This repository has been archived on 2022-06-27. You can view files and clone it, but cannot push or open issues or pull requests.
Xash3DArchive/engine/snd_adpcm.c

287 lines
7.3 KiB
C

//=======================================================================
// Copyright XashXT Group 2007 ©
// snd_adpcm.c - microsoft adpcm decoder
//=======================================================================
#include "client.h"
#include "snd_loc.h"
// Intel ADPCM step variation table
static int indexTable[16] = {-1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8,};
static int stepsizeTable[89] =
{
7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
};
void S_AdpcmEncode( short indata[], char outdata[], int len, struct adpcm_state *state )
{
short *inp; // Input buffer pointer
signed char *outp; // output buffer pointer
int val; // Current input sample value
int sign; // Current adpcm sign bit
int delta; // Current adpcm output value
int diff; // Difference between val and sample
int step; // Stepsize
int valpred; // Predicted output value
int vpdiff; // Current change to valpred
int index; // Current step change index
int outputbuffer; // place to keep previous 4-bit value
int bufferstep; // toggle between outputbuffer/output
outp = (signed char *)outdata;
inp = indata;
valpred = state->sample;
index = state->index;
step = stepsizeTable[index];
outputbuffer = 0; // quiet a compiler warning
bufferstep = 1;
for(; len > 0; len-- )
{
val = *inp++;
// Step 1 - compute difference with previous value
diff = val - valpred;
sign = (diff < 0) ? 8 : 0;
if ( sign ) diff = (-diff);
// Step 2 - Divide and clamp
// Note:
// This code *approximately* computes:
// delta = diff*4/step;
// vpdiff = (delta+0.5)*step/4;
// but in shift step bits are dropped. The net result of this is
// that even if you have fast mul/div hardware you cannot put it to
// good use since the fixup would be too expensive.
delta = 0;
vpdiff = (step >> 3);
if ( diff >= step )
{
delta = 4;
diff -= step;
vpdiff += step;
}
step >>= 1;
if ( diff >= step )
{
delta |= 2;
diff -= step;
vpdiff += step;
}
step >>= 1;
if ( diff >= step )
{
delta |= 1;
vpdiff += step;
}
// Step 3 - Update previous value
if ( sign ) valpred -= vpdiff;
else valpred += vpdiff;
// Step 4 - Clamp previous value to 16 bits
if ( valpred > 32767 ) valpred = 32767;
else if ( valpred < -32768 ) valpred = -32768;
// Step 5 - Assemble value, update index and step values
delta |= sign;
index += indexTable[delta];
if ( index < 0 ) index = 0;
if ( index > 88 ) index = 88;
step = stepsizeTable[index];
// Step 6 - Output value
if ( bufferstep ) outputbuffer = (delta << 4) & 0xf0;
else *outp++ = (delta & 0x0f) | outputbuffer;
bufferstep = !bufferstep;
}
// Output last step, if needed
if( !bufferstep ) *outp++ = outputbuffer;
state->sample = valpred;
state->index = index;
}
void S_AdpcmDecode( const char indata[], short *outdata, int len, struct adpcm_state *state )
{
signed char *inp; // Input buffer pointer
int outp; // output buffer pointer
int sign; // Current adpcm sign bit
int delta; // Current adpcm output value
int step; // Stepsize
int valpred; // Predicted value
int vpdiff; // Current change to valpred
int index; // Current step change index
int inputbuffer; // place to keep next 4-bit value
int bufferstep; // toggle between inputbuffer/input
outp = 0;
inp = (signed char *)indata;
valpred = state->sample;
index = state->index;
step = stepsizeTable[index];
bufferstep = 0;
inputbuffer = 0; // quiet a compiler warning
for (; len > 0; len-- )
{
// Step 1 - get the delta value
if ( bufferstep ) delta = inputbuffer & 0xf;
else
{
inputbuffer = *inp++;
delta = (inputbuffer >> 4) & 0xf;
}
bufferstep = !bufferstep;
// Step 2 - Find new index value (for later)
index += indexTable[delta];
if ( index < 0 ) index = 0;
if ( index > 88 ) index = 88;
// Step 3 - Separate sign and magnitude
sign = delta & 8;
delta = delta & 7;
// Step 4 - Compute difference and new predicted value
// Computes 'vpdiff = (delta+0.5)*step/4', but see comment
// in adpcm_coder.
vpdiff = step >> 3;
if ( delta & 4 ) vpdiff += step;
if ( delta & 2 ) vpdiff += step>>1;
if ( delta & 1 ) vpdiff += step>>2;
if ( sign ) valpred -= vpdiff;
else valpred += vpdiff;
// Step 5 - clamp output value
if ( valpred > 32767 ) valpred = 32767;
else if ( valpred < -32768 ) valpred = -32768;
// Step 6 - Update step value
step = stepsizeTable[index];
// Step 7 - Output value
outdata[outp] = valpred;
outp++;
}
state->sample = valpred;
state->index = index;
}
/*
====================
S_AdpcmMemoryNeeded
Returns the amount of memory (in bytes) needed to store the samples in out internal adpcm format
====================
*/
int S_AdpcmMemoryNeeded( const wavinfo_t *info )
{
float scale;
int scaledSampleCount;
int sampleMemory;
int blockCount;
int headerMemory;
// determine scale to convert from input sampling rate to desired sampling rate
scale = (float)info->rate / dma.speed;
// calc number of samples at playback sampling rate
scaledSampleCount = info->samples / scale;
// calc memory need to store those samples using ADPCM at 4 bits per sample
sampleMemory = scaledSampleCount / 2;
// calc number of sample blocks needed of PAINTBUFFER_SIZE
blockCount = scaledSampleCount / PAINTBUFFER_SIZE;
if( scaledSampleCount % PAINTBUFFER_SIZE ) blockCount++;
// calc memory needed to store the block headers
headerMemory = blockCount * sizeof(adpcm_state_t);
return sampleMemory + headerMemory;
}
/*
====================
S_AdpcmGetSamples
====================
*/
void S_AdpcmGetSamples(sndBuffer *chunk, short *to)
{
adpcm_state_t state;
byte *out;
// get the starting state from the block header
state.index = chunk->adpcm.index;
state.sample = chunk->adpcm.sample;
out = (byte *)chunk->sndChunk;
S_AdpcmDecode( out, to, SND_CHUNK_SIZE_BYTE * 2, &state );
}
/*
====================
S_AdpcmEncodeSound
====================
*/
void S_AdpcmEncodeSound( sfx_t *sfx, short *samples )
{
adpcm_state_t state;
int inOffset = 0;
int n, count;
sndBuffer *newchunk, *chunk;
byte *out;
count = sfx->soundLength;
state.index = 0;
state.sample = samples[0];
chunk = NULL;
while( count )
{
n = count;
if( n > SND_CHUNK_SIZE_BYTE * 2 ) n = SND_CHUNK_SIZE_BYTE * 2;
newchunk = SND_malloc();
if (sfx->soundData == NULL) sfx->soundData = newchunk;
else chunk->next = newchunk;
chunk = newchunk;
// output the header
chunk->adpcm.index = state.index;
chunk->adpcm.sample = state.sample;
out = (byte *)chunk->sndChunk;
// encode the samples
S_AdpcmEncode( samples + inOffset, out, n, &state );
inOffset += n;
count -= n;
}
}