This repository has been archived on 2022-06-27. You can view files and clone it, but cannot push or open issues or pull requests.
Xash3DArchive/engine/common/random.c
2022-06-27 01:15:15 +03:00

104 lines
2.5 KiB
C

//=======================================================================
// Copyright XashXT Group 2007 ©
// random.c - random generator
//=======================================================================
#include "common.h"
static long idum = 0;
#define MAX_RANDOM_RANGE 0x7FFFFFFFUL
#define IA 16807
#define IM 2147483647
#define IQ 127773
#define IR 2836
#define NTAB 32
#define NDIV (1+(IM-1)/NTAB)
#define AM (1.0/IM)
#define EPS 1.2e-7
#define RNMX (1.0 - EPS)
void SeedRandomNumberGenerator( long lSeed )
{
if( lSeed ) idum = lSeed;
else idum = -time( NULL );
if( 1000 < idum ) idum = -idum;
else if( -1000 < idum ) idum -= 22261048;
}
long lran1( void )
{
int j;
long k;
static long iy = 0;
static long iv[NTAB];
if( idum <= 0 || !iy )
{
if(-(idum) < 1) idum=1;
else idum = -(idum);
for( j = NTAB + 7; j >= 0; j-- )
{
k = (idum) / IQ;
idum = IA * (idum - k * IQ) - IR * k;
if( idum < 0 ) idum += IM;
if( j < NTAB ) iv[j] = idum;
}
iy = iv[0];
}
k = (idum)/IQ;
idum = IA * (idum - k * IQ) - IR * k;
if( idum < 0 ) idum += IM;
j = iy / NDIV;
iy = iv[j];
iv[j] = idum;
return iy;
}
// fran1 -- return a random floating-point number on the interval [0,1)
float fran1( void )
{
float temp = (float)AM * lran1();
if( temp > RNMX ) return (float)RNMX;
else return temp;
}
float Com_RandomFloat( float flLow, float flHigh )
{
float fl;
if( idum == 0 ) SeedRandomNumberGenerator(0);
fl = fran1(); // float in [0, 1)
return (fl * (flHigh - flLow)) + flLow; // float in [low, high)
}
long Com_RandomLong( long lLow, long lHigh )
{
dword maxAcceptable;
dword n, x = lHigh-lLow + 1;
if( idum == 0 ) SeedRandomNumberGenerator(0);
if( x <= 0 || MAX_RANDOM_RANGE < x-1 )
return lLow;
// The following maps a uniform distribution on the interval [0, MAX_RANDOM_RANGE]
// to a smaller, client-specified range of [0,x-1] in a way that doesn't bias
// the uniform distribution unfavorably. Even for a worst case x, the loop is
// guaranteed to be taken no more than half the time, so for that worst case x,
// the average number of times through the loop is 2. For cases where x is
// much smaller than MAX_RANDOM_RANGE, the average number of times through the
// loop is very close to 1.
maxAcceptable = MAX_RANDOM_RANGE - ((MAX_RANDOM_RANGE+1) % x );
do
{
n = lran1();
} while( n > maxAcceptable );
return lLow + (n % x);
}