//======================================================================= // Copyright XashXT Group 2007 © // cpuinfo.c - get cpu information //======================================================================= #include "launch.h" // Processor Information: typedef struct cpuinfo_s { bool m_bRDTSC : 1; // Is RDTSC supported? bool m_bCMOV : 1; // Is CMOV supported? bool m_bFCMOV : 1; // Is FCMOV supported? bool m_bSSE : 1; // Is SSE supported? bool m_bSSE2 : 1; // Is SSE2 Supported? bool m_b3DNow : 1; // Is 3DNow! Supported? bool m_bMMX : 1; // Is MMX supported? bool m_bHT : 1; // Is HyperThreading supported? byte m_usNumLogicCore; // Number op logical processors. byte m_usNumPhysCore; // Number of physical processors int64 m_speed; // In cycles per second. int m_size; // structure size char* m_szCPUID; // Processor vendor Identification. } cpuinfo_t; typedef struct register_s { dword eax; dword ebx; dword ecx; dword edx; bool retval; } register_t; static register_t cpuid(uint function ) { register_t local; local.retval = true; _asm pushad; __try { _asm { xor edx, edx // Clue the compiler that EDX is about to be used. mov eax, function // set up CPUID to return processor version and features // 0 = vendor string, 1 = version info, 2 = cache info cpuid // code bytes = 0fh, 0a2h mov local.eax, eax // features returned in eax mov local.ebx, ebx // features returned in ebx mov local.ecx, ecx // features returned in ecx mov local.edx, edx // features returned in edx } } __except(EXCEPTION_EXECUTE_HANDLER) { local.retval = false; } _asm popad return local; } bool CheckMMXTechnology(void) { register_t mmx = cpuid(1); if( !mmx.retval ) return false; return ( mmx.edx & 0x800000 ) != 0; } bool CheckSSETechnology(void) { register_t sse = cpuid(1); if( !sse.retval ) return false; return ( sse.edx & 0x2000000L ) != 0; } bool CheckSSE2Technology(void) { register_t sse2 = cpuid(1); if( !sse2.retval ) return false; return ( sse2.edx & 0x04000000 ) != 0; } bool Check3DNowTechnology(void) { register_t amd = cpuid( 0x80000000 ); if( !amd.retval ) return false; if( amd.eax > 0x80000000L ) { amd = cpuid( 0x80000001 ); if( !amd.retval ) return false; return ( amd.edx & 1<<31 ) != 0; } return false; } bool CheckCMOVTechnology() { register_t cmov = cpuid(1); if( !cmov.retval ) return false; return ( cmov.edx & (1<<15) ) != 0; } bool CheckFCMOVTechnology(void) { register_t fcmov = cpuid(1); if( !fcmov.retval ) return false; return ( fcmov.edx & (1<<16) ) != 0; } bool CheckRDTSCTechnology(void) { register_t rdtsc = cpuid(1); if( !rdtsc.retval ) return false; return rdtsc.edx & 0x10 != 0; } /* ================ Return the Processor's vendor identification string, or "Generic_x86" if it doesn't exist on this CPU ================ */ const char* GetProcessorVendorId() { static char VendorID[13]; register_t vendor = cpuid(0); Mem_Set( VendorID, 0, sizeof(VendorID) ); if( !vendor.retval ) { com_strcpy( VendorID, "Generic_x86" ); } else { Mem_Copy( VendorID+0, &(vendor.ebx), sizeof( vendor.ebx ) ); Mem_Copy( VendorID+4, &(vendor.edx), sizeof( vendor.edx ) ); Mem_Copy( VendorID+8, &(vendor.ecx), sizeof( vendor.ecx ) ); } return VendorID; } /* ================ Returns non-zero if Hyper-Threading Technology is supported on the processors and zero if not. This does not mean that Hyper-Threading Technology is necessarily enabled. ================ */ static bool HTSupported(void) { const uint HT_BIT = 0x10000000; // EDX[28] - Bit 28 set indicates Hyper-Threading Technology is supported in hardware. const uint FAMILY_ID = 0x0f00; // EAX[11:8] - Bit 11 thru 8 contains family processor id const uint EXT_FAMILY_ID = 0x0f00000; // EAX[23:20] - Bit 23 thru 20 contains extended family processor id const uint PENTIUM4_ID = 0x0f00; // Pentium 4 family processor id register_t intel1 = cpuid(0); register_t intel2 = cpuid(1); if(!intel1.retval || !intel2.retval ) return false; // Check to see if this is a Pentium 4 or later processor if (((intel2.eax & FAMILY_ID) == PENTIUM4_ID) || (intel2.eax & EXT_FAMILY_ID)) if (intel1.ebx == 'uneG' && intel1.edx == 'Ieni' && intel1.ecx == 'letn') return (intel2.edx & HT_BIT) != 0; // Genuine Intel Processor with Hyper-Threading Technology return false; // This is not a genuine Intel processor. } /* ================ Returns the number of logical processors per physical processors. ================ */ static byte LogicalProcessorsPerPackage(void) { const unsigned NUM_LOGICAL_BITS = 0x00FF0000; // EBX[23:16] indicate number of logical processors per package register_t core = cpuid(1); if (!HTSupported()) return 1; if( !core.retval) return 1; return (byte)((core.ebx & NUM_LOGICAL_BITS) >> 16); } int64 ClockSample( void ) { static int64 m_time = 0; dword* pSample = (dword *)&m_time; __asm { mov ecx, pSample rdtsc mov [ecx], eax mov [ecx+4], edx } return m_time; } /* ================ Measure the processor clock speed by sampling the cycle count, waiting for some fraction of a second, then measuring the elapsed number of cycles. ================ */ static int64 CalculateClockSpeed() { LARGE_INTEGER waitTime, startCount, curCount; int scale = 5; // Take 1/32 of a second for the measurement. int64 start, end; QueryPerformanceCounter(&startCount); QueryPerformanceFrequency(&waitTime); waitTime.QuadPart >>= scale; start = ClockSample(); do { QueryPerformanceCounter(&curCount); } while(curCount.QuadPart - startCount.QuadPart < waitTime.QuadPart); end = ClockSample(); return (end - start) << scale; } /* ================ GetCPUInfo ================ */ cpuinfo_t GetCPUInfo( void ) { static cpuinfo_t pi; SYSTEM_INFO si; if( pi.m_size == sizeof(pi) ) return pi;// Has the structure already been initialized and filled out? Mem_Set(&pi, 0, sizeof(pi)); // Redundant, but just in case the user somehow messes with the size. pi.m_size = sizeof(pi); // Fill out the structure, and return it: pi.m_speed = CalculateClockSpeed(); // Grab the processor frequency: pi.m_usNumLogicCore = LogicalProcessorsPerPackage();// Get the logical and physical processor counts: Mem_Set( &si, 0, sizeof(si) ); GetSystemInfo( &si ); pi.m_usNumPhysCore = si.dwNumberOfProcessors / pi.m_usNumLogicCore; pi.m_usNumLogicCore *= pi.m_usNumPhysCore; // Make sure I always report at least one, when running WinXP with the /ONECPU switch, // it likes to report 0 processors for some reason. if( pi.m_usNumPhysCore == 0 && pi.m_usNumLogicCore == 0 ) { pi.m_usNumPhysCore = 1; pi.m_usNumLogicCore = 1; } // Determine Processor Features: pi.m_bRDTSC = CheckRDTSCTechnology(); pi.m_bCMOV = CheckCMOVTechnology(); pi.m_bFCMOV = CheckFCMOVTechnology(); pi.m_bMMX = CheckMMXTechnology(); pi.m_bSSE = CheckSSETechnology(); pi.m_bSSE2 = CheckSSE2Technology(); pi.m_b3DNow = Check3DNowTechnology(); pi.m_szCPUID = (char*)GetProcessorVendorId(); return pi; } void Sys_InitCPU( void ) { cpuinfo_t cpu = GetCPUInfo(); char szFeatureString[256]; // Compute Frequency in Mhz: char* szFrequencyDenomination = "Mhz"; double fFrequency = cpu.m_speed / 1000000.0; // copy shared info GI.tickcount = cpu.m_speed; // used for profiling GI.cpufreq = (float)fFrequency; GI.cpunum = cpu.m_usNumLogicCore; GI.rdtsc = cpu.m_bRDTSC; // Adjust to Ghz if nessecary: if( fFrequency > 1000.0 ) { fFrequency /= 1000.0; szFrequencyDenomination = "Ghz"; } com_strcpy(szFeatureString, "" ); if( cpu.m_bMMX ) com_strcat(szFeatureString, "MMX " ); if( cpu.m_b3DNow ) com_strcat(szFeatureString, "3DNow " ); if( cpu.m_bSSE ) com_strcat(szFeatureString, "SSE " ); if( cpu.m_bSSE2 ) com_strcat(szFeatureString, "SSE2 " ); if( cpu.m_bRDTSC ) com_strcat(szFeatureString, "RDTSC " ); if( cpu.m_bCMOV ) com_strcat(szFeatureString, "CMOV " ); if( cpu.m_bFCMOV ) com_strcat(szFeatureString, "FCMOV " ); // Remove the trailing space. There will always be one. szFeatureString[com_strlen(szFeatureString)-1] = '\0'; // Dump CPU information: if( cpu.m_usNumLogicCore == 1 ) MsgDev( D_INFO, "CPU: %s [1 core]. Frequency: %.01f %s\n", cpu.m_szCPUID, fFrequency, szFrequencyDenomination ); else { char buffer[256] = ""; if( cpu.m_usNumPhysCore != cpu.m_usNumLogicCore ) com_sprintf(buffer, " (%i physical)", (int) cpu.m_usNumPhysCore ); MsgDev(D_INFO, "CPU: %s [%i core's %s]. Frequency: %.01f %s\n ", cpu.m_szCPUID, (int)cpu.m_usNumLogicCore, buffer, fFrequency, szFrequencyDenomination ); } MsgDev(D_NOTE, "CPU Features: %s\n", szFeatureString ); }