/* mathlib.h - base math functions Copyright (C) 2007 Uncle Mike This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. */ #ifndef MATHLIB_H #define MATHLIB_H #include // euler angle order #define PITCH 0 #define YAW 1 #define ROLL 2 #ifndef M_PI #define M_PI (float)3.14159265358979323846 #endif #ifndef M_PI2 #define M_PI2 (float)6.28318530717958647692 #endif #define M_PI_F ((float)(M_PI)) #define M_PI2_F ((float)(M_PI2)) #define RAD2DEG( x ) ((float)(x) * (float)(180.f / M_PI)) #define DEG2RAD( x ) ((float)(x) * (float)(M_PI / 180.f)) #define SIDE_FRONT 0 #define SIDE_BACK 1 #define SIDE_ON 2 #define SIDE_CROSS -2 #define PLANE_X 0 // 0 - 2 are axial planes #define PLANE_Y 1 // 3 needs alternate calc #define PLANE_Z 2 #define PLANE_NONAXIAL 3 #define EQUAL_EPSILON 0.001f #define STOP_EPSILON 0.1f #define ON_EPSILON 0.1f #define RAD_TO_STUDIO (32768.0 / M_PI) #define STUDIO_TO_RAD (M_PI / 32768.0) #define nanmask (255<<23) #define Q_rint(x) ((x) < 0 ? ((int)((x)-0.5f)) : ((int)((x)+0.5f))) #define IS_NAN(x) (((*(int *)&x)&nanmask)==nanmask) #define VectorIsNAN(v) (IS_NAN(v[0]) || IS_NAN(v[1]) || IS_NAN(v[2])) #define DotProduct(x,y) ((x)[0]*(y)[0]+(x)[1]*(y)[1]+(x)[2]*(y)[2]) #define DotProductAbs(x,y) (abs((x)[0]*(y)[0])+abs((x)[1]*(y)[1])+abs((x)[2]*(y)[2])) #define DotProductFabs(x,y) (fabs((x)[0]*(y)[0])+fabs((x)[1]*(y)[1])+fabs((x)[2]*(y)[2])) #define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0]) #define Vector2Subtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1]) #define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2]) #define Vector2Add(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1]) #define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2]) #define Vector2Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1]) #define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2]) #define Vector4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3]) #define VectorScale(in, scale, out) ((out)[0] = (in)[0] * (scale),(out)[1] = (in)[1] * (scale),(out)[2] = (in)[2] * (scale)) #define VectorCompare(v1,v2) ((v1)[0]==(v2)[0] && (v1)[1]==(v2)[1] && (v1)[2]==(v2)[2]) #define VectorDivide( in, d, out ) VectorScale( in, (1.0f / (d)), out ) #define VectorMax(a) ( max((a)[0], max((a)[1], (a)[2])) ) #define VectorAvg(a) ( ((a)[0] + (a)[1] + (a)[2]) / 3 ) #define VectorLength(a) ( sqrt( DotProduct( a, a ))) #define VectorLength2(a) (DotProduct( a, a )) #define VectorDistance(a, b) (sqrt( VectorDistance2( a, b ))) #define VectorDistance2(a, b) (((a)[0] - (b)[0]) * ((a)[0] - (b)[0]) + ((a)[1] - (b)[1]) * ((a)[1] - (b)[1]) + ((a)[2] - (b)[2]) * ((a)[2] - (b)[2])) #define Vector2Average(a,b,o) ((o)[0]=((a)[0]+(b)[0])*0.5,(o)[1]=((a)[1]+(b)[1])*0.5) #define VectorAverage(a,b,o) ((o)[0]=((a)[0]+(b)[0])*0.5,(o)[1]=((a)[1]+(b)[1])*0.5,(o)[2]=((a)[2]+(b)[2])*0.5) #define Vector2Set(v, x, y) ((v)[0]=(x),(v)[1]=(y)) #define VectorSet(v, x, y, z) ((v)[0]=(x),(v)[1]=(y),(v)[2]=(z)) #define Vector4Set(v, a, b, c, d) ((v)[0]=(a),(v)[1]=(b),(v)[2]=(c),(v)[3] = (d)) #define VectorClear(x) ((x)[0]=(x)[1]=(x)[2]=0) #define Vector2Lerp( v1, lerp, v2, c ) ((c)[0] = (v1)[0] + (lerp) * ((v2)[0] - (v1)[0]), (c)[1] = (v1)[1] + (lerp) * ((v2)[1] - (v1)[1])) #define VectorLerp( v1, lerp, v2, c ) ((c)[0] = (v1)[0] + (lerp) * ((v2)[0] - (v1)[0]), (c)[1] = (v1)[1] + (lerp) * ((v2)[1] - (v1)[1]), (c)[2] = (v1)[2] + (lerp) * ((v2)[2] - (v1)[2])) #define VectorNormalize( v ) { float ilength = (float)sqrt(DotProduct(v, v));if (ilength) ilength = 1.0f / ilength;v[0] *= ilength;v[1] *= ilength;v[2] *= ilength; } #define VectorNormalize2( v, dest ) {float ilength = (float)sqrt(DotProduct(v,v));if (ilength) ilength = 1.0f / ilength;dest[0] = v[0] * ilength;dest[1] = v[1] * ilength;dest[2] = v[2] * ilength; } #define VectorNormalizeFast( v ) {float ilength = (float)rsqrt(DotProduct(v,v)); v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } #define VectorNormalizeLength( v ) VectorNormalizeLength2((v), (v)) #define VectorNegate(x, y) ((y)[0] = -(x)[0], (y)[1] = -(x)[1], (y)[2] = -(x)[2]) #define VectorM(scale1, b1, c) ((c)[0] = (scale1) * (b1)[0],(c)[1] = (scale1) * (b1)[1],(c)[2] = (scale1) * (b1)[2]) #define VectorMA(a, scale, b, c) ((c)[0] = (a)[0] + (scale) * (b)[0],(c)[1] = (a)[1] + (scale) * (b)[1],(c)[2] = (a)[2] + (scale) * (b)[2]) #define VectorMAMAM(scale1, b1, scale2, b2, scale3, b3, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0] + (scale3) * (b3)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1] + (scale3) * (b3)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2] + (scale3) * (b3)[2]) #define VectorIsNull( v ) ((v)[0] == 0.0f && (v)[1] == 0.0f && (v)[2] == 0.0f) #define MakeRGBA( out, x, y, z, w ) Vector4Set( out, x, y, z, w ) #define PlaneDist(point,plane) ((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) #define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist) #define bound( min, num, max ) ((num) >= (min) ? ((num) < (max) ? (num) : (max)) : (min)) float rsqrt( float number ); float anglemod( const float a ); int SignbitsForPlane( const vec3_t normal ); int NearestPOW( int value, qboolean roundDown ); void SinCos( float radians, float *sine, float *cosine ); float VectorNormalizeLength2( const vec3_t v, vec3_t out ); void VectorVectors( const vec3_t forward, vec3_t right, vec3_t up ); void VectorAngles( const float *forward, float *angles ); void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up ); void VectorsAngles( const vec3_t forward, const vec3_t right, const vec3_t up, vec3_t angles ); void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ); void ClearBounds( vec3_t mins, vec3_t maxs ); void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ); qboolean BoundsIntersect( const vec3_t mins1, const vec3_t maxs1, const vec3_t mins2, const vec3_t maxs2 ); qboolean BoundsAndSphereIntersect( const vec3_t mins, const vec3_t maxs, const vec3_t origin, float radius ); float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ); void AngleQuaternion( const vec3_t angles, vec4_t q ); void QuaternionSlerp( const vec4_t p, vec4_t q, float t, vec4_t qt ); float RemapVal( float val, float A, float B, float C, float D ); float ApproachVal( float target, float value, float speed ); // // matrixlib.c // #define Matrix3x4_LoadIdentity( mat ) Matrix3x4_Copy( mat, matrix3x4_identity ) #define Matrix3x4_Copy( out, in ) Q_memcpy( out, in, sizeof( matrix3x4 )) void Matrix3x4_VectorTransform( const matrix3x4 in, const float v[3], float out[3] ); void Matrix3x4_VectorITransform( const matrix3x4 in, const float v[3], float out[3] ); void Matrix3x4_VectorRotate( const matrix3x4 in, const float v[3], float out[3] ); void Matrix3x4_VectorIRotate( const matrix3x4 in, const float v[3], float out[3] ); void Matrix3x4_ConcatTransforms( matrix3x4 out, const matrix3x4 in1, const matrix3x4 in2 ); void Matrix3x4_FromOriginQuat( matrix3x4 out, const vec4_t quaternion, const vec3_t origin ); void Matrix3x4_CreateFromEntity( matrix3x4 out, const vec3_t angles, const vec3_t origin, float scale ); void Matrix3x4_TransformPositivePlane( const matrix3x4 in, const vec3_t normal, float d, vec3_t out, float *dist ); void Matrix3x4_SetOrigin( matrix3x4 out, float x, float y, float z ); void Matrix3x4_Invert_Simple( matrix3x4 out, const matrix3x4 in1 ); void Matrix3x4_OriginFromMatrix( const matrix3x4 in, float *out ); #define Matrix4x4_LoadIdentity( mat ) Matrix4x4_Copy( mat, matrix4x4_identity ) #define Matrix4x4_Copy( out, in ) Q_memcpy( out, in, sizeof( matrix4x4 )) void Matrix4x4_VectorTransform( const matrix4x4 in, const float v[3], float out[3] ); void Matrix4x4_VectorITransform( const matrix4x4 in, const float v[3], float out[3] ); void Matrix4x4_VectorRotate( const matrix4x4 in, const float v[3], float out[3] ); void Matrix4x4_VectorIRotate( const matrix4x4 in, const float v[3], float out[3] ); void Matrix4x4_ConcatTransforms( matrix4x4 out, const matrix4x4 in1, const matrix4x4 in2 ); void Matrix4x4_FromOriginQuat( matrix4x4 out, const vec4_t quaternion, const vec3_t origin ); void Matrix4x4_CreateFromEntity( matrix4x4 out, const vec3_t angles, const vec3_t origin, float scale ); void Matrix4x4_TransformPositivePlane( const matrix4x4 in, const vec3_t normal, float d, vec3_t out, float *dist ); void Matrix4x4_TransformStandardPlane( const matrix4x4 in, const vec3_t normal, float d, vec3_t out, float *dist ); void Matrix4x4_ConvertToEntity( const matrix4x4 in, vec3_t angles, vec3_t origin ); void Matrix4x4_SetOrigin( matrix4x4 out, float x, float y, float z ); void Matrix4x4_Invert_Simple( matrix4x4 out, const matrix4x4 in1 ); void Matrix4x4_OriginFromMatrix( const matrix4x4 in, float *out ); void Matrix4x4_Transpose( matrix4x4 out, const matrix4x4 in1 ); qboolean Matrix4x4_Invert_Full( matrix4x4 out, const matrix4x4 in1 ); extern vec3_t vec3_origin; extern const matrix3x4 matrix3x4_identity; extern const matrix4x4 matrix4x4_identity; #endif//MATHLIB_H