//======================================================================= // Copyright XashXT Group 2010 © // gl_rsurf.c - surface-related refresh code //======================================================================= #include "common.h" #include "client.h" #include "gl_local.h" #include "cm_local.h" #include "mathlib.h" typedef struct { qboolean lightmap_modified[MAX_LIGHTMAPS]; wrect_t lightmap_rectchange[MAX_LIGHTMAPS]; uint allocated[MAX_LIGHTMAPS][BLOCK_WIDTH]; byte lightmaps[MAX_LIGHTMAPS*BLOCK_WIDTH*BLOCK_HEIGHT*4]; } lightmap_state_t; typedef struct gl_light_s { int local[2]; int minlight; // rad - minlight int rad; } gl_light_t; static vec3_t modelorg; // relative to viewpoint static vec3_t modelmins; static vec3_t modelmaxs; static byte visbytes[MAX_MAP_LEAFS/8]; static uint r_blockLights[BLOCK_WIDTH*BLOCK_HEIGHT*3]; static glpoly_t *lightmap_polys[MAX_LIGHTMAPS]; static glpoly_t *fullbright_polys[MAX_TEXTURES]; static qboolean draw_fullbrights = false; static lightmap_state_t r_lmState; static msurface_t *skychain = NULL; static gl_light_t r_dlights[MAX_DLIGHTS]; static int r_numdlights; static void R_BuildLightMap( msurface_t *surf, byte *dest, int stride ); static void LM_UploadBlock( int lightmapnum ); byte *Mod_GetCurrentVis( void ) { return Mod_LeafPVS( r_viewleaf, cl.worldmodel ); } static void BoundPoly( int numverts, float *verts, vec3_t mins, vec3_t maxs ) { int i, j; float *v; mins[0] = mins[1] = mins[2] = 9999; maxs[0] = maxs[1] = maxs[2] = -9999; for( i = 0, v = verts; i < numverts; i++ ) { for( j = 0; j < 3; j++, v++ ) { if( *v < mins[j] ) mins[j] = *v; if( *v > maxs[j] ) maxs[j] = *v; } } } static void SubdividePolygon_r( msurface_t *warpface, int numverts, float *verts ) { int i, j, k, f, b; vec3_t mins, maxs; float m, frac, s, t, *v; vec3_t front[SUBDIVIDE_SIZE], back[SUBDIVIDE_SIZE], total; float dist[SUBDIVIDE_SIZE], total_s, total_t; glpoly_t *poly; if( numverts > ( SUBDIVIDE_SIZE - 4 )) Host_Error( "Mod_SubdividePolygon: too many vertexes on face ( %i )\n", numverts ); BoundPoly( numverts, verts, mins, maxs ); for( i = 0; i < 3; i++ ) { m = ( mins[i] + maxs[i] ) * 0.5f; m = SUBDIVIDE_SIZE * floor( m / SUBDIVIDE_SIZE + 0.5f ); if( maxs[i] - m < 8 ) continue; if( m - mins[i] < 8 ) continue; // cut it v = verts + i; for( j = 0; j < numverts; j++, v += 3 ) dist[j] = *v - m; // wrap cases dist[j] = dist[0]; v -= i; VectorCopy( verts, v ); f = b = 0; v = verts; for( j = 0; j < numverts; j++, v += 3 ) { if( dist[j] >= 0 ) { VectorCopy( v, front[f] ); f++; } if( dist[j] <= 0 ) { VectorCopy (v, back[b]); b++; } if( dist[j] == 0 || dist[j+1] == 0 ) continue; if(( dist[j] > 0 ) != ( dist[j+1] > 0 )) { // clip point frac = dist[j] / ( dist[j] - dist[j+1] ); for( k = 0; k < 3; k++ ) front[f][k] = back[b][k] = v[k] + frac * (v[3+k] - v[k]); f++; b++; } } SubdividePolygon_r( warpface, f, front[0] ); SubdividePolygon_r( warpface, b, back[0] ); return; } // add a point in the center to help keep warp valid poly = Mem_Alloc( loadmodel->mempool, sizeof( glpoly_t ) + ((numverts-4)+2) * VERTEXSIZE * sizeof( float )); poly->next = warpface->polys; poly->flags = warpface->flags; warpface->polys = poly; poly->numverts = numverts + 2; VectorClear( total ); total_s = 0; total_t = 0; for( i = 0; i < numverts; i++, verts += 3 ) { VectorCopy( verts, poly->verts[i+1] ); s = DotProduct( verts, warpface->texinfo->vecs[0] ); t = DotProduct( verts, warpface->texinfo->vecs[1] ); total_s += s; total_t += t; VectorAdd( total, verts, total ); poly->verts[i+1][3] = s; poly->verts[i+1][4] = t; } VectorScale( total, ( 1.0f / numverts ), poly->verts[0] ); poly->verts[0][3] = total_s / numverts; poly->verts[0][4] = total_t / numverts; // copy first vertex to last Mem_Copy( poly->verts[i+1], poly->verts[1], sizeof( poly->verts[0] )); } /* ================ GL_SubdivideSurface Breaks a polygon up along axial 64 unit boundaries so that turbulent and sky warps can be done reasonably. ================ */ void GL_SubdivideSurface( msurface_t *fa ) { vec3_t verts[SUBDIVIDE_SIZE]; int numverts; int i, lindex; float *vec; // convert edges back to a normal polygon numverts = 0; for( i = 0; i < fa->numedges; i++ ) { lindex = loadmodel->surfedges[fa->firstedge + i]; if( lindex > 0 ) vec = loadmodel->vertexes[loadmodel->edges[lindex].v[0]].position; else vec = loadmodel->vertexes[loadmodel->edges[-lindex].v[1]].position; VectorCopy (vec, verts[numverts]); numverts++; } // do subdivide SubdividePolygon_r( fa, numverts, verts[0] ); } /* ================ GL_BuildPolygonFromSurface ================ */ void GL_BuildPolygonFromSurface( msurface_t *fa ) { int i, lindex, lnumverts; medge_t *pedges, *r_pedge; int vertpage; float *vec; float s, t; glpoly_t *poly; // already created if( fa->polys ) return; if( !fa->texinfo || !fa->texinfo->texture ) return; // bad polygon ? // reconstruct the polygon pedges = loadmodel->edges; lnumverts = fa->numedges; vertpage = 0; // draw texture poly = Mem_Alloc( loadmodel->mempool, sizeof( glpoly_t ) + ( lnumverts - 4 ) * VERTEXSIZE * sizeof( float )); poly->next = fa->polys; poly->flags = fa->flags; fa->polys = poly; poly->numverts = lnumverts; for( i = 0; i < lnumverts; i++ ) { lindex = loadmodel->surfedges[fa->firstedge + i]; if( lindex > 0 ) { r_pedge = &pedges[lindex]; vec = loadmodel->vertexes[r_pedge->v[0]].position; } else { r_pedge = &pedges[-lindex]; vec = loadmodel->vertexes[r_pedge->v[1]].position; } s = DotProduct( vec, fa->texinfo->vecs[0] ) + fa->texinfo->vecs[0][3]; s /= fa->texinfo->texture->width; t = DotProduct( vec, fa->texinfo->vecs[1] ) + fa->texinfo->vecs[1][3]; t /= fa->texinfo->texture->height; VectorCopy( vec, poly->verts[i] ); poly->verts[i][3] = s; poly->verts[i][4] = t; // lightmap texture coordinates s = DotProduct( vec, fa->texinfo->vecs[0] ) + fa->texinfo->vecs[0][3]; s -= fa->texturemins[0]; s += fa->light_s * 16; s += 8; s /= BLOCK_WIDTH * 16; //fa->texinfo->texture->width; t = DotProduct( vec, fa->texinfo->vecs[1] ) + fa->texinfo->vecs[1][3]; t -= fa->texturemins[1]; t += fa->light_t * 16; t += 8; t /= BLOCK_HEIGHT * 16; //fa->texinfo->texture->height; poly->verts[i][5] = s; poly->verts[i][6] = t; } } /* =============== R_TextureAnimation Returns the proper texture for a given time and base texture =============== */ texture_t *R_TextureAnimation( texture_t *base ) { int reletive; int count, speed; if( RI.currententity->curstate.frame ) { if( base->alternate_anims ) base = base->alternate_anims; } if( !base->anim_total ) return base; // GoldSrc and Quake1 has different animating speed if( world.version == Q1BSP_VERSION ) speed = 10; else speed = 20; reletive = (int)(cl.time * speed) % base->anim_total; count = 0; while( base->anim_min > reletive || base->anim_max <= reletive ) { base = base->anim_next; if( !base ) Host_Error( "R_TextureAnimation: broken loop\n" ); if( ++count > 100 ) Host_Error( "R_TextureAnimation: infinite loop\n" ); } return base; } /* ================ DrawGLWaterPoly Warp the vertex coordinates ================ */ void DrawGLWaterPoly( glpoly_t *p, qboolean lightmap ) { float *v; vec3_t nv; int i; GL_CleanUpTextureUnits( 1 ); pglBegin( GL_TRIANGLE_FAN ); v = p->verts[0]; for( i = 0; i < p->numverts; i++, v += VERTEXSIZE ) { if( lightmap ) pglTexCoord2f( v[5], v[6] ); else pglTexCoord2f( v[3], v[4] ); nv[0] = v[0] + 8 * com.sin( v[1] * 0.05f + cl.time ) * com.sin( v[2] * 0.05f + cl.time ); nv[1] = v[1] + 8 * com.sin( v[0] * 0.05f + cl.time ) * com.sin( v[2] * 0.05f + cl.time ); nv[2] = v[2]; pglVertex3fv( nv ); } pglEnd(); } /* ================ DrawGLPoly ================ */ void DrawGLPoly( glpoly_t *p ) { float *v; float sOffset; float tOffset; cl_entity_t *e = RI.currententity; int i; if( p->flags & SURF_CONVEYOR ) { gltexture_t *texture; float flConveyorSpeed; float flRate, flAngle; flConveyorSpeed = (e->curstate.rendercolor.g<<8|e->curstate.rendercolor.b) / 16.0f; if( e->curstate.rendercolor.r ) flConveyorSpeed = -flConveyorSpeed; texture = R_GetTexture( glState.currentTextures[glState.activeTMU] ); flRate = abs( flConveyorSpeed ) / (float)texture->srcWidth; flAngle = ( flConveyorSpeed >= 0 ) ? 180 : 0; sOffset = RI.refdef.time * com.cos( flAngle * ( M_PI / 180.0f )) * flRate; tOffset = RI.refdef.time * com.sin( flAngle * ( M_PI / 180.0f )) * flRate; // make sure that we are positive if( sOffset < 0.0f ) sOffset += 1.0f + -(int)sOffset; if( tOffset < 0.0f ) tOffset += 1.0f + -(int)tOffset; // make sure that we are in a [0,1] range sOffset = sOffset - (int)sOffset; tOffset = tOffset - (int)tOffset; } else { sOffset = tOffset = 0.0f; } pglBegin( GL_POLYGON ); v = p->verts[0]; for( i = 0; i < p->numverts; i++, v += VERTEXSIZE ) { pglTexCoord2f( v[3] + sOffset, v[4] + tOffset ); pglVertex3fv( v ); } pglEnd(); } /* ================ R_BlendLightmaps ================ */ void R_BlendLightmaps( void ) { int i, j; glpoly_t *p; float *v; if( r_fullbright->integer || !cl.worldmodel->lightdata ) return; if( RI.currententity ) { // check for rendermode switch( RI.currententity->curstate.rendermode ) { case kRenderTransTexture: case kRenderTransInverse: case kRenderTransAdd: case kRenderGlow: return; // no lightmaps } } if( !r_lightmap->integer ) { GL_TexEnv( GL_MODULATE ); GL_SetState( GLSTATE_SRCBLEND_ZERO|GLSTATE_DSTBLEND_SRC_COLOR|GLSTATE_DEPTHFUNC_EQ ); } for( i = 0; i < MAX_LIGHTMAPS; i++ ) { p = lightmap_polys[i]; if( !p ) continue; GL_Bind( GL_TEXTURE0, tr.lightmapTextures[i] ); if( r_lmState.lightmap_modified[i] ) LM_UploadBlock( i ); for( ; p; p = p->chain ) { pglBegin( GL_POLYGON ); v = p->verts[0]; for( j = 0; j < p->numverts; j++, v += VERTEXSIZE ) { pglTexCoord2f( v[5], v[6] ); pglVertex3fv( v ); } pglEnd(); } } GL_TexEnv( GL_REPLACE ); GL_SetState( GLSTATE_DEPTHWRITE ); } /* ================ R_RenderFullbrights ================ */ void R_RenderFullbrights( void ) { glpoly_t *p; int i; if( !draw_fullbrights ) return; GL_SetState( GLSTATE_SRCBLEND_ONE|GLSTATE_DSTBLEND_ONE ); GL_TexEnv( GL_MODULATE ); for( i = 1; i < MAX_TEXTURES; i++ ) { if( !fullbright_polys[i] ) continue; GL_Bind( GL_TEXTURE0, i ); for( p = fullbright_polys[i]; p; p = p->next ) { if( p->flags & SURF_DRAWTURB ) EmitWaterPolys( p, ( p->flags & SURF_NOCULL )); else DrawGLPoly( p ); } fullbright_polys[i] = NULL; } GL_SetState( GLSTATE_DEPTHWRITE ); draw_fullbrights = false; } /* =============== R_BuildDlights =============== */ void R_BuildDlights( msurface_t *surf ) { float dist; vec3_t impact; int lnum, smax, tmax; int tdmin, sdmin, distmin; int irad, iminlight, local[2]; vec3_t origin_l; matrix4x4 imatrix; gl_light_t *light; mtexinfo_t *tex; dlight_t *dl; r_numdlights = 0; smax = ( surf->extents[0] >> 4 ) + 1; tmax = ( surf->extents[1] >> 4 ) + 1; tex = surf->texinfo; for( lnum = 0; lnum < MAX_DLIGHTS; lnum++ ) { if(!( surf->dlightbits & ( 1<origin, origin_l ); } else VectorCopy( dl->origin, origin_l ); dist = PlaneDiff( origin_l, surf->plane ); irad = ( dl->radius - fabs( dist )) * 256; iminlight = dl->minlight * 256; if( irad < iminlight ) continue; iminlight = irad - iminlight; VectorMA( origin_l, -dist, surf->plane->normal, impact ); local[0] = DotProduct( impact, tex->vecs[0] ) + tex->vecs[0][3] - surf->texturemins[0]; local[1] = DotProduct( impact, tex->vecs[1] ) + tex->vecs[1][3] - surf->texturemins[1]; // check if this dlight will touch the surface if( local[1] > 0 ) { tdmin = local[1] - (tmax << 4); if( tdmin < 0 ) tdmin = 0; } else { tdmin = -local[1]; } if( local[0] > 0 ) { sdmin = local[0] - (smax << 4); if( sdmin < 0 ) sdmin = 0; } else { sdmin = -local[0]; } distmin = (sdmin > tdmin) ? (sdmin << 8) + (tdmin << 7) : (tdmin << 8) + (sdmin << 7); if( distmin < iminlight ) { // save dlight info light = &r_dlights[r_numdlights]; light->minlight = iminlight; light->local[0] = local[0]; light->local[1] = local[1]; light->rad = irad; r_numdlights++; } } } /* ================ R_RenderDynamicLightmaps ================ */ void R_RenderDynamicLightmaps( msurface_t *fa ) { byte *base; wrect_t *rect; uint scale; qboolean lightstyle_modified = false; int maps, smax, tmax; if( !cl.worldmodel->lightdata ) return; if( fa->flags & SURF_DRAWTILED ) return; fa->polys->chain = lightmap_polys[fa->lightmaptexturenum]; lightmap_polys[fa->lightmaptexturenum] = fa->polys; if( !r_dynamic->integer ) return; // check for lightmap modification for( maps = 0; maps < MAXLIGHTMAPS && fa->styles[maps] != 255; maps++ ) { scale = RI.lightstylevalue[fa->styles[maps]]; if( scale != fa->cached_light[maps] ) { lightstyle_modified = true; break; } } if( fa->dlightframe == tr.framecount ) R_BuildDlights( fa ); else r_numdlights = 0; if( !r_numdlights && !fa->cached_dlight && !lightstyle_modified ) return; r_lmState.lightmap_modified[fa->lightmaptexturenum] = true; rect = &r_lmState.lightmap_rectchange[fa->lightmaptexturenum]; if( fa->light_t < rect->right ) { if( rect->bottom ) rect->bottom += rect->right - fa->light_t; rect->right = fa->light_t; } if( fa->light_s < rect->left ) { if( rect->top ) rect->top += rect->left - fa->light_s; rect->left = fa->light_s; } smax = ( fa->extents[0] >> 4 ) + 1; tmax = ( fa->extents[1] >> 4 ) + 1; if(( rect->top + rect->left ) < ( fa->light_s + smax )) rect->top = ( fa->light_s - rect->left ) + smax; if(( rect->bottom + rect->right ) < ( fa->light_t + tmax )) rect->bottom = ( fa->light_t - rect->right ) + tmax; base = r_lmState.lightmaps + fa->lightmaptexturenum * BLOCK_WIDTH * BLOCK_HEIGHT * 4; base += fa->light_t * BLOCK_WIDTH * 4 + fa->light_s * 4; R_BuildLightMap( fa, base, BLOCK_WIDTH * 4 ); } /* ================ R_RenderBrushPoly ================ */ void R_RenderBrushPoly( msurface_t *fa ) { texture_t *t; r_stats.c_brush_polys++; if( fa->flags & SURF_DRAWSKY ) { if( world.version == Q1BSP_VERSION ) { // warp texture, no lightmaps EmitSkyLayers( fa ); } return; } t = R_TextureAnimation( fa->texinfo->texture ); GL_Bind( GL_TEXTURE0, t->gl_texturenum ); if( fa->flags & SURF_DRAWTURB ) { // warp texture, no lightmaps EmitWaterPolys( fa->polys, ( fa->flags & SURF_NOCULL )); return; } if( t->fb_texturenum ) { // HACKHACK: store fullbrights in poly->next (only for non-water surfaces) fa->polys->next = fullbright_polys[t->fb_texturenum]; fullbright_polys[t->fb_texturenum] = fa->polys; draw_fullbrights = true; } DrawGLPoly( fa->polys ); DrawSurfaceDecals( fa ); // add the poly to the proper lightmap chain R_RenderDynamicLightmaps( fa ); } /* =============== R_AddDynamicLights =============== */ void R_AddDynamicLights( msurface_t *surf ) { color24 color; int local[2]; int i, sd, td, s, t, val; int irad, idist, iminlight; int smax, tmax, tmp; gl_light_t *light; uint *bl; smax = (surf->extents[0] >> 4) + 1; tmax = (surf->extents[1] >> 4) + 1; for( i = 0, light = r_dlights; i < r_numdlights; i++, light++ ) { color = cl_dlights[i].color; iminlight = light->minlight; irad = light->rad; local[1] = light->local[1]; bl = r_blockLights; for( t = 0; t < tmax; t++ ) { td = (local[1] < 0) ? -local[1] : local[1]; local[1] -= LM_SAMPLE_SIZE; local[0] = light->local[0]; for( s = 0; s < smax; s++ ) { sd = (local[0] < 0) ? -local[0] : local[0]; local[0] -= LM_SAMPLE_SIZE; idist = (sd > td) ? (sd << 8) + (td << 7) : (td << 8) + (sd << 7); if( idist < iminlight ) { if( cl_dlights[i].dark ) tmp = (idist - irad) >> 7; else tmp = (irad - idist) >> 7; // catch negative lights (for dark mode) val = bl[0] + tmp * color.r; bl[0] = max( 0, val ); val = bl[1] + tmp * color.g; bl[1] = max( 0, val ); val = bl[2] + tmp * color.b; bl[2] = max( 0, val ); } bl += 3; } } } } /* ================ R_DrawTextureChains ================ */ void R_DrawTextureChains( void ) { int i; msurface_t *s; texture_t *t; // make sure what color is reset pglColor4ub( 255, 255, 255, 255 ); R_LoadIdentity(); // set identity matrix // clip skybox surfaces for( s = skychain; s != NULL; s = s->texturechain ) R_AddSkyBoxSurface( s ); for( i = 0; i < cl.worldmodel->numtextures; i++ ) { t = cl.worldmodel->textures[i]; if( !t ) continue; s = t->texturechain; if( !s ) continue; if( i == tr.skytexturenum ) { if( world.version == Q1BSP_VERSION ) R_DrawSkyChain( s ); } else { for( ; s != NULL; s = s->texturechain ) R_RenderBrushPoly( s ); } t->texturechain = NULL; } } /* ================ R_DrawWaterSurfaces ================ */ void R_DrawWaterSurfaces( void ) { int i; msurface_t *s; texture_t *t; if( !RI.drawWorld || RI.refdef.onlyClientDraw ) return; // non-transparent water is already drawed if( r_wateralpha->value >= 1.0f ) return; // go back to the world matrix pglMatrixMode( GL_MODELVIEW ); GL_LoadMatrix( RI.worldviewMatrix ); GL_SetState( GLSTATE_SRCBLEND_SRC_ALPHA|GLSTATE_DSTBLEND_ONE_MINUS_SRC_ALPHA ); pglColor4f( 1.0f, 1.0f, 1.0f, r_wateralpha->value ); GL_TexEnv( GL_MODULATE ); for( i = 0; i < cl.worldmodel->numtextures; i++ ) { t = cl.worldmodel->textures[i]; if( !t ) continue; s = t->texturechain; if( !s ) continue; if(!( s->flags & SURF_DRAWTURB )) continue; // set modulate mode explicitly GL_Bind( GL_TEXTURE0, t->gl_texturenum ); for( ; s; s = s->texturechain ) EmitWaterPolys( s->polys, ( s->flags & SURF_NOCULL )); t->texturechain = NULL; } GL_SetState( GLSTATE_DEPTHWRITE ); pglColor4f( 1.0f, 1.0f, 1.0f, 1.0f ); GL_TexEnv( GL_REPLACE ); } /* ================= R_SurfaceCompare compare translucent surfaces ================= */ static int R_SurfaceCompare( const msurface_t **a, const msurface_t **b ) { msurface_t *surf1, *surf2; mextrasurf_t *info1, *info2; vec3_t vecLength, org1, org2; float len1, len2; surf1 = (msurface_t *)*a; surf2 = (msurface_t *)*b; info1 = SURF_INFO( surf1, RI.currentmodel ); info2 = SURF_INFO( surf2, RI.currentmodel ); VectorAdd( RI.currententity->origin, info1->origin, org1 ); VectorAdd( RI.currententity->origin, info2->origin, org2 ); VectorSubtract( RI.pvsorigin, org1, vecLength ); len1 = VectorLength( vecLength ); VectorSubtract( RI.pvsorigin, org2, vecLength ); len2 = VectorLength( vecLength ); if( len1 > len2 ) return -1; if( len1 < len2 ) return 1; return 0; } static _inline qboolean R_CullSurface( msurface_t *surf, uint clipflags ) { mextrasurf_t *info; if( surf->flags & SURF_WATERCSG && !( RI.currententity->curstate.effects & EF_NOWATERCSG )) return true; if( surf->flags & SURF_NOCULL ) return false; if( r_nocull->integer ) return false; // world surfaces can be culled by vis frame too if( RI.currententity == clgame.entities && surf->visframe != tr.framecount ) return true; if( r_faceplanecull->integer && glState.faceCull != 0 ) { if(!(surf->flags & SURF_DRAWTURB) || !RI.currentWaveHeight ) { if( !VectorIsNull( surf->plane->normal )) { float dist; dist = PlaneDiff( modelorg, surf->plane ); if( glState.faceCull == GL_FRONT || ( RI.params & RP_MIRRORVIEW )) { if( surf->flags & SURF_PLANEBACK ) { if( dist >= -BACKFACE_EPSILON ) return true; // wrong side } else { if( dist <= BACKFACE_EPSILON ) return true; // wrong side } } else if( glState.faceCull == GL_BACK ) { if( surf->flags & SURF_PLANEBACK ) { if( dist <= BACKFACE_EPSILON ) return true; // wrong side } else { if( dist >= -BACKFACE_EPSILON ) return true; // wrong side } } } } } info = SURF_INFO( surf, RI.currentmodel ); return ( clipflags && R_CullBox( info->mins, info->maxs, clipflags )); } /* ================= R_DrawBrushModel ================= */ void R_DrawBrushModel( cl_entity_t *e ) { int i, k, num_sorted; qboolean need_sort = false; vec3_t mins, maxs; msurface_t *psurf; model_t *clmodel; qboolean rotated; dlight_t *l; clmodel = e->model; RI.currentWaveHeight = RI.currententity->curstate.scale * 32.0f; if( !VectorIsNull( e->angles )) { for( i = 0; i < 3; i++ ) { mins[i] = e->origin[i] - clmodel->radius; maxs[i] = e->origin[i] + clmodel->radius; } rotated = true; } else { VectorAdd( e->origin, clmodel->mins, mins ); VectorAdd( e->origin, clmodel->maxs, maxs ); rotated = false; } if( R_CullBox( mins, maxs, RI.clipFlags )) return; Mem_Set( lightmap_polys, 0, sizeof( lightmap_polys )); if( rotated ) R_RotateForEntity( e ); else R_TranslateForEntity( e ); VectorSubtract( RI.cullorigin, e->origin, modelorg ); e->visframe = tr.framecount; // visible if( rotated ) { vec3_t temp; VectorCopy( modelorg, temp ); Matrix4x4_VectorITransform( RI.objectMatrix, temp, modelorg ); } // calculate dynamic lighting for bmodel if it's not an // instanced model if( clmodel->firstmodelsurface != 0 ) { vec3_t origin_l, oldorigin; matrix4x4 imatrix; for( k = 0, l = cl_dlights; k < MAX_DLIGHTS; k++, l++ ) { if( l->die < cl.time || !l->radius ) continue; VectorCopy( l->origin, oldorigin ); // save oldorigin Matrix4x4_Invert_Simple( imatrix, RI.objectMatrix ); Matrix4x4_VectorTransform( imatrix, l->origin, origin_l ); VectorCopy( origin_l, l->origin ); // move light in bmodel space R_MarkLights( l, 1<nodes + clmodel->hulls[0].firstclipnode ); VectorCopy( oldorigin, l->origin ); // restore lightorigin } } // setup the rendermode GL_SetRenderMode( e->curstate.rendermode ); // setup the color and alpha switch( e->curstate.rendermode ) { case kRenderTransAdd: case kRenderTransTexture: case kRenderTransInverse: need_sort = true; case kRenderTransAlpha: case kRenderGlow: pglColor4ub( 255, 255, 255, e->curstate.renderamt ); break; case kRenderTransColor: pglDisable( GL_TEXTURE_2D ); pglColor4ub( e->curstate.rendercolor.r, e->curstate.rendercolor.g, e->curstate.rendercolor.b, e->curstate.renderamt ); break; default: pglColor4ub( 255, 255, 255, 255 ); break; } num_sorted = 0; psurf = &clmodel->surfaces[clmodel->firstmodelsurface]; for( i = 0; i < clmodel->nummodelsurfaces; i++, psurf++ ) { if( R_CullSurface( psurf, 0 )) continue; if( need_sort ) { world.draw_surfaces[num_sorted] = psurf; num_sorted++; ASSERT( world.max_surfaces >= num_sorted ); } else { // render unsorted (solid) R_RenderBrushPoly( psurf ); } } if( need_sort ) qsort( world.draw_surfaces, num_sorted, sizeof( msurface_t* ), R_SurfaceCompare ); // draw sorted translucent surfaces for( i = 0; i < num_sorted; i++ ) R_RenderBrushPoly( world.draw_surfaces[i] ); if( e->curstate.rendermode == kRenderTransColor ) pglEnable( GL_TEXTURE_2D ); R_BlendLightmaps(); R_LoadIdentity(); // restore worldmatrix } /* ================= R_DrawStaticModel Merge static model brushes with world surfaces ================= */ void R_DrawStaticModel( cl_entity_t *e ) { int i, k; model_t *clmodel; msurface_t *psurf; dlight_t *l; clmodel = e->model; if( R_CullBox( clmodel->mins, clmodel->maxs, RI.clipFlags )) return; // calculate dynamic lighting for bmodel if it's not an // instanced model if( clmodel->firstmodelsurface != 0 ) { for( k = 0, l = cl_dlights; k < MAX_DLIGHTS; k++, l++ ) { if( l->die < cl.time || !l->radius ) continue; R_MarkLights( l, 1<nodes + clmodel->hulls[0].firstclipnode ); } } psurf = &clmodel->surfaces[clmodel->firstmodelsurface]; for( i = 0; i < clmodel->nummodelsurfaces; i++, psurf++ ) { if( R_CullSurface( psurf, 0 )) continue; psurf->texturechain = psurf->texinfo->texture->texturechain; psurf->texinfo->texture->texturechain = psurf; } } /* ================= R_DrawStaticBrushes Insert static brushes into world texture chains ================= */ void R_DrawStaticBrushes( void ) { int i; // draw static entities for( i = 0; i < tr.num_static_entities; i++ ) { if( RI.refdef.onlyClientDraw ) break; RI.currententity = tr.static_entities[i]; RI.currentmodel = RI.currententity->model; ASSERT( RI.currententity != NULL ); ASSERT( RI.currententity->model != NULL ); switch( RI.currententity->model->type ) { case mod_brush: R_DrawStaticModel( RI.currententity ); break; default: Host_Error( "R_DrawStatics: non bsp model in static list!\n" ); break; } } } /* ============================================================= WORLD MODEL ============================================================= */ /* ================ R_RecursiveWorldNode ================ */ void R_RecursiveWorldNode( mnode_t *node, uint clipflags ) { const mplane_t *clipplane; int i, clipped; msurface_t *surf, **mark; mleaf_t *pleaf; int c, side; float dot; if( node->contents == CONTENTS_SOLID ) return; // hit a solid leaf if( node->visframe != tr.visframecount ) return; if( clipflags ) { for( i = 0, clipplane = RI.frustum; i < 6; i++, clipplane++ ) { if(!( clipflags & ( 1<minmaxs, node->minmaxs + 3, clipplane ); if( clipped == 2 ) return; if( clipped == 1 ) clipflags &= ~(1<contents < 0 ) { pleaf = (mleaf_t *)node; mark = pleaf->firstmarksurface; c = pleaf->nummarksurfaces; if( c ) { do { (*mark)->visframe = tr.framecount; mark++; } while( --c ); } // deal with model fragments in this leaf if( pleaf->efrags ) R_StoreEfrags( &pleaf->efrags ); r_stats.c_world_leafs++; return; } // node is just a decision point, so go down the apropriate sides // find which side of the node we are on dot = PlaneDiff( modelorg, node->plane ); side = (dot >= 0) ? 0 : 1; // recurse down the children, front side first R_RecursiveWorldNode( node->children[side], clipflags ); // draw stuff for( c = node->numsurfaces, surf = cl.worldmodel->surfaces + node->firstsurface; c; c--, surf++ ) { if( R_CullSurface( surf, clipflags )) continue; if( surf->flags & SURF_DRAWSKY && world.version == HLBSP_VERSION ) { // make sky chain to right clip the skybox surf->texturechain = skychain; skychain = surf; } else { if( surf->texinfo && surf->texinfo->texture ) { surf->texturechain = surf->texinfo->texture->texturechain; surf->texinfo->texture->texturechain = surf; } } } // recurse down the back side R_RecursiveWorldNode( node->children[!side], clipflags ); } /* ============= R_DrawWorld ============= */ void R_DrawWorld( void ) { if( !RI.drawWorld || RI.refdef.onlyClientDraw ) return; RI.currententity = clgame.entities; RI.currentmodel = RI.currententity->model; VectorCopy( RI.cullorigin, modelorg ); Mem_Set( lightmap_polys, 0, sizeof( lightmap_polys )); Mem_Set( fullbright_polys, 0, sizeof( fullbright_polys )); RI.currentWaveHeight = RI.waveHeight; GL_SetRenderMode( kRenderNormal ); ClearBounds( RI.visMins, RI.visMaxs ); R_ClearSkyBox (); // draw the world fog R_DrawFog (); R_RecursiveWorldNode( cl.worldmodel->nodes, RI.clipFlags ); R_DrawStaticBrushes(); R_DrawTextureChains(); R_BlendLightmaps(); R_RenderFullbrights(); if( skychain ) R_DrawSkyBox(); skychain = NULL; } /* =============== R_MarkLeaves Mark the leaves and nodes that are in the PVS for the current leaf =============== */ void R_MarkLeaves( void ) { byte *vis; mnode_t *node; int i; if( !RI.drawWorld ) return; if( r_viewleaf == r_oldviewleaf && r_viewleaf2 == r_oldviewleaf2 && !r_novis->integer && r_viewleaf != NULL ) return; // development aid to let you run around // and see exactly where the pvs ends if( r_lockpvs->integer ) return; tr.visframecount++; r_oldviewleaf = r_viewleaf; r_oldviewleaf2 = r_viewleaf2; if( r_novis->integer || r_viewleaf == NULL || !cl.worldmodel->visdata ) { // force to get full visibility vis = Mod_LeafPVS( NULL, NULL ); } else { // may have to combine two clusters // because of solid water boundaries vis = Mod_LeafPVS( r_viewleaf, cl.worldmodel ); if( r_viewleaf != r_viewleaf2 ) { int longs = ( cl.worldmodel->numleafs + 31 ) >> 5; Mem_Copy( visbytes, vis, longs << 2 ); vis = Mod_LeafPVS( r_viewleaf2, cl.worldmodel ); for( i = 0; i < longs; i++ ) ((int *)visbytes)[i] |= ((int *)vis)[i]; vis = visbytes; } } for( i = 0; i < cl.worldmodel->numleafs; i++ ) { if( vis[i>>3] & ( 1<<( i & 7 ))) { node = (mnode_t *)&cl.worldmodel->leafs[i+1]; do { if( node->visframe == tr.visframecount ) break; node->visframe = tr.visframecount; node = node->parent; } while( node ); } } } /* ============================================================================= LIGHTMAP ALLOCATION ============================================================================= */ static void LM_InitBlock( void ) { Mem_Set( r_lmState.allocated, 0, sizeof( r_lmState.allocated )); } static int LM_AllocBlock( int w, int h, int *x, int *y ) { int i, j, best, best2, texnum; for( texnum = 0; texnum < MAX_LIGHTMAPS; texnum++ ) { best = BLOCK_HEIGHT; for( i = 0; i < BLOCK_WIDTH - w; i++ ) { best2 = 0; for( j = 0; j < w; j++ ) { if( r_lmState.allocated[texnum][i+j] >= best ) break; if( r_lmState.allocated[texnum][i+j] > best2 ) best2 = r_lmState.allocated[texnum][i+j]; } if( j == w ) { // this is a valid spot *x = i; *y = best = best2; } } if( best + h > BLOCK_HEIGHT ) continue; for( i = 0; i < w; i++ ) r_lmState.allocated[texnum][*x+i] = best + h; return texnum; } Host_Error( "AllocBlock: full\n" ); return 0; } /* =============== R_BuildLightMap Combine and scale multiple lightmaps into the 8.8 format in blocklights =============== */ static void R_BuildLightMap( msurface_t *surf, byte *dest, int stride ) { int smax, tmax, t, s, i; int size, map, blocksize; uint scale; uint *bl; color24 *lm; surf->cached_dlight = (r_numdlights > 0) ? true : false; smax = (surf->extents[0] >> 4) + 1; tmax = (surf->extents[1] >> 4) + 1; size = smax * tmax; blocksize = size * 3; lm = surf->samples; Mem_Set( r_blockLights, 0, sizeof( uint ) * blocksize ); // add all the lightmaps for( map = 0; map < MAXLIGHTMAPS && surf->styles[map] != 255 && lm; map++ ) { scale = RI.lightstylevalue[surf->styles[map]]; surf->cached_light[map] = scale; for( i = 0, bl = r_blockLights; i < size; i++, bl += 3, lm++ ) { bl[0] += lm->r * scale; bl[1] += lm->g * scale; bl[2] += lm->b * scale; } } // add all the dynamic lights if( r_numdlights ) R_AddDynamicLights( surf ); // put into texture format stride -= (smax << 2); bl = r_blockLights; for( t = 0; t < tmax; t++, dest += stride ) { for( s = 0; s < smax; s++ ) { dest[0] = min((bl[0] >> 7), 255 ); dest[1] = min((bl[1] >> 7), 255 ); dest[2] = min((bl[2] >> 7), 255 ); dest[3] = 255; bl += 3; dest += 4; } } } static void LM_UploadBlock( int lightmapnum ) { wrect_t *rect; r_lmState.lightmap_modified[lightmapnum] = false; rect = &r_lmState.lightmap_rectchange[lightmapnum]; pglTexSubImage2D( GL_TEXTURE_2D, 0, 0, rect->right, BLOCK_WIDTH, rect->bottom, GL_RGBA, GL_UNSIGNED_BYTE, &r_lmState.lightmaps[(lightmapnum * BLOCK_HEIGHT + rect->right) * BLOCK_WIDTH * 4] ); // reset rectangle rect->left = BLOCK_WIDTH; rect->right = BLOCK_HEIGHT; rect->top = 0; rect->bottom = 0; } /* ======================== GL_CreateSurfaceLightmap ======================== */ void GL_CreateSurfaceLightmap( msurface_t *surf ) { int smax, tmax; byte *base; texture_t *tex; if( !cl.worldmodel->lightdata ) return; if( surf->flags & SURF_DRAWTILED ) return; smax = ( surf->extents[0] >> 4 ) + 1; tmax = ( surf->extents[1] >> 4 ) + 1; tex = surf->texinfo->texture; if( smax > BLOCK_WIDTH ) Host_Error( "GL_CreateLightmap: lightmap width %d > %d, %s\n", smax, BLOCK_WIDTH, tex->name ); if( tmax > BLOCK_HEIGHT ) Host_Error( "GL_CreateLightmap: lightmap height %d > %d, %s\n", tmax, BLOCK_HEIGHT, tex->name ); if( smax * tmax > BLOCK_WIDTH * BLOCK_HEIGHT ) Host_Error( "GL_CreateLightmap: lightmap size too big\n" ); surf->lightmaptexturenum = LM_AllocBlock( smax, tmax, &surf->light_s, &surf->light_t ); base = r_lmState.lightmaps + surf->lightmaptexturenum * BLOCK_WIDTH * BLOCK_HEIGHT * 4; base += (surf->light_t * BLOCK_WIDTH + surf->light_s) * 4; r_numdlights = 0; R_BuildLightMap( surf, base, BLOCK_WIDTH * 4 ); } /* ================== GL_BuildLightmaps Builds the lightmap texture with all the surfaces from all brush models ================== */ void GL_BuildLightmaps( void ) { int i, j; rgbdata_t r_lightmap; char lmName[16]; model_t *m; // release old lightmaps for( i = 0; i < MAX_LIGHTMAPS; i++ ) { if( !tr.lightmapTextures[i] ) break; GL_FreeTexture( tr.lightmapTextures[i] ); } Mem_Set( tr.lightmapTextures, 0, sizeof( tr.lightmapTextures )); Mem_Set( visbytes, 0x00, sizeof( visbytes )); Mem_Set( &r_lmState, 0, sizeof( r_lmState )); skychain = NULL; // setup all the lightstyles R_AnimateLight(); LM_InitBlock(); for( i = 1; i < MAX_MODELS; i++ ) { if(( m = CM_ClipHandleToModel( i )) == NULL ) continue; if( m->name[0] == '*' || m->type != mod_brush ) continue; loadmodel = m; for( j = 0; j < m->numsurfaces; j++ ) { // clearing all decal chains m->surfaces[j].pdecals = NULL; GL_CreateSurfaceLightmap( m->surfaces + j ); if( m->surfaces[i].flags & SURF_DRAWTURB ) continue; if( m->surfaces[i].flags & SURF_DRAWSKY && world.version == Q1BSP_VERSION ) continue; GL_BuildPolygonFromSurface( m->surfaces + j ); } } loadmodel = NULL; // upload all lightmaps that were filled for( i = 0; i < MAX_LIGHTMAPS; i++ ) { if( !r_lmState.allocated[i][0] ) break; // no more used r_lmState.lightmap_modified[i] = false; r_lmState.lightmap_rectchange[i].left = BLOCK_WIDTH; r_lmState.lightmap_rectchange[i].right = BLOCK_HEIGHT; r_lmState.lightmap_rectchange[i].top = 0; r_lmState.lightmap_rectchange[i].bottom = 0; Mem_Set( &r_lightmap, 0, sizeof( r_lightmap )); com.snprintf( lmName, sizeof( lmName ), "*lightmap%i", i ); r_lightmap.width = BLOCK_WIDTH; r_lightmap.height = BLOCK_HEIGHT; r_lightmap.type = PF_RGBA_32; r_lightmap.size = r_lightmap.width * r_lightmap.height * 4; r_lightmap.flags = IMAGE_HAS_COLOR; // FIXME: detecting grayscale lightmaps for quake1 r_lightmap.buffer = (byte *)&r_lmState.lightmaps[r_lightmap.size*i]; tr.lightmapTextures[i] = GL_LoadTextureInternal( lmName, &r_lightmap, TF_FONT|TF_LIGHTMAP, false ); GL_SetTextureType( tr.lightmapTextures[i], TEX_LIGHTMAP ); } }