIdxValid( it.index ); } Iterator_t InvalidIterator() const { return Iterator_t( InvalidIndex() ); } // element access T& operator[]( I i ); const T& operator[]( I i ) const; T& Element( I i ); const T& Element( I i ) const; // Can we use this index? bool IsIdxValid( I i ) const; static I InvalidIndex() { return ( I )-1; } void Swap( CUtlBlockMemory< T, I > &mem ); // Size int NumAllocated() const; int Count() const { return NumAllocated(); } // Grows memory by max(num,growsize) rounded up to the next power of 2, and returns the allocation index/ptr void Grow( int num = 1 ); // Makes sure we've got at least this much memory void EnsureCapacity( int num ); // Memory deallocation void Purge(); // Purge all but the given number of elements void Purge( int numElements ); protected: int Index( int major, int minor ) const { return ( major << m_nIndexShift ) | minor; } int MajorIndex( int i ) const { return i >> m_nIndexShift; } int MinorIndex( int i ) const { return i & m_nIndexMask; } void ChangeSize( int nBlocks ); int NumElementsInBlock() const { return m_nIndexMask + 1; } T** m_pMemory; int m_nBlocks; int m_nIndexMask : 27; int m_nIndexShift : 5; }; //----------------------------------------------------------------------------- // constructor, destructor //----------------------------------------------------------------------------- template< class T, class I > CUtlBlockMemory::CUtlBlockMemory( int nGrowSize, int nInitAllocationCount ) : m_pMemory( 0 ), m_nBlocks( 0 ), m_nIndexMask( 0 ), m_nIndexShift( 0 ) { Init( nGrowSize, nInitAllocationCount ); } template< class T, class I > CUtlBlockMemory::~CUtlBlockMemory() { Purge(); } //----------------------------------------------------------------------------- // Fast swap //----------------------------------------------------------------------------- template< class T, class I > void CUtlBlockMemory::Swap( CUtlBlockMemory< T, I > &mem ) { swap( m_pMemory, mem.m_pMemory ); swap( m_nBlocks, mem.m_nBlocks ); swap( m_nIndexMask, mem.m_nIndexMask ); swap( m_nIndexShift, mem.m_nIndexShift ); } //----------------------------------------------------------------------------- // Set the size by which the memory grows - round up to the next power of 2 //----------------------------------------------------------------------------- template< class T, class I > void CUtlBlockMemory::Init( int nGrowSize /* = 0 */, int nInitSize /* = 0 */ ) { Purge(); if ( nGrowSize == 0) { // default grow size is smallest size s.t. c++ allocation overhead is ~6% of block size nGrowSize = ( 127 + sizeof( T ) ) / sizeof( T ); } nGrowSize = SmallestPowerOfTwoGreaterOrEqual( nGrowSize ); m_nIndexMask = nGrowSize - 1; m_nIndexShift = 0; while ( nGrowSize > 1 ) { nGrowSize >>= 1; ++m_nIndexShift; } assert( m_nIndexMask + 1 == ( 1 << m_nIndexShift ) ); Grow( nInitSize ); } //----------------------------------------------------------------------------- // element access //----------------------------------------------------------------------------- template< class T, class I > inline T& CUtlBlockMemory::operator[]( I i ) { assert( IsIdxValid(i) ); T *pBlock = m_pMemory[ MajorIndex( i ) ]; return pBlock[ MinorIndex( i ) ]; } template< class T, class I > inline const T& CUtlBlockMemory::operator[]( I i ) const { assert( IsIdxValid(i) ); const T *pBlock = m_pMemory[ MajorIndex( i ) ]; return pBlock[ MinorIndex( i ) ]; } template< class T, class I > inline T& CUtlBlockMemory::Element( I i ) { assert( IsIdxValid(i) ); T *pBlock = m_pMemory[ MajorIndex( i ) ]; return pBlock[ MinorIndex( i ) ]; } template< class T, class I > inline const T& CUtlBlockMemory::Element( I i ) const { assert( IsIdxValid(i) ); const T *pBlock = m_pMemory[ MajorIndex( i ) ]; return pBlock[ MinorIndex( i ) ]; } //----------------------------------------------------------------------------- // Size //----------------------------------------------------------------------------- template< class T, class I > inline int CUtlBlockMemory::NumAllocated() const { return m_nBlocks * NumElementsInBlock(); } //----------------------------------------------------------------------------- // Is element index valid? //----------------------------------------------------------------------------- template< class T, class I > inline bool CUtlBlockMemory::IsIdxValid( I i ) const { return ( i >= 0 ) && ( MajorIndex( i ) < m_nBlocks ); } template< class T, class I > void CUtlBlockMemory::Grow( int num ) { if ( num <= 0 ) return; int nBlockSize = NumElementsInBlock(); int nBlocks = ( num + nBlockSize - 1 ) / nBlockSize; ChangeSize( m_nBlocks + nBlocks ); } template< class T, class I > void CUtlBlockMemory::ChangeSize( int nBlocks ) { int nBlocksOld = m_nBlocks; m_nBlocks = nBlocks; // free old blocks if shrinking for ( int i = m_nBlocks; i < nBlocksOld; ++i ) { free( (void*)m_pMemory[ i ] ); } if ( m_pMemory ) { m_pMemory = (T**)realloc( m_pMemory, m_nBlocks * sizeof(T*) ); assert( m_pMemory ); } else { m_pMemory = (T**)malloc( m_nBlocks * sizeof(T*) ); assert( m_pMemory ); } if ( !m_pMemory ) { printf( "CUtlBlockMemory overflow!\n" ); abort(); } // allocate new blocks if growing int nBlockSize = NumElementsInBlock(); for ( int i = nBlocksOld; i < m_nBlocks; ++i ) { m_pMemory[ i ] = (T*)malloc( nBlockSize * sizeof( T ) ); assert( m_pMemory[ i ] ); } } //----------------------------------------------------------------------------- // Makes sure we've got at least this much memory //----------------------------------------------------------------------------- template< class T, class I > inline void CUtlBlockMemory::EnsureCapacity( int num ) { Grow( num - NumAllocated() ); } //----------------------------------------------------------------------------- // Memory deallocation //----------------------------------------------------------------------------- template< class T, class I > void CUtlBlockMemory::Purge() { if ( !m_pMemory ) return; for ( int i = 0; i < m_nBlocks; ++i ) { free( (void*)m_pMemory[ i ] ); } m_nBlocks = 0; free( (void*)m_pMemory ); m_pMemory = 0; } template< class T, class I > void CUtlBlockMemory::Purge( int numElements ) { assert( numElements >= 0 ); int nAllocated = NumAllocated(); if ( numElements > nAllocated ) { // Ensure this isn't a grow request in disguise. assert( numElements <= nAllocated ); return; } if ( numElements <= 0 ) { Purge(); return; } int nBlockSize = NumElementsInBlock(); int nBlocksOld = m_nBlocks; int nBlocks = ( numElements + nBlockSize - 1 ) / nBlockSize; // If the number of blocks is the same as the allocated number of blocks, we are done. if ( nBlocks == m_nBlocks ) return; ChangeSize( nBlocks ); } #endif // UTLBLOCKMEMORY_H