This repository has been archived on 2022-06-27. You can view files and clone it, but cannot push or open issues or pull requests.
Xash3DArchive/common/qcclib/pr_comp.c

8253 lines
234 KiB
C

#include "qcclib.h"
void PR_ParseAsm(void);
extern char *compilingfile;
int conditional;
//standard qcc keywords
#define keyword_do 1
#define keyword_return 1
#define keyword_if 1
#define keyword_else 1
#define keyword_local 1
#define keyword_while 1
//extended keywords.
bool keyword_asm;
bool keyword_break;
bool keyword_case;
bool keyword_class;
bool keyword_const; //fixme
bool keyword_continue;
bool keyword_default;
bool keyword_entity; //for skipping the local
bool keyword_float; //for skipping the local
bool keyword_for;
bool keyword_goto;
bool keyword_int; //for skipping the local
bool keyword_integer; //for skipping the local
bool keyword_state;
bool keyword_string; //for skipping the local
bool keyword_struct;
bool keyword_switch;
bool keyword_thinktime;
bool keyword_var; //allow it to be initialised and set around the place.
bool keyword_vector; //for skipping the local
bool keyword_enum; //kinda like in c, but typedef not supported.
bool keyword_enumflags; //like enum, but doubles instead of adds 1.
bool keyword_typedef; //fixme
bool keyword_extern; //function is external, don't error or warn if the body was not found
bool keyword_shared; //mark global to be copied over when progs changes (part of FTE_MULTIPROGS)
bool keyword_noref; //nowhere else references this, don't strip it.
bool keyword_nosave; //don't write the def to the output.
bool keyword_union; //you surly know what a union is!
#define keyword_not 1 //hexenc support needs this, and fteqcc can optimise without it, but it adds an extra token after the if, so it can cause no namespace conflicts
bool keywords_coexist; //don't disable a keyword simply because a var was made with the same name.
bool output_parms; //emit some PARMX fields. confuses decompilers.
bool autoprototype; //take two passes over the source code. First time round doesn't enter and functions or initialise variables.
bool pr_subscopedlocals; //causes locals to be valid ONLY within thier statement block. (they simply can't be referenced by name outside of it)
bool flag_ifstring; //makes if (blah) equivelent to if (blah != "") which resolves some issues in multiprogs situations.
bool flag_laxcasts; //Allow lax casting. This'll produce loadsa warnings of course. But allows compilation of certain dodgy code.
bool flag_hashonly; //Allows use of only #constant for precompiler constants, allows certain preqcc using mods to compile
bool flag_fasttrackarrays; //Faster arrays, dynamically detected, activated only in supporting engines.
bool opt_overlaptemps; //reduce numpr_globals by reuse of temps. When they are not needed they are freed for reuse. The way this is implemented is better than frikqcc's. (This is the single most important optimisation)
bool opt_assignments; //STORE_F isn't used if an operation wrote to a temp.
bool opt_shortenifnots; //if(!var) is made an IF rather than NOT IFNOT
bool opt_noduplicatestrings; //brute force string check. time consuming but more effective than the equivelent in frikqcc.
bool opt_constantarithmatic; //3*5 appears as 15 instead of the extra statement.
bool opt_nonvec_parms; //store_f instead of store_v on function calls, where possible.
bool opt_constant_names; //take out the defs and name strings of constants.
bool opt_constant_names_strings;//removes the defs of strings too. plays havok with multiprogs.
bool opt_precache_file; //remove the call, the parameters, everything.
bool opt_filenames; //strip filenames. hinders older decompilers.
bool opt_unreferenced; //strip defs that are not referenced.
bool opt_function_names; //strip out the names of builtin functions.
bool opt_locals; //strip out the names of locals and immediates.
bool opt_dupconstdefs; //float X = 5; and float Y = 5; occupy the same global with this.
bool opt_return_only; //RETURN; DONE; at the end of a function strips out the done statement if there is no way to get to it.
bool opt_compound_jumps; //jumps to jump statements jump to the final point.
bool opt_stripfunctions; //if a functions is only ever called directly or by exe, don't emit the def.
bool opt_locals_marshalling; //make the local vars of all functions occupy the same globals.
bool opt_logicops; //don't make conditions enter functions if the return value will be discarded due to a previous value. (C style if statements)
bool opt_vectorcalls; //vectors can be packed into 3 floats, which can yield lower numpr_globals, but cost two more statements per call (only works for q1 calling conventions).
bool opt_simplifiedifs; //if (f != 0) -> if (f). if (f == 0) -> ifnot (f)
//bool opt_comexprremoval;
//these are the results of the opt_. The values are printed out when compilation is compleate, showing effectivness.
int optres_shortenifnots;
int optres_assignments;
int optres_overlaptemps;
int optres_noduplicatestrings;
int optres_constantarithmatic;
int optres_nonvec_parms;
int optres_constant_names;
int optres_constant_names_strings;
int optres_precache_file;
int optres_filenames;
int optres_unreferenced;
int optres_function_names;
int optres_locals;
int optres_dupconstdefs;
int optres_return_only;
int optres_compound_jumps;
//int optres_comexprremoval;
int optres_stripfunctions;
int optres_locals_marshalling;
int optres_logicops;
int optres_test1;
int optres_test2;
void *(*pHash_Get)(hashtable_t *table, char *name);
void *(*pHash_GetNext)(hashtable_t *table, char *name, void *old);
void *(*pHash_Add)(hashtable_t *table, char *name, void *data, bucket_t *);
def_t *PR_DummyDef(type_t *type, char *name, def_t *scope, int arraysize, unsigned int ofs, int referable);
type_t *PR_NewType (char *name, int basictype);
type_t *PR_FindType (type_t *type);
type_t *PR_PointerType (type_t *pointsto);
type_t *PR_FieldType (type_t *pointsto);
void PR_ParseState (void);
bool simplestore;
file_t *asmfile;
pr_info_t pr;
//keeps track of how many funcs are called while parsing a statement
//int qcc_functioncalled;
//========================================
def_t *pr_scope; // the function being parsed, or NULL
type_t *pr_classtype;
bool pr_dumpasm;
string_t s_file, s_file2; // filename for function definition
unsigned int locals_start; // for tracking local variables vs temps
unsigned int locals_end; // for tracking local variables vs temps
jmp_buf pr_parse_abort; // longjump with this on parse error
void PR_ParseDefs (char *classname);
bool qcc_usefulstatement;
int max_breaks;
int max_continues;
int max_cases;
int num_continues;
int num_breaks;
int num_cases;
int *pr_breaks;
int *pr_continues;
int *pr_cases;
def_t **pr_casesdef;
def_t **pr_casesdef2;
typedef struct
{
int statementno;
int lineno;
char name[256];
} gotooperator_t;
int max_labels;
int max_gotos;
gotooperator_t *pr_labels;
gotooperator_t *pr_gotos;
int num_gotos;
int num_labels;
def_t *extra_parms[MAX_PARMS_EXTRA];
#define ASSOC_RIGHT_RESULT ASSOC_RIGHT
//========================================
//FIXME: modifiy list so most common GROUPS are first
//use look up table for value of first char and sort by first char and most common...?
//if true, effectivly {b=a; return a;}
opcode_t pr_opcodes[] =
{
{6, "<DONE>", "DONE", -1, ASSOC_LEFT, &type_void, &type_void, &type_void},
{6, "*", "MUL_F", 3, ASSOC_LEFT, &type_float, &type_float, &type_float},
{6, "*", "MUL_V", 3, ASSOC_LEFT, &type_vector, &type_vector, &type_float},
{6, "*", "MUL_FV", 3, ASSOC_LEFT, &type_float, &type_vector, &type_vector},
{6, "*", "MUL_VF", 3, ASSOC_LEFT, &type_vector, &type_float, &type_vector},
{6, "/", "DIV_F", 3, ASSOC_LEFT, &type_float, &type_float, &type_float},
{6, "+", "ADD_F", 4, ASSOC_LEFT, &type_float, &type_float, &type_float},
{6, "+", "ADD_V", 4, ASSOC_LEFT, &type_vector, &type_vector, &type_vector},
{6, "-", "SUB_F", 4, ASSOC_LEFT, &type_float, &type_float, &type_float},
{6, "-", "SUB_V", 4, ASSOC_LEFT, &type_vector, &type_vector, &type_vector},
{6, "==", "EQ_F", 5, ASSOC_LEFT, &type_float, &type_float, &type_float},
{6, "==", "EQ_V", 5, ASSOC_LEFT, &type_vector, &type_vector, &type_float},
{6, "==", "EQ_S", 5, ASSOC_LEFT, &type_string, &type_string, &type_float},
{6, "==", "EQ_E", 5, ASSOC_LEFT, &type_entity, &type_entity, &type_float},
{6, "==", "EQ_FNC", 5, ASSOC_LEFT, &type_function, &type_function, &type_float},
{6, "!=", "NE_F", 5, ASSOC_LEFT, &type_float, &type_float, &type_float},
{6, "!=", "NE_V", 5, ASSOC_LEFT, &type_vector, &type_vector, &type_float},
{6, "!=", "NE_S", 5, ASSOC_LEFT, &type_string, &type_string, &type_float},
{6, "!=", "NE_E", 5, ASSOC_LEFT, &type_entity, &type_entity, &type_float},
{6, "!=", "NE_FNC", 5, ASSOC_LEFT, &type_function, &type_function, &type_float},
{6, "<=", "LE", 5, ASSOC_LEFT, &type_float, &type_float, &type_float},
{6, ">=", "GE", 5, ASSOC_LEFT, &type_float, &type_float, &type_float},
{6, "<", "LT", 5, ASSOC_LEFT, &type_float, &type_float, &type_float},
{6, ">", "GT", 5, ASSOC_LEFT, &type_float, &type_float, &type_float},
{6, ".", "INDIRECT_F", 1, ASSOC_LEFT, &type_entity, &type_field, &type_float},
{6, ".", "INDIRECT_V", 1, ASSOC_LEFT, &type_entity, &type_field, &type_vector},
{6, ".", "INDIRECT_S", 1, ASSOC_LEFT, &type_entity, &type_field, &type_string},
{6, ".", "INDIRECT_E", 1, ASSOC_LEFT, &type_entity, &type_field, &type_entity},
{6, ".", "INDIRECT_FI", 1, ASSOC_LEFT, &type_entity, &type_field, &type_field},
{6, ".", "INDIRECT_FU", 1, ASSOC_LEFT, &type_entity, &type_field, &type_function},
{6, ".", "ADDRESS", 1, ASSOC_LEFT, &type_entity, &type_field, &type_pointer},
{6, "=", "STORE_F", 6, ASSOC_RIGHT, &type_float, &type_float, &type_float},
{6, "=", "STORE_V", 6, ASSOC_RIGHT, &type_vector, &type_vector, &type_vector},
{6, "=", "STORE_S", 6, ASSOC_RIGHT, &type_string, &type_string, &type_string},
{6, "=", "STORE_ENT", 6, ASSOC_RIGHT, &type_entity, &type_entity, &type_entity},
{6, "=", "STORE_FLD", 6, ASSOC_RIGHT, &type_field, &type_field, &type_field},
{6, "=", "STORE_FNC", 6, ASSOC_RIGHT, &type_function, &type_function, &type_function},
{6, "=", "STOREP_F", 6, ASSOC_RIGHT, &type_pointer, &type_float, &type_float},
{6, "=", "STOREP_V", 6, ASSOC_RIGHT, &type_pointer, &type_vector, &type_vector},
{6, "=", "STOREP_S", 6, ASSOC_RIGHT, &type_pointer, &type_string, &type_string},
{6, "=", "STOREP_ENT", 6, ASSOC_RIGHT, &type_pointer, &type_entity, &type_entity},
{6, "=", "STOREP_FLD", 6, ASSOC_RIGHT, &type_pointer, &type_field, &type_field},
{6, "=", "STOREP_FNC", 6, ASSOC_RIGHT, &type_pointer, &type_function, &type_function},
{6, "<RETURN>", "RETURN", -1, ASSOC_LEFT, &type_float, &type_void, &type_void},
{6, "!", "NOT_F", -1, ASSOC_LEFT, &type_float, &type_void, &type_float},
{6, "!", "NOT_V", -1, ASSOC_LEFT, &type_vector, &type_void, &type_float},
{6, "!", "NOT_S", -1, ASSOC_LEFT, &type_vector, &type_void, &type_float},
{6, "!", "NOT_ENT", -1, ASSOC_LEFT, &type_entity, &type_void, &type_float},
{6, "!", "NOT_FNC", -1, ASSOC_LEFT, &type_function, &type_void, &type_float},
{6, "<IF>", "IF", -1, ASSOC_RIGHT, &type_float, NULL, &type_void},
{6, "<IFNOT>", "IFNOT", -1, ASSOC_RIGHT, &type_float, NULL, &type_void},
// calls returns REG_RETURN
{6, "<CALL0>", "CALL0", -1, ASSOC_LEFT, &type_function, &type_void, &type_void},
{6, "<CALL1>", "CALL1", -1, ASSOC_LEFT, &type_function, &type_void, &type_void},
{6, "<CALL2>", "CALL2", -1, ASSOC_LEFT, &type_function, &type_void, &type_void},
{6, "<CALL3>", "CALL3", -1, ASSOC_LEFT, &type_function, &type_void, &type_void},
{6, "<CALL4>", "CALL4", -1, ASSOC_LEFT, &type_function, &type_void, &type_void},
{6, "<CALL5>", "CALL5", -1, ASSOC_LEFT, &type_function, &type_void, &type_void},
{6, "<CALL6>", "CALL6", -1, ASSOC_LEFT, &type_function, &type_void, &type_void},
{6, "<CALL7>", "CALL7", -1, ASSOC_LEFT, &type_function, &type_void, &type_void},
{6, "<CALL8>", "CALL8", -1, ASSOC_LEFT, &type_function, &type_void, &type_void},
{6, "<STATE>", "STATE", -1, ASSOC_LEFT, &type_float, &type_float, &type_void},
{6, "<GOTO>", "GOTO", -1, ASSOC_RIGHT, NULL, &type_void, &type_void},
{6, "&&", "AND", 7, ASSOC_LEFT, &type_float, &type_float, &type_float},
{6, "||", "OR", 7, ASSOC_LEFT, &type_float, &type_float, &type_float},
{6, "&", "BITAND", 3, ASSOC_LEFT, &type_float, &type_float, &type_float},
{6, "|", "BITOR", 3, ASSOC_LEFT, &type_float, &type_float, &type_float},
//version 6 are in normal progs.
//these are hexen2
{7, "*=", "MULSTORE_F", 6, ASSOC_RIGHT_RESULT, &type_float, &type_float, &type_float},
{7, "*=", "MULSTORE_V", 6, ASSOC_RIGHT_RESULT, &type_vector, &type_float, &type_vector},
{7, "*=", "MULSTOREP_F", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_float, &type_float},
{7, "*=", "MULSTOREP_V", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_float, &type_vector},
{7, "/=", "DIVSTORE_F", 6, ASSOC_RIGHT_RESULT, &type_float, &type_float, &type_float},
{7, "/=", "DIVSTOREP_F", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_float, &type_float},
{7, "+=", "ADDSTORE_F", 6, ASSOC_RIGHT_RESULT, &type_float, &type_float, &type_float},
{7, "+=", "ADDSTORE_V", 6, ASSOC_RIGHT_RESULT, &type_vector, &type_vector, &type_vector},
{7, "+=", "ADDSTOREP_F", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_float, &type_float},
{7, "+=", "ADDSTOREP_V", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_vector, &type_vector},
{7, "-=", "SUBSTORE_F", 6, ASSOC_RIGHT_RESULT, &type_float, &type_float, &type_float},
{7, "-=", "SUBSTORE_V", 6, ASSOC_RIGHT_RESULT, &type_vector, &type_vector, &type_vector},
{7, "-=", "SUBSTOREP_F", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_float, &type_float},
{7, "-=", "SUBSTOREP_V", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_vector, &type_vector},
{7, "<FETCH_GBL_F>", "FETCH_GBL_F", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<FETCH_GBL_V>", "FETCH_GBL_V", -1, ASSOC_LEFT, &type_vector, &type_float, &type_vector},
{7, "<FETCH_GBL_S>", "FETCH_GBL_S", -1, ASSOC_LEFT, &type_string, &type_float, &type_string},
{7, "<FETCH_GBL_E>", "FETCH_GBL_E", -1, ASSOC_LEFT, &type_entity, &type_float, &type_entity},
{7, "<FETCH_GBL_FNC>", "FETCH_GBL_FNC", -1, ASSOC_LEFT, &type_function, &type_float, &type_function},
{7, "<CSTATE>", "CSTATE", -1, ASSOC_LEFT, &type_float, &type_float, &type_void},
{7, "<CWSTATE>", "CWSTATE", -1, ASSOC_LEFT, &type_float, &type_float, &type_void},
{7, "<THINKTIME>", "THINKTIME", -1, ASSOC_LEFT, &type_entity, &type_float, &type_void},
{7, "|=", "BITSET_F", 6, ASSOC_RIGHT, &type_float, &type_float, &type_float},
{7, "|=", "BITSETP_F", 6, ASSOC_RIGHT, &type_pointer, &type_float, &type_float},
{7, "(-)", "BITCLR_F", 6, ASSOC_RIGHT, &type_float, &type_float, &type_float},
{7, "(-)", "BITCLRP_F", 6, ASSOC_RIGHT, &type_pointer, &type_float, &type_float},
{7, "<RAND0>", "RAND0", -1, ASSOC_LEFT, &type_void, &type_void, &type_float},
{7, "<RAND1>", "RAND1", -1, ASSOC_LEFT, &type_float, &type_void, &type_float},
{7, "<RAND2>", "RAND2", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<RANDV0>", "RANDV0", -1, ASSOC_LEFT, &type_void, &type_void, &type_vector},
{7, "<RANDV1>", "RANDV1", -1, ASSOC_LEFT, &type_vector, &type_void, &type_vector},
{7, "<RANDV2>", "RANDV2", -1, ASSOC_LEFT, &type_vector, &type_vector, &type_vector},
{7, "<SWITCH_F>", "SWITCH_F", -1, ASSOC_LEFT, &type_void, NULL, &type_void},
{7, "<SWITCH_V>", "SWITCH_V", -1, ASSOC_LEFT, &type_void, NULL, &type_void},
{7, "<SWITCH_S>", "SWITCH_S", -1, ASSOC_LEFT, &type_void, NULL, &type_void},
{7, "<SWITCH_E>", "SWITCH_E", -1, ASSOC_LEFT, &type_void, NULL, &type_void},
{7, "<SWITCH_FNC>", "SWITCH_FNC", -1, ASSOC_LEFT, &type_void, NULL, &type_void},
{7, "<CASE>", "CASE", -1, ASSOC_LEFT, &type_void, NULL, &type_void},
{7, "<CASERANGE>", "CASERANGE", -1, ASSOC_LEFT, &type_void, &type_void, NULL},
//Later are additions by DMW.
{7, "<CALL1H>", "CALL1H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_void},
{7, "<CALL2H>", "CALL2H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_vector},
{7, "<CALL3H>", "CALL3H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_vector},
{7, "<CALL4H>", "CALL4H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_vector},
{7, "<CALL5H>", "CALL5H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_vector},
{7, "<CALL6H>", "CALL6H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_vector},
{7, "<CALL7H>", "CALL7H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_vector},
{7, "<CALL8H>", "CALL8H", -1, ASSOC_LEFT, &type_function, &type_vector, &type_vector},
{7, "=", "STORE_I", 6, ASSOC_RIGHT, &type_integer, &type_integer, &type_integer},
{7, "=", "STORE_IF", 6, ASSOC_RIGHT, &type_integer, &type_float, &type_integer},
{7, "=", "STORE_FI", 6, ASSOC_RIGHT, &type_float, &type_integer, &type_float},
{7, "+", "ADD_I", 4, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, "+", "ADD_FI", 4, ASSOC_LEFT, &type_float, &type_integer, &type_float},
{7, "+", "ADD_IF", 4, ASSOC_LEFT, &type_integer, &type_float, &type_float},
{7, "-", "SUB_I", 4, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, "-", "SUB_FI", 4, ASSOC_LEFT, &type_float, &type_integer, &type_float},
{7, "-", "SUB_IF", 4, ASSOC_LEFT, &type_integer, &type_float, &type_float},
{7, "<CIF>", "C_ITOF", -1, ASSOC_LEFT, &type_integer, &type_void, &type_float},
{7, "<CFI>", "C_FTOI", -1, ASSOC_LEFT, &type_float, &type_void, &type_integer},
{7, "<CPIF>", "CP_ITOF", -1, ASSOC_LEFT, &type_pointer, &type_integer, &type_float},
{7, "<CPFI>", "CP_FTOI", -1, ASSOC_LEFT, &type_pointer, &type_float, &type_integer},
{7, ".", "INDIRECT", 1, ASSOC_LEFT, &type_entity, &type_field, &type_integer},
{7, "=", "STOREP_I", 6, ASSOC_RIGHT, &type_pointer, &type_integer, &type_integer},
{7, "=", "STOREP_IF", 6, ASSOC_RIGHT, &type_pointer, &type_float, &type_integer},
{7, "=", "STOREP_FI", 6, ASSOC_RIGHT, &type_pointer, &type_integer, &type_float},
{7, "&", "BITAND_I", 3, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, "|", "BITOR_I", 3, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, "*", "MUL_I", 3, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, "/", "DIV_I", 3, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, "==", "EQ_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, "!=", "NE_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, "<IFNOTS>", "IFNOTS", -1, ASSOC_RIGHT, &type_string, NULL, &type_void},
{7, "<IFS>", "IFS", -1, ASSOC_RIGHT, &type_string, NULL, &type_void},
{7, "!", "NOT_I", -1, ASSOC_LEFT, &type_integer, &type_void, &type_integer},
{7, "/", "DIV_VF", 3, ASSOC_LEFT, &type_vector, &type_float, &type_float},
{7, "^", "POWER_I", 3, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, ">>", "RSHIFT_I", 3, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, "<<", "LSHIFT_I", 3, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
//var, offset return
{7, "<ARRAY>", "GET_POINTER", -1, ASSOC_LEFT, &type_float, &type_integer, &type_pointer},
{7, "<ARRAY>", "ARRAY_OFS", -1, ASSOC_LEFT, &type_pointer, &type_integer, &type_pointer},
{7, "=", "LOADA_F", 6, ASSOC_LEFT, &type_float, &type_integer, &type_float},
{7, "=", "LOADA_V", 6, ASSOC_LEFT, &type_vector, &type_integer, &type_vector},
{7, "=", "LOADA_S", 6, ASSOC_LEFT, &type_string, &type_integer, &type_string},
{7, "=", "LOADA_ENT", 6, ASSOC_LEFT, &type_entity, &type_integer, &type_entity},
{7, "=", "LOADA_FLD", 6, ASSOC_LEFT, &type_field, &type_integer, &type_field},
{7, "=", "LOADA_FNC", 6, ASSOC_LEFT, &type_function, &type_integer, &type_function},
{7, "=", "LOADA_I", 6, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, "=", "STORE_P", 6, ASSOC_RIGHT, &type_pointer, &type_pointer, &type_void},
{7, ".", "INDIRECT_P", 1, ASSOC_LEFT, &type_entity, &type_field, &type_pointer},
{7, "=", "LOADP_F", 6, ASSOC_LEFT, &type_pointer, &type_integer, &type_float},
{7, "=", "LOADP_V", 6, ASSOC_LEFT, &type_pointer, &type_integer, &type_vector},
{7, "=", "LOADP_S", 6, ASSOC_LEFT, &type_pointer, &type_integer, &type_string},
{7, "=", "LOADP_ENT", 6, ASSOC_LEFT, &type_pointer, &type_integer, &type_entity},
{7, "=", "LOADP_FLD", 6, ASSOC_LEFT, &type_pointer, &type_integer, &type_field},
{7, "=", "LOADP_FNC", 6, ASSOC_LEFT, &type_pointer, &type_integer, &type_function},
{7, "=", "LOADP_I", 6, ASSOC_LEFT, &type_pointer, &type_integer, &type_integer},
{7, "<=", "LE_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, ">=", "GE_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, "<", "LT_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, ">", "GT_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, "<=", "LE_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer},
{7, ">=", "GE_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer},
{7, "<", "LT_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer},
{7, ">", "GT_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer},
{7, "<=", "LE_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_integer},
{7, ">=", "GE_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_integer},
{7, "<", "LT_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_integer},
{7, ">", "GT_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_integer},
{7, "==", "EQ_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer},
{7, "==", "EQ_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_float},
//-------------------------------------
//string manipulation.
{7, "+", "ADD_SF", 4, ASSOC_LEFT, &type_string, &type_float, &type_string},
{7, "-", "SUB_S", 4, ASSOC_LEFT, &type_string, &type_string, &type_float},
{7, "<STOREP_C>", "STOREP_C", 1, ASSOC_RIGHT, &type_string, &type_float, &type_float},
{7, "<LOADP_C>", "LOADP_C", 1, ASSOC_LEFT, &type_string, &type_void, &type_float},
//-------------------------------------
{7, "*", "MUL_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer},
{7, "*", "MUL_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_float},
{7, "*", "MUL_VI", 5, ASSOC_LEFT, &type_vector, &type_integer, &type_vector},
{7, "*", "MUL_IV", 5, ASSOC_LEFT, &type_integer, &type_vector, &type_vector},
{7, "/", "DIV_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer},
{7, "/", "DIV_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_float},
{7, "&", "BITAND_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer},
{7, "|", "BITOR_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer},
{7, "&", "BITAND_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_float},
{7, "|", "BITOR_FI", 5, ASSOC_LEFT, &type_float, &type_integer, &type_float},
{7, "&&", "AND_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, "||", "OR_I", 5, ASSOC_LEFT, &type_integer, &type_integer, &type_integer},
{7, "&&", "AND_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer},
{7, "||", "OR_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer},
{7, "&&", "AND_FI", 5, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "||", "OR_FI", 5, ASSOC_LEFT, &type_float, &type_float, &type_integer},
{7, "!=", "NE_IF", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer},
{7, "!=", "NE_FI", 5, ASSOC_LEFT, &type_integer, &type_float, &type_integer},
{7, "<>", "GSTOREP_I", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<>", "GSTOREP_F", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<>", "GSTOREP_ENT", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<>", "GSTOREP_FLD", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<>", "GSTOREP_S", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<>", "GSTORE_PFNC", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<>", "GSTOREP_V", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<>", "GADDRESS", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<>", "GLOAD_I", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<>", "GLOAD_F", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<>", "GLOAD_FLD", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<>", "GLOAD_ENT", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<>", "GLOAD_S", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<>", "GLOAD_FNC", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "<>", "BOUNDCHECK", -1, ASSOC_LEFT, &type_float, &type_float, &type_float},
{7, "=", "STOREP_P", 6, ASSOC_RIGHT, &type_pointer, &type_pointer, &type_void},
{7, "<PUSH>", "PUSH", -1, ASSOC_RIGHT, &type_float, &type_void, &type_pointer},
{7, "<POP>", "POP", -1, ASSOC_RIGHT, &type_float, &type_void, &type_void},
{7, "|=", "BITSET_I", 6, ASSOC_RIGHT, &type_integer, &type_integer, &type_integer},
{7, "|=", "BITSETP_I", 6, ASSOC_RIGHT, &type_pointer, &type_integer, &type_integer},
{7, "*=", "MULSTORE_I", 6, ASSOC_RIGHT_RESULT, &type_integer, &type_integer, &type_integer},
{7, "*=", "MULSTOREP_I", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_integer, &type_vector},
{7, "/=", "DIVSTORE_I", 6, ASSOC_RIGHT_RESULT, &type_integer, &type_integer, &type_integer},
{7, "/=", "DIVSTOREP_I", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_integer, &type_vector},
{7, "+=", "ADDSTORE_I", 6, ASSOC_RIGHT_RESULT, &type_integer, &type_integer, &type_integer},
{7, "+=", "ADDSTOREP_I", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_integer, &type_integer},
{7, "-=", "SUBSTORE_I", 6, ASSOC_RIGHT_RESULT, &type_integer, &type_integer, &type_integer},
{7, "-=", "SUBSTOREP_I", 6, ASSOC_RIGHT_RESULT, &type_pointer, &type_vector, &type_vector},
{0, NULL}
};
#undef ASSOC_RIGHT_RESULT
#define TOP_PRIORITY 7
#define NOT_PRIORITY 5
//conditional and/or
#define CONDITION_PRIORITY 7
//this system cuts out 10/120
//these evaluate as top first.
opcode_t *opcodeprioritized[TOP_PRIORITY+1][64] =
{
{ //don't use
NULL
},
{
//1
&pr_opcodes[OP_LOAD_F],
&pr_opcodes[OP_LOAD_V],
&pr_opcodes[OP_LOAD_S],
&pr_opcodes[OP_LOAD_ENT],
&pr_opcodes[OP_LOAD_FLD],
&pr_opcodes[OP_LOAD_FNC],
&pr_opcodes[OP_LOAD_I],
&pr_opcodes[OP_LOAD_P],
&pr_opcodes[OP_ADDRESS],
NULL
},
{
//2
NULL
},
{
//3
&pr_opcodes[OP_MUL_F],
&pr_opcodes[OP_MUL_V],
&pr_opcodes[OP_MUL_FV],
&pr_opcodes[OP_MUL_VF],
&pr_opcodes[OP_MUL_I],
&pr_opcodes[OP_DIV_F],
&pr_opcodes[OP_DIV_I],
&pr_opcodes[OP_DIV_VF],
&pr_opcodes[OP_BITAND],
&pr_opcodes[OP_BITAND_I],
&pr_opcodes[OP_BITOR],
&pr_opcodes[OP_BITOR_I],
&pr_opcodes[OP_POWER_I],
&pr_opcodes[OP_RSHIFT_I],
&pr_opcodes[OP_LSHIFT_I],
NULL
},
{
//4
&pr_opcodes[OP_ADD_F],
&pr_opcodes[OP_ADD_V],
&pr_opcodes[OP_ADD_I],
&pr_opcodes[OP_ADD_FI],
&pr_opcodes[OP_ADD_IF],
&pr_opcodes[OP_ADD_SF],
&pr_opcodes[OP_SUB_F],
&pr_opcodes[OP_SUB_V],
&pr_opcodes[OP_SUB_I],
&pr_opcodes[OP_SUB_FI],
&pr_opcodes[OP_SUB_IF],
&pr_opcodes[OP_SUB_S],
NULL
},
{
//5
&pr_opcodes[OP_EQ_F],
&pr_opcodes[OP_EQ_V],
&pr_opcodes[OP_EQ_S],
&pr_opcodes[OP_EQ_E],
&pr_opcodes[OP_EQ_FNC],
&pr_opcodes[OP_EQ_I],
&pr_opcodes[OP_EQ_IF],
&pr_opcodes[OP_EQ_FI],
&pr_opcodes[OP_NE_F],
&pr_opcodes[OP_NE_V],
&pr_opcodes[OP_NE_S],
&pr_opcodes[OP_NE_E],
&pr_opcodes[OP_NE_FNC],
&pr_opcodes[OP_NE_I],
&pr_opcodes[OP_LE],
&pr_opcodes[OP_LE_I],
&pr_opcodes[OP_LE_IF],
&pr_opcodes[OP_LE_FI],
&pr_opcodes[OP_GE],
&pr_opcodes[OP_GE_I],
&pr_opcodes[OP_GE_IF],
&pr_opcodes[OP_GE_FI],
&pr_opcodes[OP_LT],
&pr_opcodes[OP_LT_I],
&pr_opcodes[OP_LT_IF],
&pr_opcodes[OP_LT_FI],
&pr_opcodes[OP_GT],
&pr_opcodes[OP_GT_I],
&pr_opcodes[OP_GT_IF],
&pr_opcodes[OP_GT_FI],
NULL
},
{
//6
&pr_opcodes[OP_STORE_F],
&pr_opcodes[OP_STORE_V],
&pr_opcodes[OP_STORE_S],
&pr_opcodes[OP_STORE_ENT],
&pr_opcodes[OP_STORE_FLD],
&pr_opcodes[OP_STORE_FNC],
&pr_opcodes[OP_STORE_I],
&pr_opcodes[OP_STORE_IF],
&pr_opcodes[OP_STORE_FI],
&pr_opcodes[OP_STORE_P],
&pr_opcodes[OP_STOREP_F],
&pr_opcodes[OP_STOREP_V],
&pr_opcodes[OP_STOREP_S],
&pr_opcodes[OP_STOREP_ENT],
&pr_opcodes[OP_STOREP_FLD],
&pr_opcodes[OP_STOREP_FNC],
&pr_opcodes[OP_STOREP_I],
&pr_opcodes[OP_STOREP_IF],
&pr_opcodes[OP_STOREP_FI],
&pr_opcodes[OP_STOREP_P],
&pr_opcodes[OP_DIVSTORE_F],
&pr_opcodes[OP_DIVSTOREP_F],
&pr_opcodes[OP_MULSTORE_F],
&pr_opcodes[OP_MULSTORE_V],
&pr_opcodes[OP_MULSTOREP_F],
&pr_opcodes[OP_MULSTOREP_V],
&pr_opcodes[OP_ADDSTORE_F],
&pr_opcodes[OP_ADDSTORE_V],
&pr_opcodes[OP_ADDSTOREP_F],
&pr_opcodes[OP_ADDSTOREP_V],
&pr_opcodes[OP_SUBSTORE_F],
&pr_opcodes[OP_SUBSTORE_V],
&pr_opcodes[OP_SUBSTOREP_F],
&pr_opcodes[OP_SUBSTOREP_V],
&pr_opcodes[OP_BITSET],
&pr_opcodes[OP_BITSETP],
&pr_opcodes[OP_BITCLR],
&pr_opcodes[OP_BITCLRP],
NULL
},
{
//7
&pr_opcodes[OP_AND],
&pr_opcodes[OP_OR],
NULL
}
};
bool PR_OPCodeValid(opcode_t *op)
{
int num;
num = op - pr_opcodes;
switch(targetformat)
{
case QCF_STANDARD:
case QCF_KK7:
if (num < OP_MULSTORE_F)
return true;
return false;
case QCF_HEXEN2:
if (num >= OP_SWITCH_V && num <= OP_SWITCH_FNC) //these were assigned numbers but were never actually implemtented in standard h2.
return false;
if (num <= OP_CALL8H) //CALLXH are fixed up. This is to provide more dynamic switching...??
return true;
return false;
case QCF_FTE:
case QCF_FTEDEBUG:
return true;
}
return false;
}
def_t *PR_Expression (int priority, bool allowcomma);
int PR_AStatementJumpsTo(int targ, int first, int last);
bool PR_StatementIsAJump(int stnum, int notifdest);
temp_t *functemps; //floats/strings/funcs/ents...
//===========================================================================
/*
============
PR_Statement
Emits a primitive statement, returning the var it places it's value in
============
*/
def_t *PR_Statement ( opcode_t *op, def_t *var_a, def_t *var_b, dstatement_t **outstatement);
int __inline PR_ShouldConvert(def_t *var, etype_t wanted)
{
if (var->type->type == ev_integer && wanted == ev_function)
return 0;
if (var->type->type == ev_pointer && var->type->aux_type)
{
if (var->type->aux_type->type == ev_float && wanted == ev_integer)
return OP_CP_FTOI;
if (var->type->aux_type->type == ev_integer && wanted == ev_float)
return OP_CP_ITOF;
}
else
{
if (var->type->type == ev_float && wanted == ev_integer)
return OP_CONV_FTOI;
if (var->type->type == ev_integer && wanted == ev_float)
return OP_CONV_ITOF;
}
return -1;
}
def_t *PR_SupplyConversion(def_t *var, etype_t wanted)
{
int o;
if (pr_classtype && var->type->type == ev_field && wanted != ev_field)
{
if (pr_classtype)
{ //load self.var into a temp
def_t *self;
self = PR_GetDef(type_entity, "self", NULL, true, 1);
switch(wanted)
{
case ev_float:
return PR_Statement(pr_opcodes+OP_LOAD_F, self, var, NULL);
case ev_string:
return PR_Statement(pr_opcodes+OP_LOAD_S, self, var, NULL);
case ev_function:
return PR_Statement(pr_opcodes+OP_LOAD_FNC, self, var, NULL);
case ev_vector:
return PR_Statement(pr_opcodes+OP_LOAD_V, self, var, NULL);
case ev_entity:
return PR_Statement(pr_opcodes+OP_LOAD_ENT, self, var, NULL);
default:
Sys_Error("Inexplicit field load failed, try explicit");
}
}
}
o = PR_ShouldConvert(var, wanted);
if (o <= 0) //no conversion
return var;
return PR_Statement(&pr_opcodes[o], var, NULL, NULL); //conversion return value
}
def_t *PR_MakeStringDef(char *value);
def_t *PR_MakeFloatDef(float value);
def_t *PR_MakeIntDef(int value);
typedef struct freeoffset_s {
struct freeoffset_s *next;
gofs_t ofs;
unsigned int size;
} freeoffset_t;
freeoffset_t *freeofs;
//assistant functions. This can safly be bipassed with the old method for more complex things.
gofs_t PR_GetFreeOffsetSpace(unsigned int size)
{
int ofs;
if (opt_locals_marshalling)
{
freeoffset_t *fofs, *prev;
for (fofs = freeofs, prev = NULL; fofs; fofs=fofs->next)
{
if (fofs->size == size)
{
if (prev)
prev->next = fofs->next;
else
freeofs = fofs->next;
return fofs->ofs;
}
prev = fofs;
}
for (fofs = freeofs, prev = NULL; fofs; fofs=fofs->next)
{
if (fofs->size > size)
{
fofs->size -= size;
fofs->ofs += size;
return fofs->ofs-size;
}
prev = fofs;
}
}
ofs = numpr_globals;
numpr_globals+=size;
if (numpr_globals >= MAX_REGS)
{
if (!opt_overlaptemps || !opt_locals_marshalling)
Sys_Error("numpr_globals exceeded MAX_REGS - you'll need to use more optimisations");
else
Sys_Error("numpr_globals exceeded MAX_REGS");
}
return ofs;
}
void PR_FreeOffset(gofs_t ofs, unsigned int size)
{
freeoffset_t *fofs;
if (ofs+size == numpr_globals)
{ //fixme: is this a bug?
numpr_globals -= size;
return;
}
for (fofs = freeofs; fofs; fofs=fofs->next)
{
//fixme: if this means the last block becomes free, free them all.
if (fofs->ofs == ofs + size)
{
fofs->ofs -= size;
fofs->size += size;
return;
}
if (fofs->ofs+fofs->size == ofs)
{
fofs->size += size;
return;
}
}
fofs = Qalloc(sizeof(freeoffset_t));
fofs->next = freeofs;
fofs->ofs = ofs;
fofs->size = size;
freeofs = fofs;
return;
}
static def_t *PR_GetTemp(type_t *type)
{
def_t *var_c;
temp_t *t;
var_c = (void *)Qalloc(sizeof(def_t));
var_c->type = type;
var_c->name = "temp";
if (opt_overlaptemps) //don't exceed. This lets us allocate a huge block, and still be able to compile smegging big funcs.
{
for (t = functemps; t; t = t->next)
{
if (!t->used && t->size == type->size)
break;
}
if (t && t->scope && t->scope != pr_scope)
Sys_Error("Internal error temp has scope not equal to current scope");
if (!t)
{
//allocate a new one
t = Qalloc(sizeof(temp_t));
t->size = type->size;
t->next = functemps;
functemps = t;
t->ofs = PR_GetFreeOffsetSpace(t->size);
numtemps+=t->size;
}
else
optres_overlaptemps+=t->size;
//use a previous one.
var_c->ofs = t->ofs;
var_c->temp = t;
t->lastfunc = pr_scope;
}
else if (opt_locals_marshalling)
{
//allocate a new one
t = Qalloc(sizeof(temp_t));
t->size = type->size;
t->next = functemps;
functemps = t;
t->ofs = PR_GetFreeOffsetSpace(t->size);
numtemps+=t->size;
var_c->ofs = t->ofs;
var_c->temp = t;
t->lastfunc = pr_scope;
}
else
{
// we're not going to reallocate any temps so allocate permanently
var_c->ofs = PR_GetFreeOffsetSpace(type->size);
numtemps+=type->size;
}
var_c->s_file = s_file;
var_c->s_line = pr_source_line;
if (var_c->temp)
var_c->temp->used = true;
return var_c;
}
//nothing else references this temp.
static void PR_FreeTemp(def_t *t)
{
if (t && t->temp)
t->temp->used = false;
}
static void PR_UnFreeTemp(def_t *t)
{
if (t->temp)
t->temp->used = true;
}
//We've just parsed a statement.
//We can gaurentee that any used temps are now not used.
#ifdef _DEBUG
static void PR_FreeTemps(void)
{
temp_t *t;
t = functemps;
while(t)
{
if (t->used && !pr_error_count) //don't print this after an error jump out.
{
PR_ParseWarning(WARN_DEBUGGING, "Temp was used in %s", pr_scope->name);
t->used = false;
}
t = t->next;
}
}
#else
#define PR_FreeTemps()
#endif
//temps that are still in use over a function call can be considered dodgy.
//we need to remap these to locally defined temps, on return from the function so we know we got them all.
static void PR_LockActiveTemps(void)
{
temp_t *t;
t = functemps;
while(t)
{
if (t->used)
t->scope = pr_scope;
t = t->next;
}
}
static void PR_RemapLockedTemp(temp_t *t, int firststatement, int laststatement)
{
char buffer[128];
def_t *def;
int newofs;
dstatement_t *st;
int i;
newofs = 0;
for (i = firststatement, st = &statements[i]; i < laststatement; i++, st++)
{
if (pr_opcodes[st->op].type_a && st->a == t->ofs)
{
if (!newofs)
{
newofs = PR_GetFreeOffsetSpace(t->size);
numtemps+=t->size;
def = PR_DummyDef(type_float, NULL, pr_scope, t->size, newofs, false);
def->nextlocal = pr.localvars;
def->constant = false;
sprintf(buffer, "locked_%i", t->ofs);
def->name = Qalloc(strlen(buffer)+1);
strcpy(def->name, buffer);
pr.localvars = def;
}
st->a = newofs;
}
if (pr_opcodes[st->op].type_b && st->b == t->ofs)
{
if (!newofs)
{
newofs = PR_GetFreeOffsetSpace(t->size);
numtemps+=t->size;
def = PR_DummyDef(type_float, NULL, pr_scope, t->size, newofs, false);
def->nextlocal = pr.localvars;
def->constant = false;
sprintf(buffer, "locked_%i", t->ofs);
def->name = Qalloc(strlen(buffer)+1);
strcpy(def->name, buffer);
pr.localvars = def;
}
st->b = newofs;
}
if (pr_opcodes[st->op].type_c && st->c == t->ofs)
{
if (!newofs)
{
newofs = PR_GetFreeOffsetSpace(t->size);
numtemps+=t->size;
def = PR_DummyDef(type_float, NULL, pr_scope, t->size, newofs, false);
def->nextlocal = pr.localvars;
def->constant = false;
sprintf(buffer, "locked_%i", t->ofs);
def->name = Qalloc(strlen(buffer)+1);
strcpy(def->name, buffer);
pr.localvars = def;
}
st->c = newofs;
}
}
}
static void PR_RemapLockedTemps(int firststatement, int laststatement)
{
temp_t *t;
t = functemps;
while(t)
{
if (t->scope || opt_locals_marshalling)
{
PR_RemapLockedTemp(t, firststatement, laststatement);
t->scope = NULL;
t->lastfunc = NULL;
}
t = t->next;
}
}
static void PR_fprintfLocals(file_t *f, gofs_t paramstart, gofs_t paramend)
{
def_t *var;
temp_t *t;
int i;
for (var = pr.localvars; var; var = var->nextlocal)
{
if (var->ofs >= paramstart && var->ofs < paramend)
continue;
FS_Printf(f, "local %s %s;\n", TypeName(var->type), var->name);
}
for (t = functemps, i = 0; t; t = t->next, i++)
{
if (t->lastfunc == pr_scope)
{
FS_Printf(f, "local %s temp_%i;\n", (t->size == 1)?"float":"vector", i);
}
}
}
void PR_WriteAsmFunction(def_t *sc, unsigned int firststatement, gofs_t firstparm);
static const char *PR_VarAtOffset(unsigned int ofs, unsigned int size)
{
static char message[1024];
def_t *var;
//check the temps
temp_t *t;
int i;
for (t = functemps, i = 0; t; t = t->next, i++)
{
if (ofs >= t->ofs && ofs < t->ofs + t->size)
{
if (size < t->size)
sprintf(message, "temp_%i_%c", i, 'x' + (ofs-t->ofs)%3);
else
sprintf(message, "temp_%i", i);
return message;
}
}
for (var = pr.localvars; var; var = var->nextlocal)
{
if (var->scope && var->scope != pr_scope)
continue; //this should be an error
if (ofs >= var->ofs && ofs < var->ofs + var->type->size)
{
if (*var->name)
{
if (!STRCMP(var->name, "IMMEDIATE")) //continue, don't get bogged down by multiple bits of code
continue;
if (size < var->type->size)
sprintf(message, "%s_%c", var->name, 'x' + (ofs-var->ofs)%3);
else
sprintf(message, "%s", var->name);
return message;
}
}
}
for (var = pr.def_head.next; var; var = var->next)
{
if (var->scope && var->scope != pr_scope)
continue;
if (ofs >= var->ofs && ofs < var->ofs + var->type->size)
{
if (*var->name)
{
if (!STRCMP(var->name, "IMMEDIATE"))
{
switch(var->type->type)
{
case ev_string:
sprintf(message, "\"%.1020s\"", &strings[((int *)pr_globals)[var->ofs]]);
return message;
case ev_integer:
sprintf(message, "%i", ((int *)pr_globals)[var->ofs]);
return message;
case ev_float:
sprintf(message, "%f", pr_globals[var->ofs]);
return message;
case ev_vector:
sprintf(message, "'%f %f %f'", pr_globals[var->ofs], pr_globals[var->ofs+1], pr_globals[var->ofs+2]);
return message;
default:
sprintf(message, "IMMEDIATE");
return message;
}
}
if (size < var->type->size)
sprintf(message, "%s_%c", var->name, 'x' + (ofs-var->ofs)%3);
else
sprintf(message, "%s", var->name);
return message;
}
}
}
if (size >= 3)
{
if (ofs >= OFS_RETURN && ofs < OFS_PARM0)
sprintf(message, "return");
else if (ofs >= OFS_PARM0 && ofs < RESERVED_OFS)
sprintf(message, "parm%i", (ofs-OFS_PARM0)/3);
else
sprintf(message, "offset_%i", ofs);
}
else
{
if (ofs >= OFS_RETURN && ofs < OFS_PARM0)
sprintf(message, "return_%c", 'x' + ofs-OFS_RETURN);
else if (ofs >= OFS_PARM0 && ofs < RESERVED_OFS)
sprintf(message, "parm%i_%c", (ofs-OFS_PARM0)/3, 'x' + (ofs-OFS_PARM0)%3);
else
sprintf(message, "offset_%i", ofs);
}
return message;
}
def_t *PR_Statement ( opcode_t *op, def_t *var_a, def_t *var_b, dstatement_t **outstatement)
{
dstatement_t *statement;
def_t *var_c=NULL, *temp=NULL;
if (outstatement == (dstatement_t **)0xffffffff)
outstatement = NULL;
else if (op->priority != -1)
{
if (op->associative!=ASSOC_LEFT)
{
if (op->type_a == &type_pointer)
var_b = PR_SupplyConversion(var_b, (*op->type_b)->type);
else
var_b = PR_SupplyConversion(var_b, (*op->type_a)->type);
}
else
{
if (var_a) var_a = PR_SupplyConversion(var_a, (*op->type_a)->type);
if (var_b) var_b = PR_SupplyConversion(var_b, (*op->type_b)->type);
}
}
if (var_a)
{
var_a->references++;
PR_FreeTemp(var_a);
}
if (var_b)
{
var_b->references++;
PR_FreeTemp(var_b);
}
if (keyword_class && var_a && var_b)
{
if (var_a->type->type == ev_entity && var_b->type->type == ev_entity)
if (var_a->type != var_b->type)
if (strcmp(var_a->type->name, var_b->type->name))
PR_ParseWarning(0, "Inexplict cast");
}
//maths operators
if (opt_constantarithmatic && (var_a && var_a->constant) && (var_b && var_b->constant))
{
switch (op - pr_opcodes) //improve some of the maths.
{
case OP_BITOR:
optres_constantarithmatic++;
return PR_MakeFloatDef((float)((int)G_FLOAT(var_a->ofs) | (int)G_FLOAT(var_b->ofs)));
case OP_BITAND:
optres_constantarithmatic++;
return PR_MakeFloatDef((float)((int)G_FLOAT(var_a->ofs) & (int)G_FLOAT(var_b->ofs)));
case OP_MUL_F:
optres_constantarithmatic++;
return PR_MakeFloatDef(G_FLOAT(var_a->ofs) * G_FLOAT(var_b->ofs));
case OP_DIV_F:
optres_constantarithmatic++;
return PR_MakeFloatDef(G_FLOAT(var_a->ofs) / G_FLOAT(var_b->ofs));
case OP_ADD_F:
optres_constantarithmatic++;
return PR_MakeFloatDef(G_FLOAT(var_a->ofs) + G_FLOAT(var_b->ofs));
case OP_SUB_F:
optres_constantarithmatic++;
return PR_MakeFloatDef(G_FLOAT(var_a->ofs) - G_FLOAT(var_b->ofs));
case OP_BITOR_I:
optres_constantarithmatic++;
return PR_MakeIntDef(G_INT(var_a->ofs) | G_INT(var_b->ofs));
case OP_BITAND_I:
optres_constantarithmatic++;
return PR_MakeIntDef(G_INT(var_a->ofs) & G_INT(var_b->ofs));
case OP_MUL_I:
optres_constantarithmatic++;
return PR_MakeIntDef(G_INT(var_a->ofs) * G_INT(var_b->ofs));
case OP_DIV_I:
optres_constantarithmatic++;
return PR_MakeIntDef(G_INT(var_a->ofs) / G_INT(var_b->ofs));
case OP_ADD_I:
optres_constantarithmatic++;
return PR_MakeIntDef(G_INT(var_a->ofs) + G_INT(var_b->ofs));
case OP_SUB_I:
optres_constantarithmatic++;
return PR_MakeIntDef(G_INT(var_a->ofs) - G_INT(var_b->ofs));
}
}
switch (op - pr_opcodes)
{
case OP_AND:
if (var_a->ofs == var_b->ofs)
PR_ParseWarning(WARN_CONSTANTCOMPARISON, "Parameter offsets for && are the same");
if (var_a->constant || var_b->constant)
PR_ParseWarning(WARN_CONSTANTCOMPARISON, "Result of comparison is constant");
break;
case OP_OR:
if (var_a->ofs == var_b->ofs)
PR_ParseWarning(WARN_CONSTANTCOMPARISON, "Parameters for || are the same");
if (var_a->constant || var_b->constant)
PR_ParseWarning(WARN_CONSTANTCOMPARISON, "Result of comparison is constant");
break;
case OP_EQ_F:
case OP_EQ_S:
case OP_EQ_E:
case OP_EQ_FNC:
case OP_EQ_V:
case OP_NE_F:
case OP_NE_V:
case OP_NE_S:
case OP_NE_E:
case OP_NE_FNC:
case OP_LE:
case OP_GE:
case OP_LT:
case OP_GT:
if ((var_a->constant && var_b->constant && !var_a->temp && !var_b->temp) || var_a->ofs == var_b->ofs)
PR_ParseWarning(WARN_CONSTANTCOMPARISON, "Result of comparison is constant");
break;
case OP_IFS:
case OP_IFNOTS:
case OP_IF:
case OP_IFNOT:
if (var_a->constant && !var_a->temp)
PR_ParseWarning(WARN_CONSTANTCOMPARISON, "Result of comparison is constant");
break;
default:
break;
}
if (numstatements)
{
//optimise based on last statement.
if (op - pr_opcodes == OP_IFNOT)
{
if (opt_shortenifnots && var_a && (statements[numstatements-1].op == OP_NOT_F || statements[numstatements-1].op == OP_NOT_FNC || statements[numstatements-1].op == OP_NOT_ENT))
{
if (statements[numstatements-1].c == var_a->ofs)
{
static def_t nvara;
op = &pr_opcodes[OP_IF];
numstatements--;
PR_FreeTemp(var_a);
memcpy(&nvara, var_a, sizeof(nvara));
nvara.ofs = statements[numstatements].a;
var_a = &nvara;
optres_shortenifnots++;
}
}
}
else if (op - pr_opcodes == OP_IFNOTS)
{
if (opt_shortenifnots && var_a && statements[numstatements-1].op == OP_NOT_S)
{
if (statements[numstatements-1].c == var_a->ofs)
{
static def_t nvara;
op = &pr_opcodes[OP_IFS];
numstatements--;
PR_FreeTemp(var_a);
memcpy(&nvara, var_a, sizeof(nvara));
nvara.ofs = statements[numstatements].a;
var_a = &nvara;
optres_shortenifnots++;
}
}
}
else if (((unsigned) ((op - pr_opcodes) - OP_STORE_F) < 6))
{
if (opt_assignments && var_a && var_a->ofs == statements[numstatements-1].c)// && var_a->ofs >RESERVED_OFS)
{
if (var_a->type->type == var_b->type->type)
{
if (var_a->temp)
{
statement = &statements[numstatements-1];
statement->c = var_b->ofs;
if (var_a->type->type != var_b->type->type)
PR_ParseWarning(0, "store type mismatch");
var_b->references++;
var_a->references--;
PR_FreeTemp(var_a);
optres_assignments++;
simplestore=true;
PR_UnFreeTemp(var_b);
return var_b;
}
}
}
}
}
simplestore=false;
statement = &statements[numstatements];
numstatements++;
if (!PR_OPCodeValid(op))
{
switch(op - pr_opcodes)
{
case OP_IFS:
var_c = PR_GetDef(type_string, "string_null", NULL, true, 1);
numstatements--;
var_a = PR_Statement(&pr_opcodes[OP_NE_S], var_a, var_c, NULL);
statement = &statements[numstatements];
numstatements++;
PR_FreeTemp(var_a);
op = &pr_opcodes[OP_IF];
break;
case OP_IFNOTS:
var_c = PR_GetDef(type_string, "string_null", NULL, true, 1);
numstatements--;
var_a = PR_Statement(&pr_opcodes[OP_NE_S], var_a, var_c, NULL);
statement = &statements[numstatements];
numstatements++;
PR_FreeTemp(var_a);
op = &pr_opcodes[OP_IFNOT];
break;
case OP_ADDSTORE_F:
op = &pr_opcodes[OP_ADD_F];
var_c = var_b;
var_b = var_a;
var_a = var_c;
var_c = var_a;
break;
case OP_SUBSTORE_F:
op = &pr_opcodes[OP_SUB_F];
var_c = var_b;
var_b = var_a;
var_a = var_c;
var_c = var_a;
break;
case OP_DIVSTORE_F:
op = &pr_opcodes[OP_DIV_F];
var_c = var_b;
var_b = var_a;
var_a = var_c;
var_c = var_a;
break;
case OP_MULSTORE_F:
op = &pr_opcodes[OP_MUL_F];
var_c = var_b;
var_b = var_a;
var_a = var_c;
var_c = var_a;
break;
case OP_ADDSTORE_V:
op = &pr_opcodes[OP_ADD_V];
var_c = var_b;
var_b = var_a;
var_a = var_c;
var_c = var_a;
break;
case OP_SUBSTORE_V:
op = &pr_opcodes[OP_SUB_V];
var_c = var_b;
var_b = var_a;
var_a = var_c;
var_c = var_a;
break;
case OP_MULSTORE_V:
op = &pr_opcodes[OP_MUL_V];
var_c = var_b;
var_b = var_a;
var_a = var_c;
var_c = var_a;
break;
case OP_BITSET:
op = &pr_opcodes[OP_BITOR];
var_c = var_b;
var_b = var_a;
var_a = var_c;
var_c = var_a;
break;
case OP_BITCLR:
//b = var, a = bit field.
PR_UnFreeTemp(var_a);
PR_UnFreeTemp(var_b);
numstatements--;
var_c = PR_Statement(&pr_opcodes[OP_BITAND], var_b, var_a, NULL);
PR_FreeTemp(var_c);
statement = &statements[numstatements];
numstatements++;
PR_FreeTemp(var_a);
PR_FreeTemp(var_b);
op = &pr_opcodes[OP_SUB_F];
var_a = var_b;
var_b = var_c;
var_c = var_a;
break;
case OP_SUBSTOREP_F:
case OP_ADDSTOREP_F:
case OP_MULSTOREP_F:
case OP_DIVSTOREP_F:
case OP_BITSETP:
case OP_BITCLRP:
PR_UnFreeTemp(var_a);
PR_UnFreeTemp(var_b);
//don't chain these... this expansion is not the same.
{
int st;
for (st = numstatements-2; st>=0; st--)
{
if (statements[st].op == OP_ADDRESS)
if (statements[st].c == var_b->ofs)
break;
if (statements[st].c == var_b->ofs)
PR_ParseWarning(0, "Temp-reuse may have broken your %s\n", pr_opcodes);
}
if (st < 0)
PR_ParseError(ERR_INTERNAL, "XSTOREP_F couldn't find pointer generation");
var_c = PR_GetTemp(*op->type_c);
statement_linenums[statement-statements] = pr_source_line;
statement->op = OP_LOAD_F;
statement->a = statements[st].a;
statement->b = statements[st].b;
statement->c = var_c->ofs;
}
statement = &statements[numstatements];
numstatements++;
statement_linenums[statement-statements] = pr_source_line;
switch(op - pr_opcodes)
{
case OP_SUBSTOREP_F:
statement->op = OP_SUB_F;
break;
case OP_ADDSTOREP_F:
statement->op = OP_ADD_F;
break;
case OP_MULSTOREP_F:
statement->op = OP_MUL_F;
break;
case OP_DIVSTOREP_F:
statement->op = OP_DIV_F;
break;
case OP_BITSETP:
statement->op = OP_BITOR;
break;
case OP_BITCLRP:
//float pointer float
temp = PR_GetTemp(type_float);
statement->op = OP_BITAND;
statement->a = var_c ? var_c->ofs : 0;
statement->b = var_a ? var_a->ofs : 0;
statement->c = temp->ofs;
statement = &statements[numstatements];
numstatements++;
statement_linenums[statement-statements] = pr_source_line;
statement->op = OP_SUB_F;
//t = c & i
//c = c - t
break;
default: //no way will this be hit...
PR_ParseError(ERR_INTERNAL, "opcode invalid 3 times %i", op - pr_opcodes);
}
if (op - pr_opcodes == OP_BITCLRP)
{
statement->a = var_c ? var_c->ofs : 0;
statement->b = temp ? temp->ofs : 0;
statement->c = var_c->ofs;
PR_FreeTemp(temp);
var_b = var_b; //this is the ptr.
PR_FreeTemp(var_a);
var_a = var_c; //this is the value.
}
else
{
statement->a = var_c ? var_c->ofs : 0;
statement->b = var_a ? var_a->ofs : 0;
statement->c = var_c->ofs;
var_b = var_b; //this is the ptr.
PR_FreeTemp(var_a);
var_a = var_c; //this is the value.
}
op = &pr_opcodes[OP_STOREP_F];
PR_FreeTemp(var_c);
var_c = NULL;
PR_FreeTemp(var_b);
statement = &statements[numstatements];
numstatements++;
break;
case OP_MULSTOREP_V:
case OP_SUBSTOREP_V:
case OP_ADDSTOREP_V:
PR_UnFreeTemp(var_a);
PR_UnFreeTemp(var_b);
//don't chain these... this expansion is not the same.
{
int st;
for (st = numstatements-2; st>=0; st--)
{
if (statements[st].op == OP_ADDRESS)
if (statements[st].c == var_b->ofs)
break;
}
if (st < 0)
PR_ParseError(ERR_INTERNAL, "XSTOREP_V couldn't find pointer generation");
var_c = PR_GetTemp(*op->type_c);
statement_linenums[statement-statements] = pr_source_line;
statement->op = OP_LOAD_V;
statement->a = statements[st].a;
statement->b = statements[st].b;
statement->c = var_c ? var_c->ofs : 0;
}
statement = &statements[numstatements];
numstatements++;
statement_linenums[statement-statements] = pr_source_line;
switch(op - pr_opcodes)
{
case OP_SUBSTOREP_V:
statement->op = OP_SUB_V;
break;
case OP_ADDSTOREP_V:
statement->op = OP_ADD_V;
break;
case OP_MULSTOREP_V:
statement->op = OP_MUL_V;
break;
default: //no way will this be hit...
PR_ParseError(ERR_INTERNAL, "opcode invalid 3 times %i", op - pr_opcodes);
}
statement->a = var_a ? var_a->ofs : 0;
statement->b = var_c ? var_c->ofs : 0;
PR_FreeTemp(var_c);
var_c = PR_GetTemp(*op->type_c);
statement->c = var_c ? var_c->ofs : 0;
var_b = var_b; //this is the ptr.
PR_FreeTemp(var_a);
var_a = var_c; //this is the value.
op = &pr_opcodes[OP_STOREP_V];
PR_FreeTemp(var_c);
var_c = NULL;
PR_FreeTemp(var_b);
statement = &statements[numstatements];
numstatements++;
break;
default:
PR_ParseError(ERR_BADEXTENSION, "Opcode \"%s|%s\" not valid for target", op->name, op->opname);
break;
}
}
if (outstatement)
*outstatement = statement;
statement_linenums[statement-statements] = pr_source_line;
statement->op = op - pr_opcodes;
statement->a = var_a ? var_a->ofs : 0;
statement->b = var_b ? var_b->ofs : 0;
if (var_c != NULL)
{
statement->c = var_c->ofs;
}
else if (op->type_c == &type_void || op->associative==ASSOC_RIGHT || op->type_c == NULL)
{
var_c = NULL;
statement->c = 0; // ifs, gotos, and assignments
// don't need vars allocated
}
else
{ // allocate result space
var_c = PR_GetTemp(*op->type_c);
statement->c = var_c->ofs;
if (op->type_b == &type_field)
{
var_c->name = var_b->name;
var_c->s_file = var_b->s_file;
var_c->s_line = var_b->s_line;
}
}
if ((op - pr_opcodes >= OP_LOAD_F && op - pr_opcodes <= OP_LOAD_FNC) || op - pr_opcodes == OP_LOAD_I)
{
if (var_b->constant == 2)
var_c->constant = true;
}
if (!var_c)
{
if (var_a)
PR_UnFreeTemp(var_a);
return var_a;
}
return var_c;
}
/*
============
PR_SimpleStatement
Emits a primitive statement, returning the var it places it's value in
============
*/
dstatement_t *PR_SimpleStatement( int op, int var_a, int var_b, int var_c, int force)
{
dstatement_t *statement;
if (!force && !PR_OPCodeValid(pr_opcodes+op))
{
PR_ParseError(ERR_BADEXTENSION, "Opcode \"%s|%s\" not valid for target\n", pr_opcodes[op].name, pr_opcodes[op].opname);
}
statement_linenums[numstatements] = pr_source_line;
statement = &statements[numstatements];
numstatements++;
statement->op = op;
statement->a = var_a;
statement->b = var_b;
statement->c = var_c;
return statement;
}
void PR_Statement3 ( opcode_t *op, def_t *var_a, def_t *var_b, def_t *var_c, int force)
{
dstatement_t *statement;
if (!force && !PR_OPCodeValid(op))
{
// outputversion = op->extension;
// if (noextensions)
PR_ParseError(ERR_BADEXTENSION, "Opcode \"%s|%s\" not valid for target\n", op->name, op->opname);
}
statement = &statements[numstatements];
numstatements++;
statement_linenums[statement-statements] = pr_source_line;
statement->op = op - pr_opcodes;
statement->a = var_a ? var_a->ofs : 0;
statement->b = var_b ? var_b->ofs : 0;
statement->c = var_c ? var_c->ofs : 0;
}
/*
============
PR_ParseImmediate
Looks for a preexisting constant
============
*/
def_t *PR_ParseImmediate (void)
{
def_t *cn;
if (pr_immediate_type == type_float)
{
cn = PR_MakeFloatDef(pr_immediate._float);
PR_Lex ();
return cn;
}
if (pr_immediate_type == type_integer)
{
cn = PR_MakeIntDef(pr_immediate._int);
PR_Lex ();
return cn;
}
if (pr_immediate_type == type_string)
{
cn = PR_MakeStringDef(pr_immediate_string);
PR_Lex ();
return cn;
}
// check for a constant with the same value
for (cn=pr.def_head.next ; cn ; cn=cn->next) //FIXME - hashtable.
{
if (!cn->initialized)
continue;
if (!cn->constant)
continue;
if (cn->type != pr_immediate_type)
continue;
if (pr_immediate_type == type_string)
{
if (!STRCMP(G_STRING(cn->ofs), pr_immediate_string) )
{
PR_Lex ();
return cn;
}
}
else if (pr_immediate_type == type_float)
{
if ( G_FLOAT(cn->ofs) == pr_immediate._float )
{
PR_Lex ();
return cn;
}
}
else if (pr_immediate_type == type_integer)
{
if ( G_INT(cn->ofs) == pr_immediate._int )
{
PR_Lex ();
return cn;
}
}
else if (pr_immediate_type == type_vector)
{
if ( ( G_FLOAT(cn->ofs) == pr_immediate.vector[0] )
&& ( G_FLOAT(cn->ofs+1) == pr_immediate.vector[1] )
&& ( G_FLOAT(cn->ofs+2) == pr_immediate.vector[2] ) )
{
PR_Lex ();
return cn;
}
}
else
PR_ParseError (ERR_BADIMMEDIATETYPE, "weird immediate type");
}
// allocate a new one
cn = (void *)Qalloc (sizeof(def_t));
cn->next = NULL;
pr.def_tail->next = cn;
pr.def_tail = cn;
cn->type = pr_immediate_type;
cn->name = "IMMEDIATE";
cn->constant = true;
cn->initialized = 1;
cn->scope = NULL; // always share immediates
// copy the immediate to the global area
cn->ofs = PR_GetFreeOffsetSpace(type_size[pr_immediate_type->type]);
if (pr_immediate_type == type_string)
pr_immediate.string = PR_CopyString (pr_immediate_string);
memcpy (pr_globals + cn->ofs, &pr_immediate, 4*type_size[pr_immediate_type->type]);
PR_Lex ();
return cn;
}
void PR_PrecacheSound (def_t *e, int ch)
{
char *n;
int i;
if (e->type->type != ev_string)
return;
if (!e->ofs || e->temp || !e->constant)
return;
n = G_STRING(e->ofs);
if (!*n)
return;
for (i=0 ; i<numsounds ; i++)
if (!STRCMP(n, precache_sounds[i]))
return;
if (numsounds == MAX_SOUNDS)
return;
// Sys_Error ("PrecacheSound: numsounds == MAX_SOUNDS");
strcpy (precache_sounds[i], n);
numsounds++;
}
void PR_PrecacheModel (def_t *e, int ch)
{
char *n;
int i;
if (e->type->type != ev_string)
return;
if (!e->ofs || e->temp || !e->constant)
return;
n = G_STRING(e->ofs);
if (!*n)
return;
for (i=0 ; i<nummodels ; i++)
if (!STRCMP(n, precache_models[i])) return;
if (nummodels == MAX_MODELS)
return;
// Sys_Error ("PrecacheModels: nummodels == MAX_MODELS");
strcpy (precache_models[i], n);
nummodels++;
}
void PR_SetModel (def_t *e)
{
char *n;
int i;
if (e->type->type != ev_string)
return;
if (!e->ofs || e->temp || !e->constant)
return;
n = G_STRING(e->ofs);
if (!*n)
return;
for (i=0 ; i<nummodels ; i++)
if (!STRCMP(n, precache_models[i]))
return;
if (nummodels == MAX_MODELS)
return;
strcpy (precache_models[i], n);
nummodels++;
}
void PR_PrecacheTexture (def_t *e, int ch)
{
char *n;
int i;
if (e->type->type != ev_string)
return;
if (!e->ofs || e->temp || !e->constant)
return;
n = G_STRING(e->ofs);
if (!*n)
return;
for (i=0 ; i<numtextures ; i++)
if (!STRCMP(n, precache_textures[i]))
return;
if (nummodels == MAX_MODELS)
return;
// Sys_Error ("PrecacheTextures: numtextures == MAX_TEXTURES");
strcpy (precache_textures[i], n);
numtextures++;
}
void PR_PrecacheFile (def_t *e, int ch)
{
char *n;
int i;
if (e->type->type != ev_string)
return;
if (!e->ofs || e->temp || !e->constant)
return;
n = G_STRING(e->ofs);
if (!*n)
return;
for (i=0 ; i<numfiles ; i++)
if (!STRCMP(n, precache_files[i]))
return;
if (numfiles == MAX_FILES)
return;
// Sys_Error ("PrecacheFile: numfiles == MAX_FILES");
strcpy (precache_files[i], n);
numfiles++;
}
void PR_PrecacheFileOptimised (char *n, int ch)
{
int i;
for (i=0 ; i<numfiles ; i++)
if (!STRCMP(n, precache_files[i]))
return;
if (numfiles == MAX_FILES)
return;
// Sys_Error ("PrecacheFile: numfiles == MAX_FILES");
strcpy (precache_files[i], n);
numfiles++;
}
/*
============
PR_ParseFunctionCall
============
*/
def_t *PR_ParseFunctionCall (def_t *func) //warning, the func could have no name set if it's a field call.
{
def_t *e, *d, *old, *oself;
int arg, i;
type_t *t, *p;
int extraparms=false;
int np;
int laststatement = numstatements;
int callconvention;
dstatement_t *st;
def_t *param[MAX_PARMS+MAX_PARMS_EXTRA];
func->timescalled++;
if (PR_OPCodeValid(&pr_opcodes[OP_CALL1H]))
callconvention = OP_CALL1H; //FTE extended
else
callconvention = OP_CALL1; //standard
t = func->type;
if (t->type == ev_variant)
{
t->aux_type = type_variant;
}
if (t->type != ev_function && t->type != ev_variant)
{
PR_ParseErrorPrintDef (ERR_NOTAFUNCTION, func, "not a function");
}
if (!t->num_parms&&t->type != ev_variant) //intrinsics. These base functions have variable arguments. I would check for (...) args too, but that might be used for extended builtin functionality. (this code wouldn't compile otherwise)
{
if (!strcmp(func->name, "random"))
{
func->references++;
if (!PR_CheckToken(")"))
{
e = PR_Expression (TOP_PRIORITY, false);
if (e->type->type != ev_float)
PR_ParseErrorPrintDef (ERR_TYPEMISMATCHPARM, func, "type mismatch on parm %i", 1);
if (!PR_CheckToken(")"))
{
PR_Expect(",");
d = PR_Expression (TOP_PRIORITY, false);
if (d->type->type != ev_float)
PR_ParseErrorPrintDef (ERR_TYPEMISMATCHPARM, func, "type mismatch on parm %i", 2);
PR_Expect(")");
}
else
d = NULL;
}
else
{
e = NULL;
d = NULL;
}
if (def_ret.temp->used)
{
old = PR_GetTemp(def_ret.type);
if (def_ret.type->size == 3)
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_V], &def_ret, old, NULL));
else
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_F], &def_ret, old, NULL));
PR_ParseWarning(WARN_FIXEDRETURNVALUECONFLICT, "Return value conflict - output is inefficient");
}
else
old = NULL;
if (PR_OPCodeValid(&pr_opcodes[OP_RAND0]))
{
if (e)
{
if (d)
PR_SimpleStatement(OP_RAND2, e->ofs, d->ofs, OFS_RETURN, false);
else
PR_SimpleStatement(OP_RAND1, e->ofs, 0, OFS_RETURN, false);
}
else
PR_SimpleStatement(OP_RAND0, 0, 0, OFS_RETURN, false);
}
else
{
if (e)
{
if (d)
{
dstatement_t *st;
def_t *t;
PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false);
if ((!d->constant || !e->constant) && G_FLOAT(d->ofs) >= G_FLOAT(d->ofs))
{
t = PR_Statement(&pr_opcodes[OP_GT], d, e, NULL);
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_IFNOT], t, 0, &st));
st->b = 3;
t = PR_Statement(&pr_opcodes[OP_SUB_F], d, e, NULL);
PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN, false);
PR_FreeTemp(t);
PR_SimpleStatement(OP_ADD_F, OFS_RETURN, e->ofs, OFS_RETURN, false);
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_GOTO], 0, 0, &st));
st->a = 3;
}
t = PR_Statement(&pr_opcodes[OP_SUB_F], e, d, NULL);
PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN, false);
PR_FreeTemp(t);
PR_SimpleStatement(OP_ADD_F, OFS_RETURN, d->ofs, OFS_RETURN, false);
}
else
{
PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false);
PR_SimpleStatement(OP_MUL_F, OFS_RETURN, e->ofs, OFS_RETURN, false);
}
}
else
PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false);
}
if (e)
{
PR_FreeTemp(e);
e->references++;
}
if (d)
{
d->references++;
PR_FreeTemp(d);
}
if (old)
{
d = PR_GetTemp(type_float);
PR_FreeTemp(PR_Statement(pr_opcodes+OP_STORE_F, &def_ret, d, NULL));
if (def_ret.type->size == 3)
PR_FreeTemp(PR_Statement(pr_opcodes+OP_STORE_V, old, &def_ret, NULL));
else
PR_FreeTemp(PR_Statement(pr_opcodes+OP_STORE_F, old, &def_ret, NULL));
PR_FreeTemp(old);
return d;
}
if (def_ret.temp->used)
PR_ParseWarning(0, "Return value conflict - output is likly to be invalid");
def_ret.temp->used = true;
def_ret.type = type_float;
return &def_ret;
}
if (!strcmp(func->name, "randomv"))
{
func->references++;
if (!PR_CheckToken(")"))
{
e = PR_Expression (TOP_PRIORITY, false);
if (e->type->type != ev_vector)
PR_ParseErrorPrintDef (ERR_TYPEMISMATCHPARM, func, "type mismatch on parm %i", 1);
if (!PR_CheckToken(")"))
{
PR_Expect(",");
d = PR_Expression (TOP_PRIORITY, false);
if (d->type->type != ev_vector)
PR_ParseErrorPrintDef (ERR_TYPEMISMATCHPARM, func, "type mismatch on parm %i", 2);
PR_Expect(")");
}
else
d = NULL;
}
else
{
e = NULL;
d = NULL;
}
if (def_ret.temp->used)
{
old = PR_GetTemp(def_ret.type);
if (def_ret.type->size == 3)
PR_Statement(&pr_opcodes[OP_STORE_V], &def_ret, old, NULL);
else
PR_Statement(&pr_opcodes[OP_STORE_F], &def_ret, old, NULL);
PR_ParseWarning(WARN_FIXEDRETURNVALUECONFLICT, "Return value conflict - output is inefficient");
}
else
old = NULL;
if (PR_OPCodeValid(&pr_opcodes[OP_RANDV0]))
{
if (e)
{
if (d)
PR_SimpleStatement(OP_RANDV2, e->ofs, d->ofs, OFS_RETURN, false);
else
PR_SimpleStatement(OP_RANDV1, e->ofs, 0, OFS_RETURN, false);
}
else
PR_SimpleStatement(OP_RANDV0, 0, 0, OFS_RETURN, false);
}
else
{
if (e)
{
if (d)
{
def_t *t;
PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false);
if ((!d->constant || !e->constant) && G_FLOAT(d->ofs) >= G_FLOAT(d->ofs))
{
t = PR_GetTemp(type_float);
PR_SimpleStatement(OP_GT, d->ofs+2, e->ofs+2, t->ofs, false);
PR_SimpleStatement(OP_IFNOT, t->ofs, 3, 0, false);
PR_SimpleStatement(OP_SUB_F, d->ofs+2, e->ofs+2, t->ofs, false);
PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN+2, false);
PR_FreeTemp(t);
PR_SimpleStatement(OP_ADD_F, OFS_RETURN, e->ofs+2, OFS_RETURN+2, false);
PR_SimpleStatement(OP_GOTO, 3, 0, 0, false);
}
t = PR_GetTemp(type_float);
PR_SimpleStatement(OP_SUB_F, d->ofs+2, e->ofs+2, t->ofs, false);
PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN+2, false);
PR_FreeTemp(t);
PR_SimpleStatement(OP_ADD_F, OFS_RETURN, d->ofs+2, OFS_RETURN+2, false);
PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false);
if ((!d->constant || !e->constant) && G_FLOAT(d->ofs) >= G_FLOAT(d->ofs))
{
t = PR_GetTemp(type_float);
PR_SimpleStatement(OP_GT, d->ofs+1, e->ofs+1, t->ofs, false);
PR_SimpleStatement(OP_IFNOT, t->ofs, 3, 0, false);
PR_SimpleStatement(OP_SUB_F, d->ofs+1, e->ofs+1, t->ofs, false);
PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN+1, false);
PR_FreeTemp(t);
PR_SimpleStatement(OP_ADD_F, OFS_RETURN, e->ofs+1, OFS_RETURN+1, false);
PR_SimpleStatement(OP_GOTO, 3, 0, 0, false);
}
t = PR_GetTemp(type_float);
PR_SimpleStatement(OP_SUB_F, d->ofs+1, e->ofs+1, t->ofs, false);
PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN+1, false);
PR_FreeTemp(t);
PR_SimpleStatement(OP_ADD_F, OFS_RETURN, d->ofs+1, OFS_RETURN+1, false);
PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false);
if ((!d->constant || !e->constant) && G_FLOAT(d->ofs) >= G_FLOAT(d->ofs))
{
t = PR_GetTemp(type_float);
PR_SimpleStatement(OP_GT, d->ofs, e->ofs, t->ofs, false);
PR_SimpleStatement(OP_IFNOT, t->ofs, 3, 0, false);
PR_SimpleStatement(OP_SUB_F, d->ofs, e->ofs, t->ofs, false);
PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN, false);
PR_FreeTemp(t);
PR_SimpleStatement(OP_ADD_F, OFS_RETURN, e->ofs, OFS_RETURN, false);
PR_SimpleStatement(OP_GOTO, 3, 0, 0, false);
}
t = PR_GetTemp(type_float);
PR_SimpleStatement(OP_SUB_F, d->ofs, e->ofs, t->ofs, false);
PR_SimpleStatement(OP_MUL_F, OFS_RETURN, t->ofs, OFS_RETURN, false);
PR_FreeTemp(t);
PR_SimpleStatement(OP_ADD_F, OFS_RETURN, d->ofs, OFS_RETURN, false);
}
else
{
PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false);
PR_SimpleStatement(OP_MUL_F, OFS_RETURN, e->ofs, OFS_RETURN+2, false);
PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false);
PR_SimpleStatement(OP_MUL_F, OFS_RETURN, e->ofs, OFS_RETURN+1, false);
PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false);
PR_SimpleStatement(OP_MUL_F, OFS_RETURN, e->ofs, OFS_RETURN, false);
}
}
else
{
PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false);
PR_SimpleStatement(OP_STORE_F, OFS_RETURN, OFS_RETURN+2, 0, false);
PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false);
PR_SimpleStatement(OP_STORE_F, OFS_RETURN, OFS_RETURN+1, 0, false);
PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false);
}
}
if (e)
{
PR_FreeTemp(e);
e->references++;
}
if (d)
{
d->references++;
PR_FreeTemp(d);
}
if (old)
{
d = PR_GetTemp(type_vector);
PR_FreeTemp(PR_Statement(pr_opcodes+OP_STORE_V, &def_ret, d, NULL));
if (def_ret.type->size == 3)
{
PR_Statement(pr_opcodes+OP_STORE_V, old, &def_ret, NULL);
}
else
{
PR_Statement(pr_opcodes+OP_STORE_F, old, &def_ret, NULL);
}
PR_FreeTemp(old);
return d;
}
if (def_ret.temp->used)
PR_ParseWarning(0, "Return value conflict - output is likly to be invalid");
def_ret.temp->used = true;
def_ret.type = type_vector;
return &def_ret;
}
else if (!strcmp(func->name, "spawn"))
{
type_t *rettype;
if (PR_CheckToken(")"))
{
rettype = type_entity;
}
else
{
rettype = TypeForName(PR_ParseName());
if (!rettype || rettype->type != ev_entity)
PR_ParseError(ERR_NOTANAME, "Spawn operator with undefined class");
PR_Expect(")");
}
if (def_ret.temp->used)
PR_ParseWarning(0, "Return value conflict - output is likly to be invalid");
def_ret.temp->used = true;
if (rettype != type_entity)
{
char genfunc[2048];
sprintf(genfunc, "Class*%s", rettype->name);
func = PR_GetDef(type_function, genfunc, NULL, true, 1);
func->references++;
}
PR_SimpleStatement(OP_CALL0, func->ofs, 0, 0, false);
def_ret.type = rettype;
return &def_ret;
}
else if (!strcmp(func->name, "entnum") && !PR_CheckToken(")"))
{
//t = (a/%1) / (nextent(world)/%1)
//a/%1 does a (int)entity to float conversion type thing
e = PR_Expression(TOP_PRIORITY, false);
PR_Expect(")");
e = PR_Statement(&pr_opcodes[OP_DIV_F], e, PR_MakeIntDef(1), (dstatement_t **)0xffffffff);
d = PR_GetDef(NULL, "nextent", NULL, false, 0);
if (!d)
PR_ParseError(0, "the nextent builtin is not defined");
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_F], e, &def_parms[0], (dstatement_t **)0xffffffff));
d = PR_Statement(&pr_opcodes[OP_CALL0], d, NULL, NULL);
d = PR_Statement(&pr_opcodes[OP_DIV_F], d, PR_MakeIntDef(1), (dstatement_t **)0xffffffff);
e = PR_Statement(&pr_opcodes[OP_DIV_F], e, d, (dstatement_t **)0xffffffff);
return e;
}
} //so it's not an intrinsic.
if (opt_precache_file) //should we strip out all precache_file calls?
{
if (!strncmp(func->name,"precache_file", 13))
{
if (pr_token_type == tt_immediate && pr_immediate_type->type == ev_string)
{
optres_precache_file += strlen(pr_immediate_string);
PR_Lex();
PR_Expect(")");
PR_PrecacheFileOptimised (pr_immediate_string, func->name[13]);
def_ret.type = type_void;
return &def_ret;
}
}
}
PR_LockActiveTemps(); //any temps before are likly to be used with the return value.
//any temps referenced to build the parameters don't need to be locked.
// copy the arguments to the global parameter variables
arg = 0;
if (t->type == ev_variant)
{
extraparms = true;
np = 0;
}
else if (t->num_parms < 0)
{
extraparms = true;
np = (t->num_parms * -1) - 1;
}
else
np = t->num_parms;
if (opt_vectorcalls && (t->num_parms == 1 && t->param->type == ev_vector))
{ //if we're using vectorcalls
//if it's a function, takes a vector
//vectorcalls is an evil hack
//it'll make your mod bigger and less efficient.
//however, it'll cut down on numpr_globals, so your mod can become a much greater size.
vec3_t arg;
if (pr_token_type == tt_immediate && pr_immediate_type == type_vector)
{
memcpy(arg, pr_immediate.vector, sizeof(arg));
while(*pr_file_p == ' ' || *pr_file_p == '\t' || *pr_file_p == '\n')
pr_file_p++;
if (*pr_file_p == ')')
{ //woot
def_parms[0].ofs = OFS_PARM0+0;
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_STORE_F], PR_MakeFloatDef(arg[0]), &def_parms[0], (dstatement_t **)0xffffffff));
def_parms[0].ofs = OFS_PARM0+1;
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_STORE_F], PR_MakeFloatDef(arg[1]), &def_parms[0], (dstatement_t **)0xffffffff));
def_parms[0].ofs = OFS_PARM0+2;
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_STORE_F], PR_MakeFloatDef(arg[2]), &def_parms[0], (dstatement_t **)0xffffffff));
def_parms[0].ofs = OFS_PARM0;
PR_Lex();
PR_Expect(")");
}
else
{ //bum
e = PR_Expression (TOP_PRIORITY, false);
if (e->type->type != ev_vector)
{
if (flag_laxcasts)
{
PR_ParseWarning(WARN_LAXCAST, "type mismatch on parm %i - (%s should be %s)", 1, TypeName(e->type), TypeName(type_vector));
PR_ParsePrintDef(WARN_LAXCAST, func);
}
else
PR_ParseErrorPrintDef (ERR_TYPEMISMATCHPARM, func, "type mismatch on parm %i - (%s should be %s)", 1, TypeName(e->type), TypeName(type_vector));
}
PR_Expect(")");
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_STORE_V], e, &def_parms[0], (dstatement_t **)0xffffffff));
}
}
else
{ //bother
e = PR_Expression (TOP_PRIORITY, false);
if (e->type->type != ev_vector)
{
if (flag_laxcasts)
{
PR_ParseWarning(WARN_LAXCAST, "type mismatch on parm %i - (%s should be %s)", 1, TypeName(e->type), TypeName(type_vector));
PR_ParsePrintDef(WARN_LAXCAST, func);
}
else
PR_ParseErrorPrintDef (ERR_TYPEMISMATCHPARM, func, "type mismatch on parm %i - (%s should be %s)", 1, TypeName(e->type), TypeName(type_vector));
}
PR_Expect(")");
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_STORE_V], e, &def_parms[0], (dstatement_t **)0xffffffff));
}
}
else
{
if (!PR_CheckToken(")"))
{
p = t->param;
do
{
if (extraparms && arg >= MAX_PARMS)
PR_ParseErrorPrintDef (ERR_TOOMANYPARAMETERSVARARGS, func, "More than %i parameters on varargs function", MAX_PARMS);
else if (arg >= MAX_PARMS+MAX_PARMS_EXTRA)
PR_ParseErrorPrintDef (ERR_TOOMANYTOTALPARAMETERS, func, "More than %i parameters", MAX_PARMS+MAX_PARMS_EXTRA);
if (!extraparms && arg >= t->num_parms)
{
PR_ParseWarning (WARN_TOOMANYPARAMETERSFORFUNC, "too many parameters");
PR_ParsePrintDef(WARN_TOOMANYPARAMETERSFORFUNC, func);
}
e = PR_Expression (TOP_PRIORITY, false);
if (arg == 0 && func->name)
{
// save information for model and sound caching
if (!strncmp(func->name,"precache_", 9))
{
if (!strncmp(func->name+9,"sound", 5))
PR_PrecacheSound (e, func->name[14]);
else if (!strncmp(func->name+9,"model", 5))
PR_PrecacheModel (e, func->name[14]);
else if (!strncmp(func->name+9,"texture", 7))
PR_PrecacheTexture (e, func->name[16]);
else if (!strncmp(func->name+9,"file", 4))
PR_PrecacheFile (e, func->name[13]);
}
}
if (arg>=MAX_PARMS)
{
if (!extra_parms[arg - MAX_PARMS])
{
d = (def_t *) Qalloc (sizeof(def_t));
d->name = "extra parm";
d->ofs = PR_GetFreeOffsetSpace (3);
extra_parms[arg - MAX_PARMS] = d;
}
d = extra_parms[arg - MAX_PARMS];
}
else
d = &def_parms[arg];
if (pr_classtype && e->type->type == ev_field && p->type != ev_field)
{ //convert.
oself = PR_GetDef(type_entity, "self", NULL, true, 1);
switch(e->type->aux_type->type)
{
case ev_string:
e = PR_Statement(pr_opcodes+OP_LOAD_S, oself, e, NULL);
break;
case ev_integer:
e = PR_Statement(pr_opcodes+OP_LOAD_I, oself, e, NULL);
break;
case ev_float:
e = PR_Statement(pr_opcodes+OP_LOAD_F, oself, e, NULL);
break;
case ev_function:
e = PR_Statement(pr_opcodes+OP_LOAD_FNC, oself, e, NULL);
break;
case ev_vector:
e = PR_Statement(pr_opcodes+OP_LOAD_V, oself, e, NULL);
break;
case ev_entity:
e = PR_Statement(pr_opcodes+OP_LOAD_ENT, oself, e, NULL);
break;
default:
Sys_Error("Bad member type. Try forced expansion");
}
}
if (p)
{
if (typecmp(e->type, p))
/*if (e->type->type != ev_integer && p->type != ev_function)
if (e->type->type != ev_function && p->type != ev_integer)
if ( e->type->type != p->type )*/
{
if (p->type == ev_integer && e->type->type == ev_float) //convert float -> int... is this a constant?
e = PR_Statement(pr_opcodes+OP_CONV_FTOI, e, NULL, NULL);
else if (p->type == ev_float && e->type->type == ev_integer) //convert float -> int... is this a constant?
e = PR_Statement(pr_opcodes+OP_CONV_ITOF, e, NULL, NULL);
else if (p->type == ev_function && e->type->type == ev_integer && e->constant && !((int*)pr_globals)[e->ofs])
{ //you're allowed to use int 0 to pass a null function pointer
//this is basically because __NULL__ is defined as ~0 (int 0)
}
else if (p->type != ev_variant) //can cast to variant whatever happens
{
if (flag_laxcasts || (p->type == ev_function && e->type->type == ev_function))
{
PR_ParseWarning(WARN_LAXCAST, "type mismatch on parm %i - (%s should be %s)", arg+1, TypeName(e->type), TypeName(p));
PR_ParsePrintDef(WARN_LAXCAST, func);
}
else
PR_ParseErrorPrintDef (ERR_TYPEMISMATCHPARM, func, "type mismatch on parm %i - (%s should be %s)", arg+1, TypeName(e->type), TypeName(p));
}
}
d->type = p;
p=p->next;
}
// a vector copy will copy everything
else
d->type = type_void;
if (arg == 1 && !STRCMP(func->name, "setmodel"))
{
PR_SetModel(e);
}
param[arg] = e;
/* if (e->type->size>1)
PR_Statement (&pr_opcodes[OP_STORE_V], e, d, (dstatement_t **)0xffffffff);
else
PR_Statement (&pr_opcodes[OP_STORE_F], e, d, (dstatement_t **)0xffffffff);
*/
arg++;
} while (PR_CheckToken (","));
if (t->num_parms != -1 && arg < np)
PR_ParseWarning (WARN_TOOFEWPARAMS, "too few parameters on call to %s", func->name);
PR_Expect (")");
}
else if (np)
{
PR_ParseWarning (WARN_TOOFEWPARAMS, "%s: Too few parameters", func->name);
PR_ParsePrintDef (WARN_TOOFEWPARAMS, func);
}
// qcc_functioncalled++;
for (i = 0; i < arg; i++)
{
if (i>=MAX_PARMS)
d = extra_parms[i - MAX_PARMS];
else
d = &def_parms[i];
if (callconvention == OP_CALL1H)
if (i < 2)
{
param[i]->references++;
d->references++;
PR_FreeTemp(param[i]);
continue;
}
if (param[i]->type->size>1 || !opt_nonvec_parms)
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_STORE_V], param[i], d, (dstatement_t **)0xffffffff));
else
{
d->type = param[i]->type;
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_STORE_F], param[i], d, (dstatement_t **)0xffffffff));
optres_nonvec_parms++;
}
}
}
if (def_ret.temp->used)
{
old = PR_GetTemp(def_ret.type);
if (def_ret.type->size == 3)
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_V], &def_ret, old, NULL));
else
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_F], &def_ret, old, NULL));
PR_UnFreeTemp(old);
PR_UnFreeTemp(&def_ret);
PR_ParseWarning(WARN_FIXEDRETURNVALUECONFLICT, "Return value conflict - output is inefficient");
}
else
old = NULL;
if (strchr(func->name, ':') && laststatement && statements[laststatement-1].op == OP_LOAD_FNC && statements[laststatement-1].c == func->ofs)
{ //we're entering C++ code with a different self.
//FIXME: problems could occur with hexen2 calling conventions when parm0/1 is 'self'
//thiscall. copy the right ent into 'self' (if it's not the same offset)
d = PR_GetDef(type_entity, "self", NULL, true, 1);
if (statements[laststatement-1].a != d->ofs)
{
oself = PR_GetTemp(type_entity);
PR_SimpleStatement(OP_STORE_ENT, d->ofs, oself->ofs, 0, false);
PR_SimpleStatement(OP_STORE_ENT, statements[laststatement-1].a, d->ofs, 0, false);
if (callconvention == OP_CALL1H) //other.function(self)
//hexenc calling convention would mean that the
//passed parameter is essentually (self=other),
//so pass oself instead which won't be affected
{
def_t *temp;
if (arg>=1 && param[0]->ofs == d->ofs)
{
temp = PR_GetTemp(type_entity);
PR_FreeTemp(PR_Statement(pr_opcodes+OP_STORE_ENT, oself, temp, NULL));
PR_UnFreeTemp(temp);
param[0] = temp;
}
if (arg>=2 && param[1]->ofs == d->ofs)
{
temp = PR_GetTemp(type_entity);
PR_FreeTemp(PR_Statement(pr_opcodes+OP_STORE_ENT, oself, temp, NULL));
PR_UnFreeTemp(temp);
param[1] = temp;
}
}
}
else
{
oself = NULL;
d = NULL;
}
}
else
{
oself = NULL;
d = NULL;
}
if (arg>MAX_PARMS)
PR_FreeTemp(PR_Statement (&pr_opcodes[callconvention-1+MAX_PARMS], func, 0, (dstatement_t **)&st));
else if (arg)
PR_FreeTemp(PR_Statement (&pr_opcodes[callconvention-1+arg], func, 0, (dstatement_t **)&st));
else
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_CALL0], func, 0, (dstatement_t **)&st));
if (callconvention == OP_CALL1H)
{
if (arg)
{
st->b = param[0]->ofs;
// PR_FreeTemp(param[0]);
if (arg>1)
{
st->c = param[1]->ofs;
// PR_FreeTemp(param[1]);
}
}
}
if (oself)
PR_SimpleStatement(OP_STORE_ENT, oself->ofs, d->ofs, 0, false);
for(; arg; arg--)
{
PR_FreeTemp(param[arg-1]);
}
if (old)
{
if (t->type == ev_variant)
{
d = PR_GetTemp(type_variant);
PR_FreeTemp(PR_Statement(pr_opcodes+OP_STORE_F, &def_ret, d, NULL));
}
else
{
d = PR_GetTemp(t->aux_type);
if (t->aux_type->size == 3)
PR_FreeTemp(PR_Statement(pr_opcodes+OP_STORE_V, &def_ret, d, NULL));
else
PR_FreeTemp(PR_Statement(pr_opcodes+OP_STORE_F, &def_ret, d, NULL));
}
if (def_ret.type->size == 3)
PR_FreeTemp(PR_Statement(pr_opcodes+OP_STORE_V, old, &def_ret, NULL));
else
PR_FreeTemp(PR_Statement(pr_opcodes+OP_STORE_F, old, &def_ret, NULL));
PR_FreeTemp(old);
PR_UnFreeTemp(&def_ret);
PR_UnFreeTemp(d);
return d;
}
if (t->type == ev_variant)
def_ret.type = type_variant;
else
def_ret.type = t->aux_type;
if (def_ret.temp->used)
PR_ParseWarning(WARN_FIXEDRETURNVALUECONFLICT, "Return value conflict - output is inefficient");
def_ret.temp->used = true;
return &def_ret;
}
int constchecks;
int varchecks;
int typechecks;
def_t *PR_MakeIntDef(int value)
{
def_t *cn;
// check for a constant with the same value
for (cn=pr.def_head.next ; cn ; cn=cn->next)
{
varchecks++;
if (!cn->initialized)
continue;
if (!cn->constant)
continue;
constchecks++;
if (cn->type != type_integer)
continue;
typechecks++;
if ( G_INT(cn->ofs) == value )
{
return cn;
}
}
// allocate a new one
cn = (void *)Qalloc (sizeof(def_t));
cn->next = NULL;
pr.def_tail->next = cn;
pr.def_tail = cn;
cn->type = type_integer;
cn->name = "IMMEDIATE";
cn->constant = true;
cn->initialized = 1;
cn->scope = NULL; // always share immediates
cn->arraysize = 1;
// copy the immediate to the global area
cn->ofs = PR_GetFreeOffsetSpace (type_size[type_integer->type]);
G_INT(cn->ofs) = value;
return cn;
}
hashtable_t floatconstdefstable;
def_t *PR_MakeFloatDef(float value)
{
def_t *cn;
union {
float f;
int i;
} fi;
fi.f = value;
cn = Hash_GetKey(&floatconstdefstable, fi.i);
if (cn)
return cn;
// allocate a new one
cn = (void *)Qalloc(sizeof(def_t));
cn->next = NULL;
pr.def_tail->next = cn;
pr.def_tail = cn;
cn->type = type_float;
cn->name = "IMMEDIATE";
cn->constant = true;
cn->initialized = 1;
cn->scope = NULL; // always share immediates
cn->arraysize = 1;
// copy the immediate to the global area
cn->ofs = PR_GetFreeOffsetSpace (type_size[type_integer->type]);
Hash_AddKey(&floatconstdefstable, fi.i, cn, Qalloc(sizeof(bucket_t)));
G_FLOAT(cn->ofs) = value;
return cn;
}
hashtable_t stringconstdefstable;
def_t *PR_MakeStringDef(char *value)
{
def_t *cn;
int string;
cn = pHash_Get(&stringconstdefstable, value);
if (cn)
return cn;
// allocate a new one
cn = (void *)Qalloc (sizeof(def_t));
cn->next = NULL;
pr.def_tail->next = cn;
pr.def_tail = cn;
cn->type = type_string;
cn->name = "IMMEDIATE";
cn->constant = true;
cn->initialized = 1;
cn->scope = NULL; // always share immediates
cn->arraysize = 1;
// copy the immediate to the global area
cn->ofs = PR_GetFreeOffsetSpace (type_size[type_integer->type]);
string = PR_CopyString (value);
pHash_Add(&stringconstdefstable, strings+string, cn, Qalloc(sizeof(bucket_t)));
G_INT(cn->ofs) = string;
return cn;
}
type_t *PR_NewType (char *name, int basictype);
type_t *PR_PointerTypeTo(type_t *type)
{
type_t *newtype;
newtype = PR_NewType("POINTER TYPE", ev_pointer);
newtype->aux_type = type;
return newtype;
}
int basictypefield[ev_union+1];
char *basictypenames[] = {
"void",
"string",
"float",
"vector",
"entity",
"field",
"function",
"pointer",
"integer",
"struct",
"union"
};
def_t *PR_MemberInParentClass(char *name, type_t *clas)
{ //if a member exists, return the member field (rather than mapped-to field)
type_t *mt;
def_t *def;
int p, np;
char membername[2048];
if (!clas)
{
def = PR_GetDef(NULL, name, NULL, 0, 0);
if (def && def->type->type == ev_field) //the member existed as a normal entity field.
return def;
return NULL;
}
np = clas->num_parms;
for (p = 0, mt = clas->param; p < np; p++, mt = mt->next)
{
if (strcmp(mt->name, name))
continue;
//the parent has it.
sprintf(membername, "%s::"MEMBERFIELDNAME, clas->name, mt->name);
def = PR_GetDef(NULL, membername, NULL, false, 0);
return def;
}
return PR_MemberInParentClass(name, clas->parentclass);
}
//create fields for the types, instanciate the members to the fields.
//we retouch the parents each time to guarentee polymorphism works.
//FIXME: virtual methods will not work properly. Need to trace down to see if a parent already defined it
void PR_EmitFieldsForMembers(type_t *clas)
{
//we created fields for each class when we defined the actual classes.
//we need to go through each member and match it to the offset of it's parent class, if overloaded, or create a new field if not..
//basictypefield is cleared before we do this
//we emit the parent's fields first (every time), thus ensuring that we don't reuse parent fields on a child class.
char membername[2048];
int p, np, a;
unsigned int o;
type_t *mt, *ft;
def_t *f, *m;
if (clas->parentclass != type_entity) //parents MUST have all thier fields set or inheritance would go crazy.
PR_EmitFieldsForMembers(clas->parentclass);
np = clas->num_parms;
mt = clas->param;
for (p = 0; p < np; p++, mt = mt->next)
{
sprintf(membername, "%s::"MEMBERFIELDNAME, clas->name, mt->name);
m = PR_GetDef(NULL, membername, NULL, false, 0);
f = PR_MemberInParentClass(mt->name, clas->parentclass);
if (f)
{
if (m->arraysize>1)
Sys_Error("FTEQCC does not support overloaded arrays of members");
a=0;
for (o = 0; o < m->type->size; o++)
((int *)pr_globals)[o+a*mt->size+m->ofs] = ((int *)pr_globals)[o+f->ofs];
continue;
}
for (a = 0; a < m->arraysize; a++)
{
//we need the type in here so saved games can still work without saving ints as floats. (would be evil)
ft = PR_NewType(basictypenames[mt->type], ev_field);
ft->aux_type = PR_NewType(basictypenames[mt->type], mt->type);
ft->aux_type->aux_type = type_void;
ft->size = ft->aux_type->size;
ft = PR_FindType(ft);
sprintf(membername, "__f_%s_%i", ft->name, ++basictypefield[mt->type]);
f = PR_GetDef(ft, membername, NULL, true, 1);
for (o = 0; o < m->type->size; o++)
((int *)pr_globals)[o+a*mt->size+m->ofs] = ((int *)pr_globals)[o+f->ofs];
f->references++;
}
}
}
void PR_EmitClassFunctionTable(type_t *clas, type_t *childclas, def_t *ed, def_t **constructor)
{ //go through clas, do the virtual thing only if the child class does not override.
char membername[2048];
type_t *type;
type_t *oc;
int p;
def_t *point, *member;
def_t *virt;
if (clas->parentclass)
PR_EmitClassFunctionTable(clas->parentclass, childclas, ed, constructor);
type = clas->param;
for (p = 0; p < clas->num_parms; p++, type = type->next)
{
for (oc = childclas; oc != clas; oc = oc->parentclass)
{
sprintf(membername, "%s::"MEMBERFIELDNAME, oc->name, type->name);
if (PR_GetDef(NULL, membername, NULL, false, 0))
break; //a child class overrides.
}
if (oc != clas)
continue;
if (type->type == ev_function) //FIXME: inheritance will not install all the member functions.
{
sprintf(membername, "%s::"MEMBERFIELDNAME, clas->name, type->name);
member = PR_GetDef(NULL, membername, NULL, false, 1);
if (!member)
{
PR_Warning(0, NULL, 0, "Member function %s was not defined", membername);
continue;
}
if (!strcmp(type->name, clas->name))
{
*constructor = member;
}
point = PR_Statement(&pr_opcodes[OP_ADDRESS], ed, member, NULL);
sprintf(membername, "%s::%s", clas->name, type->name);
virt = PR_GetDef(type, membername, NULL, false, 1);
PR_Statement(&pr_opcodes[OP_STOREP_FNC], virt, point, NULL);
}
}
}
//take all functions in the type, and parent types, and make sure the links all work properly.
void PR_EmitClassFromFunction(def_t *scope, char *tname)
{
type_t *basetype;
dfunction_t *df;
def_t *virt;
def_t *ed, *oself, *self;
def_t *constructor = NULL;
// int func;
basetype = TypeForName(tname);
if (!basetype)
PR_ParseError(ERR_INTERNAL, "Type %s was not defined...", tname);
pr_scope = NULL;
memset(basictypefield, 0, sizeof(basictypefield));
PR_EmitFieldsForMembers(basetype);
pr_scope = scope;
df = &functions[numfunctions];
numfunctions++;
df->s_file = 0;
df->s_name = 0;
df->first_statement = numstatements;
df->parm_size[0] = 1;
df->numparms = 0;
df->parm_start = numpr_globals;
G_FUNCTION(scope->ofs) = df - functions;
//locals here...
ed = PR_GetDef(type_entity, "ent", pr_scope, true, 1);
virt = PR_GetDef(type_function, "spawn", NULL, false, 0);
if (!virt)
Sys_Error("spawn function was not defined\n");
PR_SimpleStatement(OP_CALL0, virt->ofs, 0, 0, false); //calling convention doesn't come into it.
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_ENT], &def_ret, ed, NULL));
ed->references = 1; //there may be no functions.
PR_EmitClassFunctionTable(basetype, basetype, ed, &constructor);
if (constructor)
{ //self = ent;
self = PR_GetDef(type_entity, "self", NULL, false, 0);
oself = PR_GetDef(type_entity, "oself", scope, true, 1);
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_ENT], self, oself, NULL));
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_ENT], ed, self, NULL)); //return to our old self. boom boom.
PR_SimpleStatement(OP_CALL0, constructor->ofs, 0, 0, false);
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_ENT], oself, self, NULL));
}
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_RETURN], ed, NULL, NULL)); //apparently we do actually have to return something. *sigh*...
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_DONE], NULL, NULL, NULL));
PR_WriteAsmFunction(scope, df->first_statement, df->parm_start);
pr.localvars = NULL;
locals_end = numpr_globals + basetype->size;
df->locals = locals_end - df->parm_start;
}
/*
============
PR_ParseValue
Returns the global ofs for the current token
============
*/
def_t *PR_ParseValue (type_t *assumeclass)
{
def_t *ao=NULL; //arrayoffset
def_t *d, *nd, *od;
char *name;
dstatement_t *st;
int i;
char membername[2048];
// if the token is an immediate, allocate a constant for it
if (pr_token_type == tt_immediate)
return PR_ParseImmediate ();
if (PR_CheckToken("[")) // vector array acess
{
//looks like a funky vector. :)
vec3_t v;
pr_immediate_type = type_vector;
v[0] = pr_immediate._float;
PR_Lex();
v[1] = pr_immediate._float;
PR_Lex();
v[2] = pr_immediate._float;
pr_immediate.vector[0] = v[0];
pr_immediate.vector[1] = v[1];
pr_immediate.vector[2] = v[2];
pr_immediate_type = type_vector;
d = PR_ParseImmediate();
PR_Expect("]");
return d;
}
name = PR_ParseName ();
if (assumeclass && assumeclass->parentclass) // 'testvar' becomes 'self::testvar'
{ //try getting a member.
type_t *type;
type = assumeclass;
d = NULL;
while(type != type_entity && type)
{
sprintf(membername, "%s::"MEMBERFIELDNAME, type->name, name);
od = d = PR_GetDef (NULL, membername, pr_scope, false, 0);
if (d)
break;
type = type->parentclass;
}
if (!d)
od = d = PR_GetDef (NULL, name, pr_scope, false, 0);
}
else
// look through the defs
od = d = PR_GetDef (NULL, name, pr_scope, false, 0);
if (!d)
{
if ( (!strcmp(name, "random" )) ||
(!strcmp(name, "randomv")) ||
(!strcmp(name, "entnum")) ) //intrinsics, any old function with no args will do.
od = d = PR_GetDef (type_function, name, NULL, true, 1);
else if (keyword_class && !strcmp(name, "this"))
{
if (!pr_classtype)
PR_ParseError(ERR_NOTANAME, "Cannot use 'this' outside of an OO function\n");
od = PR_GetDef(NULL, "self", NULL, true, 1);
od = d = PR_DummyDef(pr_classtype, "this", pr_scope, 1, od->ofs, true);
}
else if (keyword_class && !strcmp(name, "super"))
{
if (!pr_classtype)
PR_ParseError(ERR_NOTANAME, "Cannot use 'super' outside of an OO function\n");
od = PR_GetDef(NULL, "self", NULL, true, 1);
od = d = PR_DummyDef(pr_classtype, "super", pr_scope, 1, od->ofs, true);
}
else
{
od = d = PR_GetDef (type_variant, name, pr_scope, true, 1);
if (!d)
PR_ParseError (ERR_UNKNOWNVALUE, "Unknown value \"%s\"", name);
else
{
PR_ParseWarning (ERR_UNKNOWNVALUE, "Unknown value \"%s\".", name);
}
}
}
reloop:
//FIXME: Make this work with double arrays/2nd level structures.
//Should they just jump back to here?
if (PR_CheckToken("["))
{
type_t *newtype;
if (ao)
{
numstatements--; //remove the last statement
nd = PR_Expression (TOP_PRIORITY, true);
PR_Expect("]");
if (d->type->size != 1) //we need to multiply it to find the offset.
{
if (ao->type->type == ev_integer)
nd = PR_Statement(&pr_opcodes[OP_MUL_I], nd, PR_MakeIntDef(d->type->size), NULL); //get add part
else if (ao->type->type == ev_float)
nd = PR_Statement(&pr_opcodes[OP_MUL_F], nd, PR_MakeFloatDef((float)d->type->size), NULL); //get add part
else
{
PR_ParseError(ERR_BADARRAYINDEXTYPE, "Array offset is not of integer or float type");
nd = NULL;
}
}
if (nd->type->type == ao->type->type)
{
if (ao->type->type == ev_integer)
ao = PR_Statement(&pr_opcodes[OP_ADD_I], ao, nd, NULL); //get add part
else if (ao->type->type == ev_float)
ao = PR_Statement(&pr_opcodes[OP_ADD_F], ao, nd, NULL); //get add part
else
{
PR_ParseError(ERR_BADARRAYINDEXTYPE, "Array offset is not of integer or float type");
nd = NULL;
}
}
else
{
if (nd->type->type == ev_float)
nd = PR_Statement (&pr_opcodes[OP_CONV_FTOI], nd, 0, NULL);
ao = PR_Statement(&pr_opcodes[OP_ADD_I], ao, nd, NULL); //get add part
}
newtype = d->type;
d = od;
}
else
{
ao = PR_Expression (TOP_PRIORITY, true);
PR_Expect("]");
if (PR_OPCodeValid(&pr_opcodes[OP_LOADA_F]) && d->type->size != 1) //we need to multiply it to find the offset.
{
if (ao->type->type == ev_integer)
ao = PR_Statement(&pr_opcodes[OP_MUL_I], ao, PR_MakeIntDef(d->type->size), NULL); //get add part
else if (ao->type->type == ev_float)
ao = PR_Statement(&pr_opcodes[OP_MUL_F], ao, PR_MakeFloatDef((float)d->type->size), NULL); //get add part
else
{
nd = NULL;
PR_ParseError(ERR_BADARRAYINDEXTYPE, "Array offset is not of integer or float type");
}
}
newtype = d->type;
}
if (ao->type->type == ev_integer)
{
switch(newtype->type)
{
case ev_float:
nd = PR_Statement(&pr_opcodes[OP_LOADA_F], d, ao, NULL); //get pointer to precise def.
break;
case ev_string:
if (d->arraysize <= 1)
{
nd = PR_Statement(&pr_opcodes[OP_LOADP_C], d, PR_Statement (&pr_opcodes[OP_CONV_ITOF], ao, 0, NULL), NULL); //get pointer to precise def.
newtype = nd->type;//don't be fooled
}
else
{
nd = PR_Statement(&pr_opcodes[OP_LOADA_S], d, ao, NULL); //get pointer to precise def.
}
break;
case ev_vector:
nd = PR_Statement(&pr_opcodes[OP_LOADA_V], d, ao, NULL); //get pointer to precise def.
break;
case ev_entity:
nd = PR_Statement(&pr_opcodes[OP_LOADA_ENT], d, ao, NULL); //get pointer to precise def.
break;
case ev_field:
nd = PR_Statement(&pr_opcodes[OP_LOADA_FLD], d, ao, NULL); //get pointer to precise def.
break;
case ev_function:
nd = PR_Statement(&pr_opcodes[OP_LOADA_FNC], d, ao, NULL); //get pointer to precise def.
nd->type = d->type;
break;
case ev_integer:
nd = PR_Statement(&pr_opcodes[OP_LOADA_I], d, ao, NULL); //get pointer to precise def.
break;
case ev_struct:
nd = PR_Statement(&pr_opcodes[OP_LOADA_I], d, ao, NULL); //get pointer to precise def.
nd->type = d->type;
break;
default:
PR_ParseError(ERR_NOVALIDOPCODES, "No op available. Try assembler");
nd = NULL;
break;
}
d=nd;
}
else if (ao->type->type == ev_float)
{
if (targetformat == QCF_HEXEN2)
{ //hexen2 style retrieval, mixed with q1 style assignments...
if (PR_CheckToken("=")) //(hideous concept)
{
dstatement_t *st;
def_t *funcretr;
if (d->scope)
PR_ParseError(0, "Scoped array without specific engine support");
if (def_ret.temp->used && ao != &def_ret)
PR_ParseWarning(0, "RETURN VALUE ALREADY IN USE");
funcretr = PR_GetDef(type_function, va("ArraySet*%s", d->name), NULL, true, 1);
nd = PR_Expression(TOP_PRIORITY, true);
if (nd->type->type != d->type->type)
PR_ParseErrorPrintDef(ERR_TYPEMISMATCH, d, "Type Mismatch on array assignment");
PR_Statement (&pr_opcodes[OP_CALL2H], funcretr, 0, &st);
st->a = ao->ofs;
st->b = nd->ofs;
PR_FreeTemp(ao);
PR_FreeTemp(nd);
qcc_usefulstatement = true;
nd = &def_ret;
d=nd;
d->type = newtype;
return d;
}
switch(newtype->type)
{
case ev_float:
nd = PR_Statement(&pr_opcodes[OP_FETCH_GBL_F], d, ao, &st); //get pointer to precise def.
st->a = d->ofs;
break;
case ev_vector:
nd = PR_Statement(&pr_opcodes[OP_FETCH_GBL_V], d, ao, &st); //get pointer to precise def.
st->a = d->ofs;
break;
case ev_string:
nd = PR_Statement(&pr_opcodes[OP_FETCH_GBL_S], d, ao, &st); //get pointer to precise def.
st->a = d->ofs;
break;
case ev_entity:
nd = PR_Statement(&pr_opcodes[OP_FETCH_GBL_E], d, ao, &st); //get pointer to precise def.
st->a = d->ofs;
break;
case ev_function:
nd = PR_Statement(&pr_opcodes[OP_FETCH_GBL_FNC], d, ao, &st); //get pointer to precise def.
st->a = d->ofs;
break;
default:
PR_ParseError(ERR_NOVALIDOPCODES, "No op available. Try assembler");
nd = NULL;
break;
}
PR_FreeTemp(d);
PR_FreeTemp(ao);
d=nd;
d->type = newtype;
return d;
}
else
{
if (!PR_OPCodeValid(&pr_opcodes[OP_LOADA_F])) //q1 compatable.
{ //you didn't see this, okay?
def_t *funcretr;
if (d->scope)
PR_ParseError(0, "Scoped array without specific engine support");
if (def_ret.temp->used && ao != &def_ret)
PR_ParseWarning(0, "RETURN VALUE ALREADY IN USE");
if (PR_CheckToken("="))
{
funcretr = PR_GetDef(type_function, va("ArraySet*%s", d->name), NULL, true, 1);
nd = PR_Expression(TOP_PRIORITY, true);
if (nd->type->type != d->type->type)
PR_ParseErrorPrintDef(ERR_TYPEMISMATCH, d, "Type Mismatch on array assignment");
def_parms[0].type = type_float;
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_STORE_F], ao, &def_parms[0], NULL));
def_parms[1].type = nd->type;
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_STORE_V], nd, &def_parms[1], NULL));
PR_Statement (&pr_opcodes[OP_CALL2], funcretr, 0, NULL);
qcc_usefulstatement = true;
}
else
{
def_parms[0].type = type_float;
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_STORE_F], ao, &def_parms[0], NULL));
funcretr = PR_GetDef(type_function, va("ArrayGet*%s", d->name), NULL, true, 1);
PR_Statement (&pr_opcodes[OP_CALL1], funcretr, 0, NULL);
}
nd = &def_ret;
d=nd;
d->type = newtype;
return d;
}
else
{
switch(newtype->type)
{
case ev_pointer:
if (d->arraysize>1) //use the array
{
nd = PR_Statement(&pr_opcodes[OP_LOADA_I], d, PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def.
nd->type = d->type->aux_type;
}
else
{ //dereference the pointer.
switch(newtype->aux_type->type)
{
case ev_pointer:
nd = PR_Statement(&pr_opcodes[OP_LOADP_I], d, PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def.
nd->type = d->type->aux_type;
break;
case ev_float:
nd = PR_Statement(&pr_opcodes[OP_LOADP_F], d, PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def.
nd->type = d->type->aux_type;
break;
case ev_integer:
nd = PR_Statement(&pr_opcodes[OP_LOADP_I], d, PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def.
nd->type = d->type->aux_type;
break;
default:
PR_ParseError(ERR_NOVALIDOPCODES, "No op available. Try assembler");
nd = NULL;
break;
}
}
break;
case ev_float:
nd = PR_Statement(&pr_opcodes[OP_LOADA_F], d, PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def.
break;
case ev_string:
if (d->arraysize <= 1)
{
nd = PR_Statement(&pr_opcodes[OP_LOADP_C], d, ao, NULL); //get pointer to precise def.
newtype = nd->type;//don't be fooled
}
else
nd = PR_Statement(&pr_opcodes[OP_LOADA_S], d, PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def.
break;
case ev_vector:
nd = PR_Statement(&pr_opcodes[OP_LOADA_V], d, PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def.
break;
case ev_entity:
nd = PR_Statement(&pr_opcodes[OP_LOADA_ENT], d, PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def.
break;
case ev_field:
nd = PR_Statement(&pr_opcodes[OP_LOADA_FLD], d, PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def.
break;
case ev_function:
nd = PR_Statement(&pr_opcodes[OP_LOADA_FNC], d, PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def.
nd->type = d->type;
break;
case ev_integer:
nd = PR_Statement(&pr_opcodes[OP_LOADA_I], d, PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def.
break;
case ev_struct:
nd = PR_Statement(&pr_opcodes[OP_LOADA_I], d, PR_Statement (&pr_opcodes[OP_CONV_FTOI], ao, 0, NULL), NULL); //get pointer to precise def.
nd->type = d->type;
break;
default:
PR_ParseError(ERR_NOVALIDOPCODES, "No op available. Try assembler");
nd = NULL;
break;
}
}
}
d=nd;
}
else
PR_ParseError(ERR_BADARRAYINDEXTYPE, "Array offset is not of integer or float type");
d->type = newtype;
goto reloop;
}
i = d->type->type;
if (i == ev_pointer)
{
int j;
type_t *type;
if (PR_CheckToken(".") || PR_CheckToken("->"))
{
for (i = d->type->num_parms, type = d->type+1; i; i--, type++)
{
if (PR_CheckName(type->name))
{
//give result
if (ao)
{
numstatements--; //remove the last statement
d = od;
nd = PR_MakeIntDef(type->ofs);
ao = PR_Statement(&pr_opcodes[OP_ADD_I], ao, nd, NULL); //get add part
//so that we may offset it and readd it.
}
else
ao = PR_MakeIntDef(type->ofs);
switch (type->type)
{
case ev_float:
nd = PR_Statement(&pr_opcodes[OP_LOADP_F], d, ao, NULL); //get pointer to precise def.
break;
case ev_string:
nd = PR_Statement(&pr_opcodes[OP_LOADP_S], d, ao, NULL); //get pointer to precise def.
break;
case ev_vector:
nd = PR_Statement(&pr_opcodes[OP_LOADP_V], d, ao, NULL); //get pointer to precise def.
break;
case ev_entity:
nd = PR_Statement(&pr_opcodes[OP_LOADP_ENT], d, ao, NULL); //get pointer to precise def.
break;
case ev_field:
nd = PR_Statement(&pr_opcodes[OP_LOADP_FLD], d, ao, NULL); //get pointer to precise def.
break;
case ev_function:
nd = PR_Statement(&pr_opcodes[OP_LOADP_FNC], d, ao, NULL); //get pointer to precise def.
nd->type = type;
break;
case ev_integer:
nd = PR_Statement(&pr_opcodes[OP_LOADP_I], d, ao, NULL); //get pointer to precise def.
break;
// case ev_struct:
//no suitable op.
// nd = PR_Statement(&pr_opcodes[OP_LOADP_I], d, ao, NULL); //get pointer to precise def.
// nd->type = type;
// break;
default:
PR_ParseError(ERR_NOVALIDOPCODES, "No op available. Try assembler");
nd = NULL;
break;
}
d=nd;
break;
}
if (type->num_parms)
{
for (j = type->num_parms; j;j--)
type++;
}
}
if (!i)
PR_ParseError (ERR_MEMBERNOTVALID, "\"%s\" is not a member of \"%s\"", pr_token, od->type->name);
goto reloop;
}
}
else if (i == ev_struct || i == ev_union)
{
int j;
type_t *type;
if (PR_CheckToken(".") || PR_CheckToken("->"))
{
for (i = d->type->num_parms, type = d->type+1; i; i--, type++)
{
if (PR_CheckName(type->name))
{
//give result
if (ao)
{
numstatements--; //remove the last statement
d = od;
nd = PR_MakeIntDef(type->ofs);
ao = PR_Statement(&pr_opcodes[OP_ADD_I], ao, nd, NULL); //get add part
//so that we may offset it and readd it.
}
else
ao = PR_MakeIntDef(type->ofs);
switch (type->type)
{
case ev_float:
nd = PR_Statement(&pr_opcodes[OP_LOADA_F], d, ao, NULL); //get pointer to precise def.
break;
case ev_string:
nd = PR_Statement(&pr_opcodes[OP_LOADA_S], d, ao, NULL); //get pointer to precise def.
break;
case ev_vector:
nd = PR_Statement(&pr_opcodes[OP_LOADA_V], d, ao, NULL); //get pointer to precise def.
break;
case ev_entity:
nd = PR_Statement(&pr_opcodes[OP_LOADA_ENT], d, ao, NULL); //get pointer to precise def.
break;
case ev_field:
nd = PR_Statement(&pr_opcodes[OP_LOADA_FLD], d, ao, NULL); //get pointer to precise def.
break;
case ev_function:
nd = PR_Statement(&pr_opcodes[OP_LOADA_FNC], d, ao, NULL); //get pointer to precise def.
nd->type = type;
break;
case ev_integer:
nd = PR_Statement(&pr_opcodes[OP_LOADA_I], d, ao, NULL); //get pointer to precise def.
break;
// case ev_struct:
//no suitable op.
// nd = PR_Statement(&pr_opcodes[OP_LOADA_I], d, ao, NULL); //get pointer to precise def.
// nd->type = type;
// break;
default:
PR_ParseError(ERR_NOVALIDOPCODES, "No op available. Try assembler");
nd = NULL;
break;
}
d=nd;
break;
}
if (type->num_parms)
{
for (j = type->num_parms; j;j--)
type++;
}
}
if (!i)
PR_ParseError (ERR_MEMBERNOTVALID, "\"%s\" is not a member of \"%s\"", pr_token, od->type->name);
goto reloop;
}
}
/* if (d->type->type == ev_pointer)
{ //expand now, not in function call/maths parsing
switch(d->type->aux_type->type)
{
case ev_string:
d = PR_Statement(&pr_opcodes[OP_LOADP_S], d, NULL, NULL);
break;
case ev_float:
d = PR_Statement(&pr_opcodes[OP_LOADP_F], d, NULL, NULL);
break;
}
}
*/
if (!keyword_class)
return d;
if (d->type->parentclass||d->type->type == ev_entity) //class
{
if (PR_CheckToken(".") || PR_CheckToken("->"))
{
def_t *field;
if (PR_CheckToken("("))
{
field = PR_Expression(TOP_PRIORITY, true);
PR_Expect(")");
}
else
field = PR_ParseValue(d->type);
if (field->type->type == ev_field)
{
if (!field->type->aux_type)
{
PR_ParseWarning(ERR_INTERNAL, "Field with null aux_type");
return PR_Statement(&pr_opcodes[OP_LOAD_FLD], d, field, NULL);
}
else
{
switch(field->type->aux_type->type)
{
default:
PR_ParseError(ERR_INTERNAL, "Bad field type");
return d;
case ev_integer:
return PR_Statement(&pr_opcodes[OP_LOAD_I], d, field, NULL);
case ev_field:
d = PR_Statement(&pr_opcodes[OP_LOAD_FLD], d, field, NULL);
nd = (void *)Qalloc (sizeof(def_t));
memset (nd, 0, sizeof(def_t));
nd->type = field->type->aux_type;
nd->ofs = d->ofs;
nd->temp = d->temp;
nd->constant = false;
nd->name = d->name;
return nd;
case ev_float:
return PR_Statement(&pr_opcodes[OP_LOAD_F], d, field, NULL);
case ev_string:
return PR_Statement(&pr_opcodes[OP_LOAD_S], d, field, NULL);
case ev_vector:
return PR_Statement(&pr_opcodes[OP_LOAD_V], d, field, NULL);
case ev_function:
{ //complicated for a typecast
d = PR_Statement(&pr_opcodes[OP_LOAD_FNC], d, field, NULL);
nd = (void *)Qalloc (sizeof(def_t));
memset (nd, 0, sizeof(def_t));
nd->type = field->type->aux_type;
nd->ofs = d->ofs;
nd->temp = d->temp;
nd->constant = false;
nd->name = d->name;
return nd;
}
case ev_entity:
return PR_Statement(&pr_opcodes[OP_LOAD_ENT], d, field, NULL);
}
}
}
else
PR_IncludeChunk(".", false, NULL);
}
}
return d;
}
/*
============
PR_Term
============
*/
def_t *PR_Term (void)
{
def_t *e, *e2;
etype_t t;
if (pr_token_type == tt_punct) //a little extra speed...
{
if (PR_CheckToken("++"))
{
qcc_usefulstatement=true;
e = PR_Term ();
if (e->constant)
PR_ParseWarning(WARN_ASSIGNMENTTOCONSTANT, "Assignment to constant %s", e->name);
if (e->temp)
PR_ParseWarning(WARN_ASSIGNMENTTOCONSTANT, "Hey! That's a temp! ++ operators cannot work on temps!");
switch (e->type->type)
{
case ev_integer:
PR_Statement3(&pr_opcodes[OP_ADD_I], e, PR_MakeIntDef(1), e, false);
break;
case ev_float:
PR_Statement3(&pr_opcodes[OP_ADD_F], e, PR_MakeFloatDef(1), e, false);
break;
default:
PR_ParseError(ERR_BADPLUSPLUSOPERATOR, "++ operator on unsupported type");
break;
}
return e;
}
else if (PR_CheckToken("--"))
{
qcc_usefulstatement=true;
e = PR_Term ();
if (e->constant)
PR_ParseWarning(WARN_ASSIGNMENTTOCONSTANT, "Assignment to constant %s", e->name);
if (e->temp)
PR_ParseWarning(WARN_ASSIGNMENTTOCONSTANT, "Hey! That's a temp! -- operators cannot work on temps!");
switch (e->type->type)
{
case ev_integer:
PR_Statement3(&pr_opcodes[OP_SUB_I], e, PR_MakeIntDef(1), e, false);
break;
case ev_float:
PR_Statement3(&pr_opcodes[OP_SUB_F], e, PR_MakeFloatDef(1), e, false);
break;
default:
PR_ParseError(ERR_BADPLUSPLUSOPERATOR, "-- operator on unsupported type");
break;
}
return e;
}
if (PR_CheckToken ("!"))
{
e = PR_Expression (NOT_PRIORITY, false);
t = e->type->type;
if (t == ev_float)
e2 = PR_Statement (&pr_opcodes[OP_NOT_F], e, 0, NULL);
else if (t == ev_string)
e2 = PR_Statement (&pr_opcodes[OP_NOT_S], e, 0, NULL);
else if (t == ev_entity)
e2 = PR_Statement (&pr_opcodes[OP_NOT_ENT], e, 0, NULL);
else if (t == ev_vector)
e2 = PR_Statement (&pr_opcodes[OP_NOT_V], e, 0, NULL);
else if (t == ev_function)
e2 = PR_Statement (&pr_opcodes[OP_NOT_FNC], e, 0, NULL);
else if (t == ev_integer)
e2 = PR_Statement (&pr_opcodes[OP_NOT_FNC], e, 0, NULL); //functions are integer values too.
else if (t == ev_pointer)
e2 = PR_Statement (&pr_opcodes[OP_NOT_FNC], e, 0, NULL); //Pointers are too.
else
{
e2 = NULL; // shut up compiler warning;
PR_ParseError (ERR_BADNOTTYPE, "type mismatch for !");
}
return e2;
}
else if (PR_CheckToken ("&"))
{
int st = numstatements;
e = PR_Expression (NOT_PRIORITY, false);
t = e->type->type;
if (st != numstatements)
//woo, something like ent.field?
{
if ((unsigned)(statements[numstatements-1].op - OP_LOAD_F) < 6 || statements[numstatements-1].op == OP_LOAD_I || statements[numstatements-1].op == OP_LOAD_P)
{
statements[numstatements-1].op = OP_ADDRESS;
PR_ParseWarning(0, "debug: &ent.field");
e->type = PR_PointerType(e->type);
return e;
}
else //this is a restriction that could be lifted, I just want to make sure that I got all the bits first.
{
PR_ParseError (ERR_BADNOTTYPE, "type mismatch for '&' Must be singular expression or field reference");
return e;
}
}
// PR_ParseWarning(0, "debug: &global");
if (!PR_OPCodeValid(&pr_opcodes[OP_GLOBALADDRESS]))
PR_ParseError (ERR_BADEXTENSION, "Cannot use addressof operator ('&') on a global. Please use the FTE target.");
e2 = PR_Statement (&pr_opcodes[OP_GLOBALADDRESS], e, 0, NULL);
e2->type = PR_PointerType(e->type);
return e2;
}
else if (PR_CheckToken ("*"))
{
e = PR_Expression (NOT_PRIORITY, false);
t = e->type->type;
if (t != ev_pointer)
PR_ParseError (ERR_BADNOTTYPE, "type mismatch for *");
switch(e->type->aux_type->type)
{
case ev_float:
e2 = PR_Statement (&pr_opcodes[OP_LOADP_F], e, 0, NULL);
break;
case ev_string:
e2 = PR_Statement (&pr_opcodes[OP_LOADP_S], e, 0, NULL);
break;
case ev_vector:
e2 = PR_Statement (&pr_opcodes[OP_LOADP_V], e, 0, NULL);
break;
case ev_entity:
e2 = PR_Statement (&pr_opcodes[OP_LOADP_ENT], e, 0, NULL);
break;
case ev_field:
e2 = PR_Statement (&pr_opcodes[OP_LOADP_FLD], e, 0, NULL);
break;
case ev_function:
e2 = PR_Statement (&pr_opcodes[OP_LOADP_FLD], e, 0, NULL);
break;
case ev_integer:
e2 = PR_Statement (&pr_opcodes[OP_LOADP_I], e, 0, NULL);
break;
case ev_pointer:
e2 = PR_Statement (&pr_opcodes[OP_LOADP_I], e, 0, NULL);
break;
default:
PR_ParseError (ERR_BADNOTTYPE, "type mismatch for * (unrecognised type)");
e2 = NULL;
break;
}
e2->type = e->type->aux_type;
return e2;
}
else if (PR_CheckToken ("-"))
{
e = PR_Expression (NOT_PRIORITY, false);
switch(e->type->type)
{
case ev_float:
e2 = PR_Statement (&pr_opcodes[OP_SUB_F], PR_MakeFloatDef(0), e, NULL);
break;
case ev_integer:
e2 = PR_Statement (&pr_opcodes[OP_SUB_I], PR_MakeIntDef(0), e, NULL);
break;
default:
PR_ParseError (ERR_BADNOTTYPE, "type mismatch for -");
e2 = NULL;
break;
}
return e2;
}
else if (PR_CheckToken ("+"))
{
e = PR_Expression (NOT_PRIORITY, false);
switch(e->type->type)
{
case ev_float:
e2 = PR_Statement (&pr_opcodes[OP_ADD_F], PR_MakeFloatDef(0), e, NULL);
break;
case ev_integer:
e2 = PR_Statement (&pr_opcodes[OP_ADD_I], PR_MakeIntDef(0), e, NULL);
break;
default:
PR_ParseError (ERR_BADNOTTYPE, "type mismatch for +");
e2 = NULL;
break;
}
return e2;
}
if (PR_CheckToken ("("))
{
if (keyword_float && PR_CheckToken("float")) //check for type casts
{
PR_Expect (")");
e = PR_Term();
if (e->type->type == ev_float)
return e;
else if (e->type->type == ev_integer)
return PR_Statement (&pr_opcodes[OP_CONV_ITOF], e, 0, NULL);
else if (e->type->type == ev_function)
return e;
// else
// PR_ParseError ("invalid typecast");
PR_ParseWarning (0, "Not all vars make sence as floats");
e2 = (void *)Qalloc (sizeof(def_t));
memset (e2, 0, sizeof(def_t));
e2->type = type_float;
e2->ofs = e->ofs;
e2->constant = true;
e2->temp = e->temp;
return e2;
}
else if (PR_CheckKeyword(keyword_class, "class"))
{
type_t *classtype = TypeForName(PR_ParseName());
if (!classtype)
PR_ParseError(ERR_NOTANAME, "Class not defined for cast");
PR_Expect (")");
e = PR_Term();
e2 = (void *)Qalloc (sizeof(def_t));
memset (e2, 0, sizeof(def_t));
e2->type = classtype;
e2->ofs = e->ofs;
e2->constant = true;
e2->temp = e->temp;
return e2;
}
else if (PR_CheckKeyword(keyword_integer, "integer")) //check for type casts
{
PR_Expect (")");
e = PR_Term();
if (e->type->type == ev_integer)
return e;
else if (e->type->type == ev_float)
return PR_Statement (&pr_opcodes[OP_CONV_FTOI], e, 0, NULL);
else
PR_ParseError (ERR_BADTYPECAST, "invalid typecast");
}
else if (PR_CheckKeyword(keyword_int, "int")) //check for type casts
{
PR_Expect (")");
e = PR_Term();
if (e->type->type == ev_integer)
return e;
else if (e->type->type == ev_float)
return PR_Statement (&pr_opcodes[OP_CONV_FTOI], e, 0, NULL);
else
PR_ParseError (ERR_BADTYPECAST, "invalid typecast");
}
else
{
bool oldcond = conditional;
conditional = conditional?2:0;
e = PR_Expression (TOP_PRIORITY, false);
PR_Expect (")");
conditional = oldcond;
}
return e;
}
}
return PR_ParseValue (pr_classtype);
}
int PR_canConv(def_t *from, etype_t to)
{
if (from->type->type == to)
return 0;
if (from->type->type == ev_vector && to == ev_float)
return 4;
if (pr_classtype)
{
if (from->type->type == ev_field)
{
if (from->type->aux_type->type == to)
return 1;
}
}
/* if (from->type->type == ev_pointer && from->type->aux_type->type == to)
return 1;
if (PR_ShouldConvert(from, to)>=0)
return 1;
*/
if (from->type->type == ev_integer && to == ev_function)
return 1;
return -100;
}
/*
==============
PR_Expression
==============
*/
def_t *PR_Expression (int priority, bool allowcomma)
{
dstatement_t *st;
opcode_t *op, *oldop;
opcode_t *bestop;
int numconversions, c;
int opnum;
def_t *e, *e2;
etype_t type_a, type_b, type_c;
if (priority == 0)
return PR_Term ();
e = PR_Expression (priority-1, allowcomma);
while (1)
{
if (priority == 1)
{
if (PR_CheckToken ("(") )
{
qcc_usefulstatement=true;
return PR_ParseFunctionCall (e);
}
if (PR_CheckToken ("?"))
{
dstatement_t *fromj, *elsej;
PR_Statement(&pr_opcodes[OP_IFNOT], e, NULL, &fromj);
e = PR_Expression(TOP_PRIORITY, true);
e2 = PR_GetTemp(e->type);
PR_Statement(&pr_opcodes[(e2->type->size>=3)?OP_STORE_V:OP_STORE_F], e, e2, NULL);
PR_Expect(":");
PR_Statement(&pr_opcodes[OP_GOTO], NULL, NULL, &elsej);
fromj->b = &statements[numstatements] - fromj;
e = PR_Expression(TOP_PRIORITY, true);
if (typecmp(e->type, e2->type) != 0)
PR_ParseError(0, "Ternary operator with mismatching types\n");
PR_Statement(&pr_opcodes[(e2->type->size>=3)?OP_STORE_V:OP_STORE_F], e, e2, NULL);
elsej->a = &statements[numstatements] - elsej;
return e2;
}
if (allowcomma && PR_CheckToken (","))
{
PR_FreeTemp(e);
return PR_Expression(TOP_PRIORITY, true);
}
}
opnum=0;
if (pr_token_type == tt_immediate)
{
if (pr_immediate_type->type == ev_float)
if (pr_immediate._float < 0) //hehehe... was a minus all along...
{
PR_IncludeChunk(pr_token, true, NULL);
strcpy(pr_token, "+");//two negatives would make a positive.
pr_token_type = tt_punct;
}
}
if (pr_token_type != tt_punct)
{
PR_ParseWarning(WARN_UNEXPECTEDPUNCT, "Expected punctuation");
}
//go straight for the correct priority.
for (op = opcodeprioritized[priority][opnum]; op; op = opcodeprioritized[priority][++opnum])
// for (op=pr_opcodes ; op->name ; op++)
{
// if (op->priority != priority)
// continue;
if (!PR_CheckToken (op->name))
continue;
st = NULL;
if ( op->associative!=ASSOC_LEFT )
{
// if last statement is an indirect, change it to an address of
if (!simplestore && ((unsigned)(statements[numstatements-1].op - OP_LOAD_F) < 6 || statements[numstatements-1].op == OP_LOAD_I || statements[numstatements-1].op == OP_LOAD_P) && statements[numstatements-1].c == e->ofs)
{
qcc_usefulstatement=true;
statements[numstatements-1].op = OP_ADDRESS;
type_pointer->aux_type->type = e->type->type;
e->type = type_pointer;
}
//if last statement retrieved a value, switch it to retrieve a usable pointer.
if ( !simplestore && (unsigned)(statements[numstatements-1].op - OP_LOADA_F) < 7)// || statements[numstatements-1].op == OP_LOADA_C)
{
statements[numstatements-1].op = OP_GLOBALADDRESS;
type_pointer->aux_type->type = e->type->type;
e->type = type_pointer;
}
if ( !simplestore && (unsigned)(statements[numstatements-1].op - OP_LOADP_F) < 7)
{
statements[numstatements-1].op = OP_ADD_I;
}
if ( !simplestore && statements[numstatements-1].op == OP_LOADP_C && e->ofs == statements[numstatements-1].c)
{
statements[numstatements-1].op = OP_ADD_SF;
e->type = type_string;
//now we want to make sure that string = float can't work without it being a dereferenced pointer. (we don't want to allow storep_c without dereferece)
e2 = PR_Expression (priority, allowcomma);
if (e2->type->type == ev_float)
op = &pr_opcodes[OP_STOREP_C];
}
else
e2 = PR_Expression (priority, allowcomma);
}
else
{
if (op->priority == 7 && opt_logicops)
{
optres_logicops++;
st = &statements[numstatements];
if (*op->name == '&') //statement 3 because we don't want to optimise this into if from not ifnot
PR_Statement3(&pr_opcodes[OP_IFNOT], e, NULL, NULL, false);
else
PR_Statement3(&pr_opcodes[OP_IF], e, NULL, NULL, false);
}
e2 = PR_Expression (priority-1, allowcomma);
}
// type check
type_a = e->type->type;
type_b = e2->type->type;
// if (type_a == ev_pointer && type_b == ev_pointer)
// PR_ParseWarning(0, "Debug: pointer op pointer");
if (op->name[0] == '.')// field access gets type from field
{
if (e2->type->aux_type)
type_c = e2->type->aux_type->type;
else
type_c = -1; // not a field
}
else
type_c = ev_void;
oldop = op;
bestop = NULL;
numconversions = 32767;
while (op)
{
if (!(type_c != ev_void && type_c != (*op->type_c)->type))
{
if (!STRCMP (op->name , oldop->name)) //matches
{
//return values are never converted - what to?
// if (type_c != ev_void && type_c != op->type_c->type->type)
// {
// op++;
// continue;
// }
if (op->associative!=ASSOC_LEFT)
{//assignment
if (op->type_a == &type_pointer) //ent var
{
if (e->type->type != ev_pointer)
c = -200; //don't cast to a pointer.
else if ((*op->type_c)->type == ev_void && op->type_b == &type_pointer && e2->type->type == ev_pointer)
c = 0; //generic pointer... fixme: is this safe? make sure both sides are equivelent
else if (e->type->aux_type->type != (*op->type_b)->type) //if e isn't a pointer to a type_b
c = -200; //don't let the conversion work
else
c = PR_canConv(e2, (*op->type_c)->type);
}
else
{
c=PR_canConv(e2, (*op->type_b)->type);
if (type_a != (*op->type_a)->type) //in this case, a is the final assigned value
c = -300; //don't use this op, as we must not change var b's type
}
}
else
{
if (op->type_a == &type_pointer) //ent var
{
if (e2->type->type != ev_pointer || e2->type->aux_type->type != (*op->type_b)->type) //if e isn't a pointer to a type_b
c = -200; //don't let the conversion work
else
c = 0;
}
else
{
c=PR_canConv(e, (*op->type_a)->type);
c+=PR_canConv(e2, (*op->type_b)->type);
}
}
if (c>=0 && c < numconversions)
{
bestop = op;
numconversions=c;
if (c == 0)//can't get less conversions than 0...
break;
}
}
else
break;
}
op = opcodeprioritized[priority][++opnum];
}
if (bestop == NULL)
{
if (oldop->priority == CONDITION_PRIORITY)
op = oldop;
else
{
if (flag_laxcasts)
{
op = oldop;
PR_ParseWarning(WARN_LAXCAST, "type mismatch for %s (%s and %s)", oldop->name, e->type->name, e2->type->name);
}
else
PR_ParseError (ERR_TYPEMISMATCH, "type mismatch for %s (%s and %s)", oldop->name, e->type->name, e2->type->name);
}
}
else
{
if (numconversions>3)
PR_ParseWarning(WARN_IMPLICITCONVERSION, "Implicit conversion");
op = bestop;
}
// if (type_a == ev_pointer && type_b != e->type->aux_type->type)
// PR_ParseError ("type mismatch for %s", op->name);
if (st)
st->b = &statements[numstatements] - st;
if (op->associative!=ASSOC_LEFT)
{
qcc_usefulstatement = true;
if (e->constant || e->ofs < OFS_PARM0)
{
if (e->type->type == ev_function)
{
PR_ParseWarning(WARN_ASSIGNMENTTOCONSTANTFUNC, "Assignment to function %s", e->name);
PR_ParsePrintDef(WARN_ASSIGNMENTTOCONSTANTFUNC, e);
}
else
{
PR_ParseWarning(WARN_ASSIGNMENTTOCONSTANT, "Assignment to constant %s", e->name);
PR_ParsePrintDef(WARN_ASSIGNMENTTOCONSTANT, e);
}
}
if (conditional&1)
PR_ParseWarning(WARN_ASSIGNMENTINCONDITIONAL, "Assignment in conditional");
e = PR_Statement (op, e2, e, NULL);
}
else
e = PR_Statement (op, e, e2, NULL);
if (type_c != ev_void/* && type_c != ev_string*/) // field access gets type from field
e->type = e2->type->aux_type;
break;
}
if (!op)
{
if (e == NULL)
PR_ParseError(ERR_INTERNAL, "e == null");
if (!STRCMP(pr_token, "++"))
{
//if the last statement was an ent.float (or something)
if (((unsigned)(statements[numstatements-1].op - OP_LOAD_F) < 6 || statements[numstatements-1].op == OP_LOAD_I) && statements[numstatements-1].c == e->ofs)
{ //we have our load.
def_t *e3;
//the only inefficiency here is with an extra temp (we can't reuse the original)
//this is not a problem, as the optimise temps or locals marshalling can clean these up for us
qcc_usefulstatement=true;
//load
//add to temp
//store temp to offset
//return original loaded (which is not at the same offset as the pointer we store to)
e2 = PR_GetTemp(type_float);
e3 = PR_GetTemp(type_pointer);
PR_SimpleStatement(OP_ADDRESS, statements[numstatements-1].a, statements[numstatements-1].b, e3->ofs, false);
if (e->type->type == ev_float)
{
PR_Statement3(&pr_opcodes[OP_ADD_F], e, PR_MakeFloatDef(1), e2, false);
PR_Statement3(&pr_opcodes[OP_STOREP_F], e2, e3, NULL, false);
}
else if (e->type->type == ev_integer)
{
PR_Statement3(&pr_opcodes[OP_ADD_I], e, PR_MakeIntDef(1), e2, false);
PR_Statement3(&pr_opcodes[OP_STOREP_I], e2, e3, NULL, false);
}
else
{
PR_ParseError(ERR_PARSEERRORS, "-- suffix operator results in nonstandard behaviour. Use -=1 or prefix form instead");
PR_IncludeChunk("-=1", false, NULL);
}
PR_FreeTemp(e2);
PR_FreeTemp(e3);
}
else if (e->type->type == ev_float)
{
//copy to temp
//add to original
//return temp (which == original)
PR_ParseWarning(WARN_INEFFICIENTPLUSPLUS, "++ suffix operator results in inefficient behaviour. Use +=1 or prefix form instead");
qcc_usefulstatement=true;
e2 = PR_GetTemp(type_float);
PR_Statement3(&pr_opcodes[OP_STORE_F], e, e2, NULL, false);
PR_Statement3(&pr_opcodes[OP_ADD_F], e, PR_MakeFloatDef(1), e, false);
PR_FreeTemp(e);
e = e2;
}
else if (e->type->type == ev_integer)
{
PR_ParseWarning(WARN_INEFFICIENTPLUSPLUS, "++ suffix operator results in inefficient behaviour. Use +=1 or prefix form instead");
qcc_usefulstatement=true;
e2 = PR_GetTemp(type_integer);
PR_Statement3(&pr_opcodes[OP_STORE_I], e, e2, NULL, false);
PR_Statement3(&pr_opcodes[OP_ADD_I], e, PR_MakeIntDef(1), e, false);
PR_FreeTemp(e);
e = e2;
}
else
{
PR_ParseWarning(WARN_NOTSTANDARDBEHAVIOUR, "++ suffix operator results in nonstandard behaviour. Use +=1 or prefix form instead");
PR_IncludeChunk("+=1", false, NULL);
}
PR_Lex();
}
else if (!STRCMP(pr_token, "--"))
{
if (((unsigned)(statements[numstatements-1].op - OP_LOAD_F) < 6 || statements[numstatements-1].op == OP_LOAD_I) && statements[numstatements-1].c == e->ofs)
{ //we have our load.
def_t *e3;
//load
//add to temp
//store temp to offset
//return original loaded (which is not at the same offset as the pointer we store to)
e2 = PR_GetTemp(type_float);
e3 = PR_GetTemp(type_pointer);
PR_SimpleStatement(OP_ADDRESS, statements[numstatements-1].a, statements[numstatements-1].b, e3->ofs, false);
if (e->type->type == ev_float)
{
PR_Statement3(&pr_opcodes[OP_SUB_F], e, PR_MakeFloatDef(1), e2, false);
PR_Statement3(&pr_opcodes[OP_STOREP_F], e2, e3, NULL, false);
}
else if (e->type->type == ev_integer)
{
PR_Statement3(&pr_opcodes[OP_SUB_I], e, PR_MakeIntDef(1), e2, false);
PR_Statement3(&pr_opcodes[OP_STOREP_I], e2, e3, NULL, false);
}
else
{
PR_ParseError(ERR_PARSEERRORS, "-- suffix operator results in nonstandard behaviour. Use -=1 or prefix form instead");
PR_IncludeChunk("-=1", false, NULL);
}
PR_FreeTemp(e2);
PR_FreeTemp(e3);
}
else if (e->type->type == ev_float)
{
PR_ParseWarning(WARN_INEFFICIENTPLUSPLUS, "-- suffix operator results in inefficient behaviour. Use -=1 or prefix form instead");
qcc_usefulstatement=true;
e2 = PR_GetTemp(type_float);
PR_Statement3(&pr_opcodes[OP_STORE_F], e, e2, NULL, false);
PR_Statement3(&pr_opcodes[OP_SUB_F], e, PR_MakeFloatDef(1), e, false);
PR_FreeTemp(e);
e = e2;
}
else if (e->type->type == ev_integer)
{
PR_ParseWarning(WARN_INEFFICIENTPLUSPLUS, "-- suffix operator results in inefficient behaviour. Use -=1 or prefix form instead");
qcc_usefulstatement=true;
e2 = PR_GetTemp(type_integer);
PR_Statement3(&pr_opcodes[OP_STORE_I], e, e2, NULL, false);
PR_Statement3(&pr_opcodes[OP_SUB_I], e, PR_MakeIntDef(1), e, false);
PR_FreeTemp(e);
e = e2;
}
else
{
PR_ParseWarning(WARN_NOTSTANDARDBEHAVIOUR, "-- suffix operator results in nonstandard behaviour. Use -=1 or prefix form instead");
PR_IncludeChunk("-=1", false, NULL);
}
PR_Lex();
}
break; // next token isn't at this priority level
}
}
if (e == NULL)
PR_ParseError(ERR_INTERNAL, "e == null");
return e;
}
void PR_GotoStatement (dstatement_t *patch2, char *labelname)
{
if (num_gotos >= max_gotos)
{
max_gotos += 8;
pr_gotos = Qrealloc(pr_gotos, sizeof(*pr_gotos)*max_gotos);
}
strncpy(pr_gotos[num_gotos].name, labelname, sizeof(pr_gotos[num_gotos].name) -1);
pr_gotos[num_gotos].lineno = pr_source_line;
pr_gotos[num_gotos].statementno = patch2 - statements;
num_gotos++;
}
bool PR_StatementBlocksMatch(dstatement_t *p1, int p1count, dstatement_t *p2, int p2count)
{
if (p1count != p2count)
return false;
while(p1count>0)
{
if (p1->op != p2->op)
return false;
if (p1->a != p2->a)
return false;
if (p1->b != p2->b)
return false;
if (p1->c != p2->c)
return false;
p1++;
p2++;
p1count--;
}
return true;
}
/*
============
PR_ParseStatement
============
*/
void PR_ParseStatement (void)
{
int continues;
int breaks;
int cases;
int i;
def_t *e, *e2;
dstatement_t *patch1, *patch2, *patch3;
int statementstart = pr_source_line;
if (PR_CheckToken ("{"))
{
e = pr.localvars;
while (!PR_CheckToken("}"))
PR_ParseStatement ();
if (pr_subscopedlocals)
{
for (e2 = pr.localvars; e2 != e; e2 = e2->nextlocal)
{
Hash_RemoveData(&localstable, e2->name, e2);
}
}
return;
}
if (PR_CheckKeyword(keyword_return, "return"))
{
/*if (pr_classtype)
{
e = PR_GetDef(NULL, "__oself", pr_scope, false, 0);
e2 = PR_GetDef(NULL, "self", NULL, false, 0);
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_ENT], e, PR_DummyDef(pr_classtype, "self", pr_scope, 1, e2->ofs, false), NULL));
}*/
if (PR_CheckToken (";"))
{
if (pr_scope->type->aux_type->type != ev_void)
PR_ParseWarning(WARN_MISSINGRETURNVALUE, "\'%s\' should return %s", pr_scope->name, pr_scope->type->aux_type->name);
if (opt_return_only)
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_DONE], 0, 0, NULL));
else
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_RETURN], 0, 0, NULL));
return;
}
e = PR_Expression (TOP_PRIORITY, true);
PR_Expect (";");
if (pr_scope->type->aux_type->type != e->type->type)
PR_ParseWarning(WARN_WRONGRETURNTYPE, "\'%s\' returned %s, expected %s", pr_scope->name, e->type->name, pr_scope->type->aux_type->name);
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_RETURN], e, 0, NULL));
return;
}
if (PR_CheckKeyword(keyword_while, "while"))
{
continues = num_continues;
breaks = num_breaks;
PR_Expect ("(");
patch2 = &statements[numstatements];
conditional = 1;
e = PR_Expression (TOP_PRIORITY, true);
conditional = 0;
if (((e->constant && !e->temp) || !STRCMP(e->name, "IMMEDIATE")) && opt_compound_jumps)
{
optres_compound_jumps++;
if (!G_INT(e->ofs))
{
PR_ParseWarning(0, "while(0)?");
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, &patch1));
}
else
{
patch1 = NULL;
}
}
else
{
if (e->constant && !e->temp)
{
if (!G_FLOAT(e->ofs))
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, &patch1));
else
patch1 = NULL;
}
else if (!typecmp( e->type, type_string) && flag_ifstring) //special case, as strings are now pointers, not offsets from string table
{
PR_ParseWarning(0, "while (string) can result in bizzare behaviour");
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_IFNOTS], e, 0, &patch1));
}
else
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_IFNOT], e, 0, &patch1));
}
PR_Expect (")"); //after the line number is noted..
PR_ParseStatement ();
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_GOTO], NULL, 0, &patch3));
patch3->a = patch2 - patch3;
if (patch1)
{
if (patch1->op == OP_GOTO)
patch1->a = &statements[numstatements] - patch1;
else
patch1->b = &statements[numstatements] - patch1;
}
if (breaks != num_breaks)
{
for(i = breaks; i < num_breaks; i++)
{
patch1 = &statements[pr_breaks[i]];
statements[pr_breaks[i]].a = &statements[numstatements] - patch1; //jump to after the return-to-top goto
}
num_breaks = breaks;
}
if (continues != num_continues)
{
for(i = continues; i < num_continues; i++)
{
patch1 = &statements[pr_continues[i]];
statements[pr_continues[i]].a = patch2 - patch1; //jump back to top
}
num_continues = continues;
}
return;
}
if (PR_CheckKeyword(keyword_for, "for"))
{
int old_numstatements;
int numtemp, i;
int linenum[32];
dstatement_t temp[sizeof(linenum)/sizeof(linenum[0])];
continues = num_continues;
breaks = num_breaks;
PR_Expect("(");
if (!PR_CheckToken(";"))
{
PR_FreeTemp(PR_Expression(TOP_PRIORITY, true));
PR_Expect(";");
}
patch2 = &statements[numstatements];
if (!PR_CheckToken(";"))
{
conditional = 1;
e = PR_Expression(TOP_PRIORITY, true);
conditional = 0;
PR_Expect(";");
}
else
e = NULL;
if (!PR_CheckToken(")"))
{
old_numstatements = numstatements;
PR_FreeTemp(PR_Expression(TOP_PRIORITY, true));
numtemp = numstatements - old_numstatements;
if (numtemp > sizeof(linenum)/sizeof(linenum[0]))
PR_ParseError(ERR_TOOCOMPLEX, "Update expression too large");
numstatements = old_numstatements;
for (i = 0 ; i < numtemp ; i++)
{
linenum[i] = statement_linenums[numstatements + i];
temp[i] = statements[numstatements + i];
}
PR_Expect(")");
}
else
numtemp = 0;
if (e)
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_IFNOT], e, 0, &patch1));
else
patch1 = NULL;
if (!PR_CheckToken(";"))
PR_ParseStatement(); //don't give the hanging ';' warning.
patch3 = &statements[numstatements];
for (i = 0 ; i < numtemp ; i++)
{
statement_linenums[numstatements] = linenum[i];
statements[numstatements++] = temp[i];
}
PR_SimpleStatement(OP_GOTO, patch2 - &statements[numstatements], 0, 0, false);
if (patch1)
patch1->b = &statements[numstatements] - patch1;
if (breaks != num_breaks)
{
for(i = breaks; i < num_breaks; i++)
{
patch1 = &statements[pr_breaks[i]];
statements[pr_breaks[i]].a = &statements[numstatements] - patch1;
}
num_breaks = breaks;
}
if (continues != num_continues)
{
for(i = continues; i < num_continues; i++)
{
patch1 = &statements[pr_continues[i]];
statements[pr_continues[i]].a = patch3 - patch1;
}
num_continues = continues;
}
return;
}
if (PR_CheckKeyword(keyword_do, "do"))
{
continues = num_continues;
breaks = num_breaks;
patch1 = &statements[numstatements];
PR_ParseStatement ();
PR_Expect ("while");
PR_Expect ("(");
conditional = 1;
e = PR_Expression (TOP_PRIORITY, true);
conditional = 0;
if (e->constant && !e->temp)
{
if (G_FLOAT(e->ofs))
{
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_GOTO], NULL, 0, &patch2));
patch2->a = patch1 - patch2;
}
}
else
{
if (!typecmp( e->type, type_string) && flag_ifstring)
{
PR_ParseWarning(WARN_IFSTRING_USED, "do {} while(string) can result in bizzare behaviour");
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_IFS], e, NULL, &patch2));
}
else
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_IF], e, NULL, &patch2));
patch2->b = patch1 - patch2;
}
PR_Expect (")");
PR_Expect (";");
if (breaks != num_breaks)
{
for(i = breaks; i < num_breaks; i++)
{
patch2 = &statements[pr_breaks[i]];
statements[pr_breaks[i]].a = &statements[numstatements] - patch2;
}
num_breaks = breaks;
}
if (continues != num_continues)
{
for(i = continues; i < num_continues; i++)
{
patch2 = &statements[pr_continues[i]];
statements[pr_continues[i]].a = patch1 - patch2;
}
num_continues = continues;
}
return;
}
if (PR_CheckKeyword(keyword_local, "local"))
{
type_t *functionsclasstype = pr_classtype;
// if (locals_end != numpr_globals) //is this breaking because of locals?
// PR_ParseWarning("local vars after temp vars\n");
PR_ParseDefs (NULL);
pr_classtype = functionsclasstype;
locals_end = numpr_globals;
return;
}
if (pr_token_type == tt_name)
if ((keyword_var && !STRCMP ("var", pr_token)) ||
(keyword_string && !STRCMP ("string", pr_token)) ||
(keyword_float && !STRCMP ("float", pr_token)) ||
(keyword_entity && !STRCMP ("entity", pr_token)) ||
(keyword_vector && !STRCMP ("vector", pr_token)) ||
(keyword_integer && !STRCMP ("integer", pr_token)) ||
(keyword_int && !STRCMP ("int", pr_token)) ||
(keyword_class && !STRCMP ("class", pr_token)) ||
(keyword_const && !STRCMP ("const", pr_token)))
{
// if (locals_end != numpr_globals) //is this breaking because of locals?
// PR_ParseWarning("local vars after temp vars\n");
PR_ParseDefs (NULL);
locals_end = numpr_globals;
return;
}
if (PR_CheckKeyword(keyword_state, "state"))
{
PR_Expect("[");
PR_ParseState();
PR_Expect(";");
return;
}
if (PR_CheckToken("#"))
{
char *name;
float frame = pr_immediate._float;
PR_Lex();
name = PR_ParseName();
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_STATE], PR_MakeFloatDef(frame), PR_GetDef(type_function, name, NULL, false, 0), NULL));
PR_Expect(";");
return;
}
if (PR_CheckKeyword(keyword_if, "if"))
{
bool negate = PR_CheckKeyword(keyword_not, "not");
PR_Expect ("(");
conditional = 1;
e = PR_Expression (TOP_PRIORITY, true);
conditional = 0;
// negate = negate != 0;
if (negate)
{
if (!typecmp( e->type, type_string) && flag_ifstring)
{
PR_ParseWarning(WARN_IFSTRING_USED, "if not(string) can result in bizzare behaviour");
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_IFS], e, 0, &patch1));
}
else
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_IF], e, 0, &patch1));
}
else
{
if (!typecmp( e->type, type_string) && flag_ifstring)
{
PR_ParseWarning(WARN_IFSTRING_USED, "if (string) can result in bizzare behaviour");
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_IFNOTS], e, 0, &patch1));
}
else
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_IFNOT], e, 0, &patch1));
}
PR_Expect (")"); //close bracket is after we save the statement to mem (so debugger does not show the if statement as being on the line after
PR_ParseStatement ();
if (PR_CheckKeyword (keyword_else, "else"))
{
int lastwasreturn;
lastwasreturn = statements[numstatements-1].op == OP_RETURN || statements[numstatements-1].op == OP_DONE;
//the last statement of the if was a return, so we don't need the goto at the end
if (lastwasreturn && opt_compound_jumps && !PR_AStatementJumpsTo(numstatements, patch1-statements, numstatements))
{
// PR_ParseWarning(0, "optimised the else");
optres_compound_jumps++;
patch1->b = &statements[numstatements] - patch1;
PR_ParseStatement ();
}
else
{
// PR_ParseWarning(0, "using the else");
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, &patch2));
patch1->b = &statements[numstatements] - patch1;
PR_ParseStatement ();
patch2->a = &statements[numstatements] - patch2;
if (PR_StatementBlocksMatch(patch1+1, patch2-patch1, patch2+1, &statements[numstatements] - patch2))
PR_ParseWarning(0, "Two identical blocks each side of an else");
}
}
else
patch1->b = &statements[numstatements] - patch1;
return;
}
if (PR_CheckKeyword(keyword_switch, "switch"))
{
int op;
int hcstyle;
int defaultcase = -1;
temp_t *et;
int oldst;
breaks = num_breaks;
cases = num_cases;
PR_Expect ("(");
conditional = 1;
e = PR_Expression (TOP_PRIORITY, true);
conditional = 0;
if (e == &def_ret)
{ //copy it out, so our hack just below doesn't crash us
/* if (e->type->type == ev_vector)
e = PR_Statement(pr_opcodes+OP_STORE_V, e, PR_GetTemp(type_vector), NULL);
else
e = PR_Statement(pr_opcodes+OP_STORE_F, e, PR_GetTemp(type_float), NULL);
if (e == &def_ret) //this shouldn't be happening
Sys_Error("internal error: switch: e == &def_ret");
*/
et = NULL;
}
else
{
et = e->temp;
e->temp = NULL; //so noone frees it until we finish this loop
}
//expands
//switch (CONDITION)
//{
//case 1:
// break;
//case 2:
//default:
// break;
//}
//to
// x = CONDITION, goto start
// l1:
// goto end
// l2:
// def:
// goto end
// goto end P1
// start:
// if (x == 1) goto l1;
// if (x == 2) goto l2;
// goto def
// end:
//x is emitted in an opcode, stored as a register that we cannot access later.
//it should be possible to nest these.
switch(e->type->type)
{
case ev_float:
op = OP_SWITCH_F;
break;
case ev_entity: //whu???
op = OP_SWITCH_E;
break;
case ev_vector:
op = OP_SWITCH_V;
break;
case ev_string:
op = OP_SWITCH_S;
break;
case ev_function:
op = OP_SWITCH_FNC;
break;
default: //err hmm.
op = 0;
break;
}
if (op)
hcstyle = PR_OPCodeValid(&pr_opcodes[op]);
else
hcstyle = false;
if (hcstyle)
PR_FreeTemp(PR_Statement (&pr_opcodes[op], e, 0, &patch1));
else
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_GOTO], e, 0, &patch1));
PR_Expect (")"); //close bracket is after we save the statement to mem (so debugger does not show the if statement as being on the line after
oldst = numstatements;
PR_ParseStatement ();
//this is so that a missing goto at the end of your switch doesn't end up in the jumptable again
if (oldst == numstatements || !PR_StatementIsAJump(numstatements-1, numstatements-1))
{
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, &patch2)); //the P1 statement/the theyforgotthebreak statement.
// PR_ParseWarning(0, "emitted goto");
}
else
{
patch2 = NULL;
// PR_ParseWarning(0, "No goto");
}
if (hcstyle)
patch1->b = &statements[numstatements] - patch1; //the goto start part
else
patch1->a = &statements[numstatements] - patch1; //the goto start part
for (i = cases; i < num_cases; i++)
{
if (!pr_casesdef[i])
{
if (defaultcase >= 0)
PR_ParseError(ERR_MULTIPLEDEFAULTS, "Duplicated default case");
defaultcase = i;
}
else
{
if (pr_casesdef[i]->type->type != e->type->type)
{
if (e->type->type == ev_integer && pr_casesdef[i]->type->type == ev_float)
pr_casesdef[i] = PR_MakeIntDef((int)pr_globals[pr_casesdef[i]->ofs]);
else
PR_ParseWarning(WARN_SWITCHTYPEMISMATCH, "switch case type mismatch");
}
if (pr_casesdef2[i])
{
if (pr_casesdef2[i]->type->type != e->type->type)
{
if (e->type->type == ev_integer && pr_casesdef[i]->type->type == ev_float)
pr_casesdef2[i] = PR_MakeIntDef((int)pr_globals[pr_casesdef2[i]->ofs]);
else
PR_ParseWarning(WARN_SWITCHTYPEMISMATCH, "switch caserange type mismatch");
}
if (hcstyle)
{
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_CASERANGE], pr_casesdef[i], pr_casesdef2[i], &patch3));
patch3->c = &statements[pr_cases[i]] - patch3;
}
else
{
def_t *e3;
if (e->type->type == ev_float)
{
e2 = PR_Statement (&pr_opcodes[OP_GE], e, pr_casesdef[i], NULL);
e3 = PR_Statement (&pr_opcodes[OP_LE], e, pr_casesdef2[i], NULL);
e2 = PR_Statement (&pr_opcodes[OP_AND], e2, e3, NULL);
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_IF], e2, 0, &patch3));
patch3->b = &statements[pr_cases[i]] - patch3;
}
else if (e->type->type == ev_integer)
{
e2 = PR_Statement (&pr_opcodes[OP_GE_I], e, pr_casesdef[i], NULL);
e3 = PR_Statement (&pr_opcodes[OP_LE_I], e, pr_casesdef2[i], NULL);
e2 = PR_Statement (&pr_opcodes[OP_AND], e2, e3, NULL);
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_IF], e2, 0, &patch3));
patch3->b = &statements[pr_cases[i]] - patch3;
}
else
PR_ParseWarning(WARN_SWITCHTYPEMISMATCH, "switch caserange MUST be a float or integer");
}
}
else
{
if (hcstyle)
{
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_CASE], pr_casesdef[i], 0, &patch3));
patch3->b = &statements[pr_cases[i]] - patch3;
}
else
{
if (!pr_casesdef[i]->constant || G_INT(pr_casesdef[i]->ofs))
{
switch(e->type->type)
{
case ev_float:
e2 = PR_Statement (&pr_opcodes[OP_EQ_F], e, pr_casesdef[i], NULL);
break;
case ev_entity: //whu???
e2 = PR_Statement (&pr_opcodes[OP_EQ_E], e, pr_casesdef[i], &patch1);
break;
case ev_vector:
e2 = PR_Statement (&pr_opcodes[OP_EQ_V], e, pr_casesdef[i], &patch1);
break;
case ev_string:
e2 = PR_Statement (&pr_opcodes[OP_EQ_S], e, pr_casesdef[i], &patch1);
break;
case ev_function:
e2 = PR_Statement (&pr_opcodes[OP_EQ_FNC], e, pr_casesdef[i], &patch1);
break;
case ev_field:
e2 = PR_Statement (&pr_opcodes[OP_EQ_FNC], e, pr_casesdef[i], &patch1);
break;
case ev_integer:
e2 = PR_Statement (&pr_opcodes[OP_EQ_I], e, pr_casesdef[i], &patch1);
break;
default:
PR_ParseError(ERR_BADSWITCHTYPE, "Bad switch type");
e2 = NULL;
break;
}
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_IF], e2, 0, &patch3));
}
else
{
if (e->type->type == ev_string)
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_IFNOTS], e, 0, &patch3));
else
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_IFNOT], e, 0, &patch3));
}
patch3->b = &statements[pr_cases[i]] - patch3;
}
}
}
}
if (defaultcase>=0)
{
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, &patch3));
patch3->a = &statements[pr_cases[defaultcase]] - patch3;
}
num_cases = cases;
patch3 = &statements[numstatements];
if (patch2)
patch2->a = patch3 - patch2; //set P1 jump
if (breaks != num_breaks)
{
for(i = breaks; i < num_breaks; i++)
{
patch2 = &statements[pr_breaks[i]];
patch2->a = patch3 - patch2;
}
num_breaks = breaks;
}
if (et)
{
e->temp = et;
PR_FreeTemp(e);
}
return;
}
if (PR_CheckKeyword(keyword_asm, "asm"))
{
if (PR_CheckToken("{"))
{
while (!PR_CheckToken("}"))
PR_ParseAsm ();
}
else
PR_ParseAsm ();
return;
}
if (PR_CheckToken(":"))
{
if (pr_token_type != tt_name)
{
PR_ParseError(ERR_BADLABELNAME, "invalid label name \"%s\"", pr_token);
return;
}
for (i = 0; i < num_labels; i++)
if (!STRNCMP(pr_labels[i].name, pr_token, sizeof(pr_labels[num_labels].name) -1))
{
PR_ParseWarning(WARN_DUPLICATELABEL, "Duplicate label %s", pr_token);
PR_Lex();
return;
}
if (num_labels >= max_labels)
{
max_labels += 8;
pr_labels = Qrealloc(pr_labels, sizeof(*pr_labels)*max_labels);
}
strncpy(pr_labels[num_labels].name, pr_token, sizeof(pr_labels[num_labels].name) -1);
pr_labels[num_labels].lineno = pr_source_line;
pr_labels[num_labels].statementno = numstatements;
num_labels++;
// PR_ParseWarning("Gotos are evil");
PR_Lex();
return;
}
if (PR_CheckKeyword(keyword_goto, "goto"))
{
if (pr_token_type != tt_name)
{
PR_ParseError(ERR_NOLABEL, "invalid label name \"%s\"", pr_token);
return;
}
PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, &patch2);
PR_GotoStatement (patch2, pr_token);
// PR_ParseWarning("Gotos are evil");
PR_Lex();
PR_Expect(";");
return;
}
if (PR_CheckKeyword(keyword_break, "break"))
{
if (!STRCMP ("(", pr_token))
{ //make sure it wasn't a call to the break function.
PR_IncludeChunk("break(", true, NULL);
PR_Lex(); //so it sees the break.
}
else
{
if (num_breaks >= max_breaks)
{
max_breaks += 8;
pr_breaks = Qrealloc(pr_breaks, sizeof(*pr_breaks) * max_breaks);
}
pr_breaks[num_breaks] = numstatements;
PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, NULL);
num_breaks++;
PR_Expect(";");
return;
}
}
if (PR_CheckKeyword(keyword_continue, "continue"))
{
if (num_continues >= max_continues)
{
max_continues += 8;
pr_continues = Qrealloc(pr_continues, sizeof(*pr_continues)*max_continues);
}
pr_continues[num_continues] = numstatements;
PR_Statement (&pr_opcodes[OP_GOTO], 0, 0, NULL);
num_continues++;
PR_Expect(";");
return;
}
if (PR_CheckKeyword(keyword_case, "case"))
{
if (num_cases >= max_cases)
{
max_cases += 8;
pr_cases = Qrealloc(pr_cases, sizeof(*pr_cases)*max_cases);
pr_casesdef = Qrealloc(pr_casesdef, sizeof(*pr_casesdef)*max_cases);
pr_casesdef2 = Qrealloc(pr_casesdef2, sizeof(*pr_casesdef2)*max_cases);
}
pr_cases[num_cases] = numstatements;
pr_casesdef[num_cases] = PR_Expression (TOP_PRIORITY, false);
if (PR_CheckToken(".."))
{
pr_casesdef2[num_cases] = PR_Expression (TOP_PRIORITY, false);
if (pr_casesdef[num_cases]->constant && pr_casesdef2[num_cases]->constant &&
!pr_casesdef[num_cases]->temp && !pr_casesdef2[num_cases]->temp)
if (G_FLOAT(pr_casesdef[num_cases]->ofs) >= G_FLOAT(pr_casesdef2[num_cases]->ofs))
PR_ParseError(ERR_CASENOTIMMEDIATE, "Caserange statement uses backwards range\n");
}
else pr_casesdef2[num_cases] = NULL;
if (numstatements != pr_cases[num_cases])
PR_ParseError(ERR_CASENOTIMMEDIATE, "Case statements may not use formulas\n");
num_cases++;
PR_Expect(":");
return;
}
if (PR_CheckKeyword(keyword_default, "default"))
{
if (num_cases >= max_cases)
{
max_cases += 8;
pr_cases = Qrealloc(pr_cases, sizeof(*pr_cases)*max_cases);
pr_casesdef = Qrealloc(pr_casesdef, sizeof(*pr_casesdef)*max_cases);
pr_casesdef2 = Qrealloc(pr_casesdef2, sizeof(*pr_casesdef2)*max_cases);
Msg("reallocate default case\n");
}
pr_cases[num_cases] = numstatements;
pr_casesdef[num_cases] = NULL;
pr_casesdef2[num_cases] = NULL;
num_cases++;
PR_Expect(":");
return;
}
if (PR_CheckKeyword(keyword_thinktime, "thinktime"))
{
def_t *nextthink;
def_t *time;
e = PR_Expression (TOP_PRIORITY, true);
PR_Expect(":");
e2 = PR_Expression (TOP_PRIORITY, true);
if (e->type->type != ev_entity || e2->type->type != ev_float)
PR_ParseError(ERR_THINKTIMETYPEMISMATCH, "thinktime type mismatch");
if (PR_OPCodeValid(&pr_opcodes[OP_THINKTIME]))
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_THINKTIME], e, e2, NULL));
else
{
nextthink = PR_GetDef(NULL, "nextthink", NULL, false, 0);
if (!nextthink)
PR_ParseError (ERR_UNKNOWNVALUE, "Unknown value \"%s\"", "nextthink");
time = PR_GetDef(type_float, "time", NULL, false, 0);
if (!time)
PR_ParseError (ERR_UNKNOWNVALUE, "Unknown value \"%s\"", "time");
nextthink = PR_Statement(&pr_opcodes[OP_ADDRESS], e, nextthink, NULL);
time = PR_Statement(&pr_opcodes[OP_ADD_F], time, e2, NULL);
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STOREP_F], time, nextthink, NULL));
}
PR_Expect(";");
return;
}
if (PR_CheckToken(";"))
{
int osl = pr_source_line;
pr_source_line = statementstart;
PR_ParseWarning(WARN_POINTLESSSTATEMENT, "Hanging ';'");
pr_source_line = osl;
return;
}
// qcc_functioncalled=0;
qcc_usefulstatement = false;
e = PR_Expression (TOP_PRIORITY, true);
PR_Expect (";");
if (e->type->type != ev_void && !qcc_usefulstatement)
{
int osl = pr_source_line;
pr_source_line = statementstart;
PR_ParseWarning(WARN_POINTLESSSTATEMENT, "Effectless statement");
pr_source_line = osl;
}
PR_FreeTemp(e);
// qcc_functioncalled=false;
}
/*
==============
PR_ParseState
States are special functions made for convenience. They automatically
set frame, nextthink (implicitly), and think (allowing forward definitions).
// void() name = [framenum, nextthink] {code}
// expands to:
// function void name ()
// {
// self.frame=framenum;
// self.nextthink = time + 0.1;
// self.think = nextthink
// <code>
// };
==============
*/
void PR_ParseState (void)
{
char *name;
def_t *s1, *def, *sc = pr_scope;
char f;
f = *pr_token;
if (PR_CheckToken("++") || PR_CheckToken("--"))
{
s1 = PR_ParseImmediate ();
PR_Expect("..");
def = PR_ParseImmediate ();
PR_Expect ("]");
if (s1->type->type != ev_float || def->type->type != ev_float)
PR_ParseError(ERR_STATETYPEMISMATCH, "state type mismatch");
if (PR_OPCodeValid(&pr_opcodes[OP_CSTATE]))
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_CSTATE], s1, def, NULL));
else
{
def_t *t1, *t2;
def_t *framef, *frame;
def_t *self;
def_t *cycle_wrapped;
temp_t *ftemp;
self = PR_GetDef(type_entity, "self", NULL, false, 0);
framef = PR_GetDef(NULL, "frame", NULL, false, 0);
cycle_wrapped = PR_GetDef(type_float, "cycle_wrapped", NULL, false, 0);
frame = PR_Statement(&pr_opcodes[OP_LOAD_F], self, framef, NULL);
if (cycle_wrapped)
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_F], PR_MakeFloatDef(0), cycle_wrapped, NULL));
PR_UnFreeTemp(frame);
//make sure the frame is within the bounds given.
ftemp = frame->temp;
frame->temp = NULL;
t1 = PR_Statement(&pr_opcodes[OP_LT], frame, s1, NULL);
t2 = PR_Statement(&pr_opcodes[OP_GT], frame, def, NULL);
t1 = PR_Statement(&pr_opcodes[OP_OR], t1, t2, NULL);
PR_SimpleStatement(OP_IFNOT, t1->ofs, 2, 0, false);
PR_FreeTemp(t1);
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_F], s1, frame, NULL));
PR_SimpleStatement(OP_GOTO, t1->ofs, 13, 0, false);
t1 = PR_Statement(&pr_opcodes[OP_GE], def, s1, NULL);
PR_SimpleStatement(OP_IFNOT, t1->ofs, 7, 0, false);
PR_FreeTemp(t1); //this block is the 'it's in a forwards direction'
PR_SimpleStatement(OP_ADD_F, frame->ofs, PR_MakeFloatDef(1)->ofs, frame->ofs, false);
t1 = PR_Statement(&pr_opcodes[OP_GT], frame, def, NULL);
PR_SimpleStatement(OP_IFNOT, t1->ofs,2, 0, false);
PR_FreeTemp(t1);
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_F], s1, frame, NULL));
PR_UnFreeTemp(frame);
if (cycle_wrapped)
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_F], PR_MakeFloatDef(1), cycle_wrapped, NULL));
PR_SimpleStatement(OP_GOTO, 6, 0, 0, false);
//reverse animation.
PR_SimpleStatement(OP_SUB_F, frame->ofs, PR_MakeFloatDef(1)->ofs, frame->ofs, false);
t1 = PR_Statement(&pr_opcodes[OP_LT], frame, s1, NULL);
PR_SimpleStatement(OP_IFNOT, t1->ofs,2, 0, false);
PR_FreeTemp(t1);
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_F], def, frame, NULL));
PR_UnFreeTemp(frame);
if (cycle_wrapped)
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_F], PR_MakeFloatDef(1), cycle_wrapped, NULL));
//self.frame = frame happens with the normal state opcode.
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_STATE], frame, pr_scope, NULL));
frame->temp = ftemp;
PR_FreeTemp(frame);
}
return;
}
if (pr_token_type != tt_immediate || pr_immediate_type != type_float)
PR_ParseError (ERR_STATETYPEMISMATCH, "state frame must be a number");
s1 = PR_ParseImmediate ();
PR_CheckToken (",");
name = PR_ParseName ();
pr_scope = NULL;
def = PR_GetDef (type_function, name, NULL, true, 1);
pr_scope = sc;
PR_Expect ("]");
PR_FreeTemp(PR_Statement (&pr_opcodes[OP_STATE], s1, def, NULL));
}
void PR_ParseAsm(void)
{
dstatement_t *patch1;
int op, p;
def_t *a, *b, *c;
if (PR_CheckKeyword(keyword_local, "local"))
{
PR_ParseDefs (NULL);
locals_end = numpr_globals;
return;
}
for (op = 0; op < OP_NUMOPS; op++)
{
if (!STRCMP(pr_token, pr_opcodes[op].opname))
{
PR_Lex();
if (pr_opcodes[op].priority==-1 && pr_opcodes[op].associative!=ASSOC_LEFT)
{
if (pr_opcodes[op].type_a==NULL)
{
patch1 = &statements[numstatements];
PR_Statement3(&pr_opcodes[op], NULL, NULL, NULL, true);
if (pr_token_type == tt_name)
{
PR_GotoStatement(patch1, PR_ParseName());
}
else
{
p = (int)pr_immediate._float;
patch1->a = (int)p;
}
PR_Lex();
}
else if (pr_opcodes[op].type_b==NULL)
{
patch1 = &statements[numstatements];
a = PR_ParseValue(pr_classtype);
PR_Statement3(&pr_opcodes[op], a, NULL, NULL, true);
if (pr_token_type == tt_name)
{
PR_GotoStatement(patch1, PR_ParseName());
}
else
{
p = (int)pr_immediate._float;
patch1->b = (int)p;
}
PR_Lex();
}
else
{
patch1 = &statements[numstatements];
a = PR_ParseValue(pr_classtype);
b = PR_ParseValue(pr_classtype);
PR_Statement3(&pr_opcodes[op], a, b, NULL, true);
if (pr_token_type == tt_name)
{
PR_GotoStatement(patch1, PR_ParseName());
}
else
{
p = (int)pr_immediate._float;
patch1->c = (int)p;
}
PR_Lex();
}
}
else
{
if (pr_opcodes[op].type_a != &type_void)
a = PR_ParseValue(pr_classtype);
else
a=NULL;
if (pr_opcodes[op].type_b != &type_void)
b = PR_ParseValue(pr_classtype);
else
b=NULL;
if (pr_opcodes[op].associative==ASSOC_LEFT && pr_opcodes[op].type_c != &type_void)
c = PR_ParseValue(pr_classtype);
else
c=NULL;
PR_Statement3(&pr_opcodes[op], a, b, c, true);
}
PR_Expect(";");
return;
}
}
PR_ParseError(ERR_BADOPCODE, "Bad op code name %s", pr_token);
}
bool PR_FuncJumpsTo(int first, int last, int statement)
{
int st;
for (st = first; st < last; st++)
{
if (pr_opcodes[statements[st].op].type_a == NULL)
{
if (st + (signed)statements[st].a == statement)
{
if (st != first)
{
if (statements[st-1].op == OP_RETURN)
continue;
if (statements[st-1].op == OP_DONE)
continue;
return true;
}
}
}
if (pr_opcodes[statements[st].op].type_b == NULL)
{
if (st + (signed)statements[st].b == statement)
{
if (st != first)
{
if (statements[st-1].op == OP_RETURN)
continue;
if (statements[st-1].op == OP_DONE)
continue;
return true;
}
}
}
if (pr_opcodes[statements[st].op].type_c == NULL)
{
if (st + (signed)statements[st].c == statement)
{
if (st != first)
{
if (statements[st-1].op == OP_RETURN)
continue;
if (statements[st-1].op == OP_DONE)
continue;
return true;
}
}
}
}
return false;
}
bool PR_FuncJumpsToRange(int first, int last, int firstr, int lastr)
{
int st;
for (st = first; st < last; st++)
{
if (pr_opcodes[statements[st].op].type_a == NULL)
{
if (st + (signed)statements[st].a >= firstr && st + (signed)statements[st].a <= lastr)
{
if (st != first)
{
if (statements[st-1].op == OP_RETURN)
continue;
if (statements[st-1].op == OP_DONE)
continue;
return true;
}
}
}
if (pr_opcodes[statements[st].op].type_b == NULL)
{
if (st + (signed)statements[st].b >= firstr && st + (signed)statements[st].b <= lastr)
{
if (st != first)
{
if (statements[st-1].op == OP_RETURN)
continue;
if (statements[st-1].op == OP_DONE)
continue;
return true;
}
}
}
if (pr_opcodes[statements[st].op].type_c == NULL)
{
if (st + (signed)statements[st].c >= firstr && st + (signed)statements[st].c <= lastr)
{
if (st != first)
{
if (statements[st-1].op == OP_RETURN)
continue;
if (statements[st-1].op == OP_DONE)
continue;
return true;
}
}
}
}
return false;
}
#if 0
void PR_CompoundJumps(int first, int last)
{
//jumps to jumps are reordered so they become jumps to the final target.
int statement;
int st;
for (st = first; st < last; st++)
{
if (pr_opcodes[statements[st].op].type_a == NULL)
{
statement = st + (signed)statements[st].a;
if (statements[statement].op == OP_RETURN || statements[statement].op == OP_DONE)
{ //goto leads to return. Copy the command out to remove the goto.
statements[st].op = statements[statement].op;
statements[st].a = statements[statement].a;
statements[st].b = statements[statement].b;
statements[st].c = statements[statement].c;
optres_compound_jumps++;
}
while (statements[statement].op == OP_GOTO)
{
statements[st].a = statement+statements[statement].a - st;
statement = st + (signed)statements[st].a;
optres_compound_jumps++;
}
}
if (pr_opcodes[statements[st].op].type_b == NULL)
{
statement = st + (signed)statements[st].b;
while (statements[statement].op == OP_GOTO)
{
statements[st].b = statement+statements[statement].a - st;
statement = st + (signed)statements[st].b;
optres_compound_jumps++;
}
}
if (pr_opcodes[statements[st].op].type_c == NULL)
{
statement = st + (signed)statements[st].c;
while (statements[statement].op == OP_GOTO)
{
statements[st].c = statement+statements[statement].a - st;
statement = st + (signed)statements[st].c;
optres_compound_jumps++;
}
}
}
}
#else
void PR_CompoundJumps(int first, int last)
{
//jumps to jumps are reordered so they become jumps to the final target.
int statement;
int st;
int infloop;
for (st = first; st < last; st++)
{
if (pr_opcodes[statements[st].op].type_a == NULL)
{
statement = st + (signed)statements[st].a;
if (statements[statement].op == OP_RETURN || statements[statement].op == OP_DONE)
{ //goto leads to return. Copy the command out to remove the goto.
statements[st].op = statements[statement].op;
statements[st].a = statements[statement].a;
statements[st].b = statements[statement].b;
statements[st].c = statements[statement].c;
optres_compound_jumps++;
}
infloop = 1000;
while (statements[statement].op == OP_GOTO)
{
if (!infloop--)
{
PR_ParseWarning(0, "Infinate loop detected");
break;
}
statements[st].a = (statement+statements[statement].a - st);
statement = st + (signed)statements[st].a;
optres_compound_jumps++;
}
}
if (pr_opcodes[statements[st].op].type_b == NULL)
{
statement = st + (signed)statements[st].b;
infloop = 1000;
while (statements[statement].op == OP_GOTO)
{
if (!infloop--)
{
PR_ParseWarning(0, "Infinate loop detected");
break;
}
statements[st].b = (statement+statements[statement].a - st);
statement = st + (signed)statements[st].b;
optres_compound_jumps++;
}
}
if (pr_opcodes[statements[st].op].type_c == NULL)
{
statement = st + (signed)statements[st].c;
infloop = 1000;
while (statements[statement].op == OP_GOTO)
{
if (!infloop--)
{
PR_ParseWarning(0, "Infinate loop detected");
break;
}
statements[st].c = (statement+statements[statement].a - st);
statement = st + (signed)statements[st].c;
optres_compound_jumps++;
}
}
}
}
#endif
void PR_CheckForDeadAndMissingReturns(int first, int last, int rettype)
{
int st, st2;
if (statements[last-1].op == OP_DONE)
last--; //don't want the done
if (rettype != ev_void)
if (statements[last-1].op != OP_RETURN)
{
if (statements[last-1].op != OP_GOTO || (signed)statements[last-1].a > 0)
{
PR_ParseWarning(WARN_MISSINGRETURN, "%s: not all control paths return a value", pr_scope->name );
return;
}
}
for (st = first; st < last; st++)
{
if (statements[st].op == OP_RETURN || statements[st].op == OP_GOTO)
{
st++;
if (st == last)
continue; //erm... end of function doesn't count as unreachable.
if (!opt_compound_jumps)
{ //we can ignore single statements like these without compound jumps (compound jumps correctly removes all).
if (statements[st].op == OP_GOTO) //inefficient compiler, we can ignore this.
continue;
if (statements[st].op == OP_DONE) //inefficient compiler, we can ignore this.
continue;
if (statements[st].op == OP_RETURN) //inefficient compiler, we can ignore this.
continue;
}
//make sure something goes to just after this return.
for (st2 = first; st2 < last; st2++)
{
if (pr_opcodes[statements[st2].op].type_a == NULL)
{
if (st2 + (signed)statements[st2].a == st)
break;
}
if (pr_opcodes[statements[st2].op].type_b == NULL)
{
if (st2 + (signed)statements[st2].b == st)
break;
}
if (pr_opcodes[statements[st2].op].type_c == NULL)
{
if (st2 + (signed)statements[st2].c == st)
break;
}
}
if (st2 == last)
{
PR_ParseWarning(WARN_UNREACHABLECODE, "%s: contains unreachable code", pr_scope->name );
}
continue;
}
if (rettype != ev_void)
{
if (pr_opcodes[statements[st].op].type_a == NULL)
{
if (st + (signed)statements[st].a == last)
{
PR_ParseWarning(WARN_MISSINGRETURN, "%s: not all control paths return a value", pr_scope->name );
return;
}
}
if (pr_opcodes[statements[st].op].type_b == NULL)
{
if (st + (signed)statements[st].b == last)
{
PR_ParseWarning(WARN_MISSINGRETURN, "%s: not all control paths return a value", pr_scope->name );
return;
}
}
if (pr_opcodes[statements[st].op].type_c == NULL)
{
if (st + (signed)statements[st].c == last)
{
PR_ParseWarning(WARN_MISSINGRETURN, "%s: not all control paths return a value", pr_scope->name );
return;
}
}
}
}
}
bool PR_StatementIsAJump(int stnum, int notifdest) //only the unconditionals.
{
if (statements[stnum].op == OP_RETURN)
return true;
if (statements[stnum].op == OP_DONE)
return true;
if (statements[stnum].op == OP_GOTO)
if ((int)statements[stnum].a != notifdest)
return true;
return false;
}
int PR_AStatementJumpsTo(int targ, int first, int last)
{
int st;
for (st = first; st < last; st++)
{
if (pr_opcodes[statements[st].op].type_a == NULL)
{
if (st + (signed)statements[st].a == targ && statements[st].a)
{
return true;
}
}
if (pr_opcodes[statements[st].op].type_b == NULL)
{
if (st + (signed)statements[st].b == targ)
{
return true;
}
}
if (pr_opcodes[statements[st].op].type_c == NULL)
{
if (st + (signed)statements[st].c == targ)
{
return true;
}
}
}
for (st = 0; st < num_labels; st++) //assume it's used.
{
if (pr_labels[st].statementno == targ)
return true;
}
return false;
}
/*
//goes through statements, if it sees a matching statement earlier, it'll strim out the current.
void PR_CommonSubExpressionRemoval(int first, int last)
{
int cur; //the current
int prev; //the earlier statement
for (cur = last-1; cur >= first; cur--)
{
if (pr_opcodes[statements[cur].op].priority == -1)
continue;
for (prev = cur-1; prev >= first; prev--)
{
if (statements[prev].op >= OP_CALL0 && statements[prev].op <= OP_CALL8)
{
optres_test1++;
break;
}
if (statements[prev].op >= OP_CALL1H && statements[prev].op <= OP_CALL8H)
{
optres_test1++;
break;
}
if (pr_opcodes[statements[prev].op].right_associative)
{ //make sure no changes to var_a occur.
if (statements[prev].b == statements[cur].a)
{
optres_test2++;
break;
}
if (statements[prev].b == statements[cur].b && !pr_opcodes[statements[cur].op].right_associative)
{
optres_test2++;
break;
}
}
else
{
if (statements[prev].c == statements[cur].a)
{
optres_test2++;
break;
}
if (statements[prev].c == statements[cur].b && !pr_opcodes[statements[cur].op].right_associative)
{
optres_test2++;
break;
}
}
if (statements[prev].op == statements[cur].op)
if (statements[prev].a == statements[cur].a)
if (statements[prev].b == statements[cur].b)
if (statements[prev].c == statements[cur].c)
{
if (!PR_FuncJumpsToRange(first, last, prev, cur))
{
statements[cur].op = OP_STORE_F;
statements[cur].a = 28;
statements[cur].b = 28;
optres_comexprremoval++;
}
else
optres_test1++;
break;
}
}
}
}
*/
void PR_RemapOffsets(uint firststatement, uint laststatement, uint min, uint max, uint newmin)
{
dstatement_t *st;
unsigned int i;
for (i = firststatement, st = &statements[i]; i < laststatement; i++, st++)
{
if (pr_opcodes[st->op].type_a && st->a >= min && st->a < max)
st->a = st->a - min + newmin;
if (pr_opcodes[st->op].type_b && st->b >= min && st->b < max)
st->b = st->b - min + newmin;
if (pr_opcodes[st->op].type_c && st->c >= min && st->c < max)
st->c = st->c - min + newmin;
}
}
void PR_Marshal_Locals(int first, int laststatement)
{
def_t *local;
unsigned int newofs;
// if (!opt_overlaptemps) //clear these after each function. we arn't overlapping them so why do we need to keep track of them?
// {
// temp_t *t;
// for (t = functemps; t; t = t->next)
// PR_FreeOffset(t->ofs, t->size);
// functemps = NULL;
// }
if (!pr.localvars) //nothing to marshal
{
locals_start = numpr_globals;
locals_end = numpr_globals;
return;
}
if (!opt_locals_marshalling)
{
pr.localvars = NULL;
return;
}
//initial backwards bounds.
locals_start = MAX_REGS;
locals_end = 0;
newofs = MAX_REGS; //this is a handy place to put it. :)
//the params need to be in the order that they were allocated
//so we allocate in a backwards order.
for (local = pr.localvars; local; local = local->nextlocal)
{
if (local->constant)
continue;
newofs += local->type->size*local->arraysize;
if (local->arraysize>1)
newofs++;
}
locals_start = MAX_REGS;
locals_end = newofs;
optres_locals_marshalling+=newofs-MAX_REGS;
for (local = pr.localvars; local; local = local->nextlocal)
{
if (local->constant)
continue;
if (((int*)pr_globals)[local->ofs])
PR_ParseError(ERR_INTERNAL, "Marshall of a set value");
newofs -= local->type->size*local->arraysize;
if (local->arraysize>1)
newofs--;
PR_RemapOffsets(first, laststatement, local->ofs, local->ofs+local->type->size*local->arraysize, newofs);
PR_FreeOffset(local->ofs, local->type->size*local->arraysize);
local->ofs = newofs;
}
pr.localvars = NULL;
}
void PR_WriteAsmFunction(def_t *sc, unsigned int firststatement, gofs_t firstparm)
{
unsigned int i;
unsigned int p;
gofs_t o;
type_t *type;
def_t *param;
if (!asmfile)
return;
type = sc->type;
FS_Printf(asmfile, "%s(", TypeName(type->aux_type));
p = type->num_parms;
for (o = firstparm, i = 0, type = type->param; i < p; i++, type = type->next)
{
if (i)
FS_Printf(asmfile, ", ");
for (param = pr.localvars; param; param = param->nextlocal)
{
if (param->ofs == o)
break;
}
if (param)
FS_Printf(asmfile, "%s %s", TypeName(type), param->name);
else
FS_Printf(asmfile, "%s", TypeName(type));
o += type->size;
}
FS_Printf(asmfile, ") %s = asm\n{\n", sc->name);
PR_fprintfLocals(asmfile, firstparm, o);
for (i = firststatement; i < (unsigned int)numstatements; i++)
{
FS_Printf(asmfile, "\t%s", pr_opcodes[statements[i].op].opname);
if (pr_opcodes[statements[i].op].type_a != &type_void)
{
if (strlen(pr_opcodes[statements[i].op].opname)<6)
FS_Printf(asmfile, "\t");
if (pr_opcodes[statements[i].op].type_a)
FS_Printf(asmfile, "\t%s", PR_VarAtOffset(statements[i].a, (*pr_opcodes[statements[i].op].type_a)->size));
else
FS_Printf(asmfile, "\t%i", statements[i].a);
if (pr_opcodes[statements[i].op].type_b != &type_void)
{
if (pr_opcodes[statements[i].op].type_b)
FS_Printf(asmfile, ",\t%s", PR_VarAtOffset(statements[i].b, (*pr_opcodes[statements[i].op].type_b)->size));
else
FS_Printf(asmfile, ",\t%i", statements[i].b);
if (pr_opcodes[statements[i].op].type_c != &type_void && pr_opcodes[statements[i].op].associative==ASSOC_LEFT)
{
if (pr_opcodes[statements[i].op].type_c)
FS_Printf(asmfile, ",\t%s", PR_VarAtOffset(statements[i].c, (*pr_opcodes[statements[i].op].type_c)->size));
else
FS_Printf(asmfile, ",\t%i", statements[i].c);
}
}
else
{
if (pr_opcodes[statements[i].op].type_c != &type_void)
{
if (pr_opcodes[statements[i].op].type_c)
FS_Printf(asmfile, ",\t%s", PR_VarAtOffset(statements[i].c, (*pr_opcodes[statements[i].op].type_c)->size));
else
FS_Printf(asmfile, ",\t%i", statements[i].c);
}
}
}
FS_Printf(asmfile, ";\n");
}
FS_Printf(asmfile, "}\n\n");
}
/*
============
PR_ParseImmediateStatements
Parse a function body
============
*/
function_t *PR_ParseImmediateStatements (type_t *type)
{
int i;
function_t *f;
def_t *defs[MAX_PARMS+MAX_PARMS_EXTRA], *e2;
type_t *parm;
bool needsdone=false;
freeoffset_t *oldfofs;
conditional = 0;
f = (void *)Qalloc (sizeof(function_t));
//
// check for builtin function definition #1, #2, etc
//
// hexenC has void name() : 2;
if (PR_CheckToken ("#") || PR_CheckToken (":"))
{
if (pr_token_type != tt_immediate
|| pr_immediate_type != type_float
|| pr_immediate._float != (int)pr_immediate._float)
PR_ParseError (ERR_BADBUILTINIMMEDIATE, "Bad builtin immediate");
f->builtin = (int)pr_immediate._float;
PR_Lex ();
locals_start = locals_end = OFS_PARM0; //hmm...
return f;
}
if (type->num_parms < 0)
PR_ParseError (ERR_FUNCTIONWITHVARGS, "QC function with variable arguments and function body");
f->builtin = 0;
//
// define the parms
//
locals_start = locals_end = numpr_globals;
oldfofs = freeofs;
freeofs = NULL;
parm = type->param;
for (i=0 ; i<type->num_parms ; i++)
{
if (!*pr_parm_names[i])
PR_ParseError(ERR_PARAMWITHNONAME, "Parameter is not named");
defs[i] = PR_GetDef (parm, pr_parm_names[i], pr_scope, true, 1);
defs[i]->references++;
if (i < MAX_PARMS)
{
f->parm_ofs[i] = defs[i]->ofs;
if (i > 0 && f->parm_ofs[i] < f->parm_ofs[i-1])
Sys_Error ("bad parm order");
if (i > 0 && f->parm_ofs[i] != f->parm_ofs[i-1]+defs[i-1]->type->size)
Sys_Error ("parms not packed");
}
parm = parm->next;
}
if (type->num_parms)
locals_start = locals_end = defs[0]->ofs;
freeofs = oldfofs;
f->code = numstatements;
if (type->num_parms > MAX_PARMS)
{
for (i = MAX_PARMS; i < type->num_parms; i++)
{
if (!extra_parms[i - MAX_PARMS])
{
e2 = (def_t *) Qalloc (sizeof(def_t));
e2->name = "extra parm";
e2->ofs = PR_GetFreeOffsetSpace(3);
extra_parms[i - MAX_PARMS] = e2;
}
extra_parms[i - MAX_PARMS]->type = defs[i]->type;
if (defs[i]->type->type != ev_vector)
PR_Statement (&pr_opcodes[OP_STORE_F], extra_parms[i - MAX_PARMS], defs[i], NULL);
else
PR_Statement (&pr_opcodes[OP_STORE_V], extra_parms[i - MAX_PARMS], defs[i], NULL);
}
}
PR_RemapLockedTemps(-1, -1);
/*if (pr_classtype)
{
def_t *e, *e2;
e = PR_GetDef(pr_classtype, "__oself", pr_scope, true, 1);
e2 = PR_GetDef(type_entity, "self", NULL, true, 1);
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_ENT], PR_DummyDef(pr_classtype, "self", pr_scope, 1, e2->ofs, false), e, NULL));
}*/
// check for a state opcode
if (PR_CheckToken ("[")) PR_ParseState ();
if (PR_CheckKeyword (keyword_asm, "asm"))
{
PR_Expect ("{");
while (!PR_CheckToken("}"))
PR_ParseAsm ();
}
else
{
PR_Expect ("{");
// parse regular statements
while (!PR_CheckToken("}"))
{
PR_ParseStatement ();
PR_FreeTemps();
}
}
PR_FreeTemps();
// this is cheap
// if (type->aux_type->type)
// if (statements[numstatements - 1].op != OP_RETURN)
// PR_ParseWarning(WARN_MISSINGRETURN, "%s: not all control paths return a value", pr_scope->name );
if (f->code == numstatements)
needsdone = true;
else if (statements[numstatements - 1].op != OP_RETURN && statements[numstatements - 1].op != OP_DONE)
needsdone = true;
if (num_gotos)
{
int j;
for (i = 0; i < num_gotos; i++)
{
for (j = 0; j < num_labels; j++)
{
if (!strcmp(pr_gotos[i].name, pr_labels[j].name))
{
if (!pr_opcodes[statements[pr_gotos[i].statementno].op].type_a)
statements[pr_gotos[i].statementno].a += pr_labels[j].statementno - pr_gotos[i].statementno;
else if (!pr_opcodes[statements[pr_gotos[i].statementno].op].type_b)
statements[pr_gotos[i].statementno].b += pr_labels[j].statementno - pr_gotos[i].statementno;
else
statements[pr_gotos[i].statementno].c += pr_labels[j].statementno - pr_gotos[i].statementno;
break;
}
}
if (j == num_labels)
{
num_gotos = 0;
PR_ParseError(ERR_NOLABEL, "Goto statement with no matching label \"%s\"", pr_gotos[i].name);
}
}
num_gotos = 0;
}
if (opt_return_only && !needsdone)
needsdone = PR_FuncJumpsTo(f->code, numstatements, numstatements);
// emit an end of statements opcode
if (!opt_return_only || needsdone)
{
/*if (pr_classtype)
{
def_t *e, *e2;
e = PR_GetDef(NULL, "__oself", pr_scope, false, 0);
e2 = PR_GetDef(NULL, "self", NULL, false, 0);
PR_FreeTemp(PR_Statement(&pr_opcodes[OP_STORE_ENT], e, PR_DummyDef(pr_classtype, "self", pr_scope, 1, e2->ofs, false), NULL));
}*/
PR_Statement (pr_opcodes, 0,0, NULL);
}
else
optres_return_only++;
PR_CheckForDeadAndMissingReturns(f->code, numstatements, type->aux_type->type);
if (opt_compound_jumps)
PR_CompoundJumps(f->code, numstatements);
// if (opt_comexprremoval)
// PR_CommonSubExpressionRemoval(f->code, numstatements);
PR_RemapLockedTemps(f->code, numstatements);
locals_end = numpr_globals;
PR_WriteAsmFunction(pr_scope, f->code, locals_start);
PR_Marshal_Locals(f->code, numstatements);
if (num_labels)
num_labels = 0;
if (num_continues)
{
num_continues=0;
PR_ParseError(ERR_ILLEGALCONTINUES, "%s: function contains illegal continues\n", pr_scope->name);
}
if (num_breaks)
{
num_breaks=0;
PR_ParseError(ERR_ILLEGALBREAKS, "%s: function contains illegal breaks\n", pr_scope->name);
}
if (num_cases)
{
num_cases = 0;
PR_ParseError(ERR_ILLEGALCASES, "%s: function contains illegal cases\n", pr_scope->name);
}
return f;
}
void PR_ArrayRecurseDivideRegular(def_t *array, def_t *index, int min, int max)
{
dstatement_t *st;
def_t *eq;
if (min == max || min+1 == max)
{
eq = PR_Statement(pr_opcodes+OP_LT, index, PR_MakeFloatDef(min+0.5f), NULL);
PR_UnFreeTemp(index);
PR_FreeTemp(PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st));
st->b = 2;
PR_Statement(pr_opcodes+OP_RETURN, 0, 0, &st);
st->a = array->ofs + min*array->type->size;
}
else
{
int mid = min + (max-min)/2;
if (max-min>4)
{
eq = PR_Statement(pr_opcodes+OP_LT, index, PR_MakeFloatDef(mid+0.5f), NULL);
PR_UnFreeTemp(index);
PR_FreeTemp(PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st));
}
else
st = NULL;
PR_ArrayRecurseDivideRegular(array, index, min, mid);
if (st)
st->b = numstatements - (st-statements);
PR_ArrayRecurseDivideRegular(array, index, mid, max);
}
}
//the idea here is that we return a vector, the caller then figures out the extra 3rd.
//This is useful when we have a load of indexes.
void PR_ArrayRecurseDivideUsingVectors(def_t *array, def_t *index, int min, int max)
{
dstatement_t *st;
def_t *eq;
if (min == max || min+1 == max)
{
eq = PR_Statement(pr_opcodes+OP_LT, index, PR_MakeFloatDef(min+0.5f), NULL);
PR_UnFreeTemp(index);
PR_FreeTemp(PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st));
st->b = 2;
PR_Statement(pr_opcodes+OP_RETURN, 0, 0, &st);
st->a = array->ofs + min*3;
}
else
{
int mid = min + (max-min)/2;
if (max-min>4)
{
eq = PR_Statement(pr_opcodes+OP_LT, index, PR_MakeFloatDef(mid+0.5f), NULL);
PR_UnFreeTemp(index);
PR_FreeTemp(PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st));
}
else
st = NULL;
PR_ArrayRecurseDivideUsingVectors(array, index, min, mid);
if (st)
st->b = numstatements - (st-statements);
PR_ArrayRecurseDivideUsingVectors(array, index, mid, max);
}
}
//returns a vector overlapping the result needed.
def_t *PR_EmitArrayGetVector(def_t *array)
{
dfunction_t *df;
def_t *temp, *index, *func;
func = PR_GetDef(type_function, va("ArrayGetVec*%s", array->name), NULL, true, 1);
pr_scope = func;
df = &functions[numfunctions];
numfunctions++;
df->s_file = 0;
df->s_name = PR_CopyString(func->name);
df->first_statement = numstatements;
df->parm_size[0] = 1;
df->numparms = 1;
df->parm_start = numpr_globals;
index = PR_GetDef(type_float, "index___", func, true, 1);
index->references++;
temp = PR_GetDef(type_float, "div3___", func, true, 1);
locals_end = numpr_globals;
df->locals = locals_end - df->parm_start;
PR_Statement3(pr_opcodes+OP_DIV_F, index, PR_MakeFloatDef(3), temp, false);
PR_Statement3(pr_opcodes+OP_BITAND, temp, temp, temp, false);//round down to int
PR_ArrayRecurseDivideUsingVectors(array, temp, 0, (array->arraysize+2)/3); //round up
PR_Statement(pr_opcodes+OP_RETURN, PR_MakeFloatDef(0), 0, NULL); //err... we didn't find it, give up.
PR_Statement(pr_opcodes+OP_DONE, 0, 0, NULL); //err... we didn't find it, give up.
G_FUNCTION(func->ofs) = df - functions;
func->initialized = 1;
return func;
}
void PR_EmitArrayGetFunction(def_t *scope, char *arrayname)
{
def_t *vectortrick;
dfunction_t *df;
def_t *def, *index;
dstatement_t *st;
def_t *eq;
def_t *fasttrackpossible;
if (flag_fasttrackarrays)
fasttrackpossible = PR_GetDef(type_float, "__ext__fasttrackarrays", NULL, true, 1);
else
fasttrackpossible = NULL;
def = PR_GetDef(NULL, arrayname, NULL, false, 0);
if (def->arraysize >= 15 && def->type->size == 1)
{
vectortrick = PR_EmitArrayGetVector(def);
}
else
vectortrick = NULL;
pr_scope = scope;
df = &functions[numfunctions];
numfunctions++;
df->s_file = 0;
df->s_name = PR_CopyString(scope->name);
df->first_statement = numstatements;
df->parm_size[0] = 1;
df->numparms = 1;
df->parm_start = numpr_globals;
index = PR_GetDef(type_float, "indexg___", def, true, 1);
G_FUNCTION(scope->ofs) = df - functions;
if (fasttrackpossible)
{
PR_Statement(pr_opcodes+OP_IFNOT, fasttrackpossible, NULL, &st);
//fetch_gbl takes: (float size, variant array[]), float index, variant pos
//note that the array size is coded into the globals, one index before the array.
// def->ofs--;
if (def->type->size >= 3)
PR_Statement3(&pr_opcodes[OP_FETCH_GBL_V], def, index, &def_ret, true);
else
PR_Statement3(&pr_opcodes[OP_FETCH_GBL_F], def, index, &def_ret, true);
// def->ofs++;
//finish the jump
st->b = &statements[numstatements] - st;
}
if (vectortrick)
{
def_t *div3, *intdiv3, *ret;
//okay, we've got a function to retrieve the var as part of a vector.
//we need to work out which part, x/y/z that it's stored in.
//0,1,2 = i - ((int)i/3 *) 3;
div3 = PR_GetDef(type_float, "div3___", def, true, 1);
intdiv3 = PR_GetDef(type_float, "intdiv3___", def, true, 1);
eq = PR_Statement(pr_opcodes+OP_GE, index, PR_MakeFloatDef((float)def->arraysize), NULL); //escape clause - should call some sort of error function instead.. that'd rule!
PR_FreeTemp(PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st));
st->b = 2;
PR_Statement(pr_opcodes+OP_RETURN, PR_MakeFloatDef(0), 0, &st);
div3->references++;
PR_Statement3(pr_opcodes+OP_BITAND, index, index, index, false);
PR_Statement3(pr_opcodes+OP_DIV_F, index, PR_MakeFloatDef(3), div3, false);
PR_Statement3(pr_opcodes+OP_BITAND, div3, div3, intdiv3, false);
PR_Statement3(pr_opcodes+OP_STORE_F, index, &def_parms[0], NULL, false);
PR_Statement3(pr_opcodes+OP_CALL1, vectortrick, NULL, NULL, false);
vectortrick->references++;
ret = PR_GetDef(type_vector, "vec__", pr_scope, true, 1);
ret->references+=4;
PR_Statement3(pr_opcodes+OP_STORE_V, &def_ret, ret, NULL, false);
div3 = PR_Statement(pr_opcodes+OP_MUL_F, intdiv3, PR_MakeFloatDef(3), NULL);
PR_Statement3(pr_opcodes+OP_SUB_F, index, div3, index, false);
PR_FreeTemp(div3);
eq = PR_Statement(pr_opcodes+OP_LT, index, PR_MakeFloatDef(0+0.5f), NULL);
PR_FreeTemp(PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st));
st->b = 2;
PR_Statement(pr_opcodes+OP_RETURN, 0, 0, &st);
st->a = ret->ofs + 0;
eq = PR_Statement(pr_opcodes+OP_LT, index, PR_MakeFloatDef(1+0.5f), NULL);
PR_FreeTemp(PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st));
st->b = 2;
PR_Statement(pr_opcodes+OP_RETURN, 0, 0, &st);
st->a = ret->ofs + 1;
eq = PR_Statement(pr_opcodes+OP_LT, index, PR_MakeFloatDef(2+0.5), NULL);
PR_FreeTemp(PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st));
st->b = 2;
PR_Statement(pr_opcodes+OP_RETURN, 0, 0, &st);
st->a = ret->ofs + 2;
PR_FreeTemp(ret);
PR_FreeTemp(index);
}
else
{
PR_Statement3(pr_opcodes+OP_BITAND, index, index, index, false);
PR_ArrayRecurseDivideRegular(def, index, 0, def->arraysize);
}
PR_Statement(pr_opcodes+OP_RETURN, PR_MakeFloatDef(0), 0, NULL);
PR_Statement(pr_opcodes+OP_DONE, 0, 0, NULL);
locals_end = numpr_globals;
df->locals = locals_end - df->parm_start;
PR_WriteAsmFunction(pr_scope, df->first_statement, df->parm_start);
PR_FreeTemps();
}
void PR_ArraySetRecurseDivide(def_t *array, def_t *index, def_t *value, int min, int max)
{
dstatement_t *st;
def_t *eq;
if (min == max || min+1 == max)
{
eq = PR_Statement(pr_opcodes+OP_EQ_F, index, PR_MakeFloatDef((float)min), NULL);
PR_UnFreeTemp(index);
PR_FreeTemp(PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st));
st->b = 3;
if (array->type->size == 3)
PR_Statement(pr_opcodes+OP_STORE_V, value, array, &st);
else
PR_Statement(pr_opcodes+OP_STORE_F, value, array, &st);
st->b = array->ofs + min*array->type->size;
PR_Statement(pr_opcodes+OP_RETURN, 0, 0, &st);
}
else
{
int mid = min + (max-min)/2;
if (max-min>4)
{
eq = PR_Statement(pr_opcodes+OP_LT, index, PR_MakeFloatDef((float)mid), NULL);
PR_UnFreeTemp(index);
PR_FreeTemp(PR_Statement(pr_opcodes+OP_IFNOT, eq, 0, &st));
}
else
st = NULL;
PR_ArraySetRecurseDivide(array, index, value, min, mid);
if (st)
st->b = numstatements - (st-statements);
PR_ArraySetRecurseDivide(array, index, value, mid, max);
}
}
void PR_EmitArraySetFunction(def_t *scope, char *arrayname)
{
dfunction_t *df;
def_t *def, *index, *value;
def_t *fasttrackpossible;
if (flag_fasttrackarrays)
fasttrackpossible = PR_GetDef(NULL, "__ext__fasttrackarrays", NULL, true, 1);
else
fasttrackpossible = NULL;
def = PR_GetDef(NULL, arrayname, NULL, false, 0);
pr_scope = scope;
df = &functions[numfunctions];
numfunctions++;
df->s_file = 0;
df->s_name = PR_CopyString(scope->name);
df->first_statement = numstatements;
df->parm_size[0] = 1;
df->parm_size[1] = def->type->size;
df->numparms = 2;
df->parm_start = numpr_globals;
index = PR_GetDef(type_float, "indexs___", def, true, 1);
value = PR_GetDef(def->type, "value___", def, true, 1);
locals_end = numpr_globals;
df->locals = locals_end - df->parm_start;
G_FUNCTION(scope->ofs) = df - functions;
if (fasttrackpossible)
{
dstatement_t *st;
PR_Statement(pr_opcodes+OP_IFNOT, fasttrackpossible, NULL, &st);
//note that the array size is coded into the globals, one index before the array.
PR_Statement3(&pr_opcodes[OP_CONV_FTOI], index, NULL, index, true); //address stuff is integer based, but standard qc (which this accelerates in supported engines) only supports floats
PR_SimpleStatement (OP_BOUNDCHECK, index->ofs, ((int*)pr_globals)[def->ofs-1], 0, true);//annoy the programmer. :p
if (def->type->size != 1)//shift it upwards for larger types
PR_Statement3(&pr_opcodes[OP_MUL_I], index, PR_MakeIntDef(def->type->size), index, true);
PR_Statement3(&pr_opcodes[OP_GLOBALADDRESS], def, index, index, true); //comes with built in add
if (def->type->size >= 3)
PR_Statement3(&pr_opcodes[OP_STOREP_V], value, index, NULL, true); //*b = a
else
PR_Statement3(&pr_opcodes[OP_STOREP_F], value, index, NULL, true);
//finish the jump
st->b = &statements[numstatements] - st;
}
PR_Statement3(pr_opcodes+OP_BITAND, index, index, index, false);
PR_ArraySetRecurseDivide(def, index, value, 0, def->arraysize);
PR_Statement(pr_opcodes+OP_DONE, 0, 0, NULL);
PR_WriteAsmFunction(pr_scope, df->first_statement, df->parm_start);
PR_FreeTemps();
}
//register a def, and all of it's sub parts.
//only the main def is of use to the compiler.
//the subparts are emitted to the compiler and allow correct saving/loading
//be careful with fields, this doesn't allocated space, so will it allocate fields. It only creates defs at specified offsets.
def_t *PR_DummyDef(type_t *type, char *name, def_t *scope, int arraysize, unsigned int ofs, int referable)
{
char array[64];
char newname[256];
int a;
def_t *def, *first=NULL;
#define KEYWORD(x) if (!STRCMP(name, #x) && keyword_##x) {if (keyword_##x)PR_ParseWarning(WARN_KEYWORDDISABLED, "\""#x"\" keyword used as variable name%s", keywords_coexist?" - coexisting":" - disabling");keyword_##x=keywords_coexist;}
if (name)
{
KEYWORD(var);
KEYWORD(thinktime);
KEYWORD(for);
KEYWORD(switch);
KEYWORD(case);
KEYWORD(default);
KEYWORD(goto);
if (type->type != ev_function)
KEYWORD(break);
KEYWORD(continue);
KEYWORD(state);
KEYWORD(string);
if (targetformat != QCF_HEXEN2)
KEYWORD(float); //hmm... hexen2 requires this...
KEYWORD(entity);
KEYWORD(vector);
KEYWORD(const);
KEYWORD(asm);
}
for (a = 0; a < arraysize; a++)
{
if (a == 0)
*array = '\0';
else
sprintf(array, "[%i]", a);
if (name)
sprintf(newname, "%s%s", name, array);
else
*newname = *"";
// allocate a new def
def = (void *)Qalloc (sizeof(def_t));
memset (def, 0, sizeof(*def));
def->next = NULL;
def->arraysize = arraysize;
if (name)
{
pr.def_tail->next = def;
pr.def_tail = def;
}
if (a > 0)
def->references++;
def->s_line = pr_source_line;
def->s_file = s_file;
def->name = (void *)Qalloc (strlen(newname)+1);
strcpy (def->name, newname);
def->type = type;
def->scope = scope;
// if (arraysize>1)
def->constant = true;
if (ofs + type->size*a >= MAX_REGS)
Sys_Error("MAX_REGS is too small");
def->ofs = ofs + type->size*a;
if (!first)
first = def;
// Msg("Emited %s\n", newname);
if (type->type == ev_struct)
{
int partnum;
type_t *parttype;
parttype = type->param;
for (partnum = 0; partnum < type->num_parms; partnum++)
{
switch (parttype->type)
{
case ev_vector:
sprintf(newname, "%s%s.%s", name, array, parttype->name);
PR_DummyDef(parttype, newname, scope, 1, ofs + type->size*a + parttype->ofs, false);
sprintf(newname, "%s%s.%s_x", name, array, parttype->name);
PR_DummyDef(type_float, newname, scope, 1, ofs + type->size*a + parttype->ofs, false);
sprintf(newname, "%s%s.%s_y", name, array, parttype->name);
PR_DummyDef(type_float, newname, scope, 1, ofs + type->size*a + parttype->ofs+1, false);
sprintf(newname, "%s%s.%s_z", name, array, parttype->name);
PR_DummyDef(type_float, newname, scope, 1, ofs + type->size*a + parttype->ofs+2, false);
break;
case ev_float:
case ev_string:
case ev_entity:
case ev_field:
case ev_pointer:
case ev_integer:
case ev_struct:
case ev_union:
case ev_variant: //for lack of any better alternative
sprintf(newname, "%s%s.%s", name, array, parttype->name);
PR_DummyDef(parttype, newname, scope, 1, ofs + type->size*a + parttype->ofs, false);
break;
case ev_function:
sprintf(newname, "%s%s.%s", name, array, parttype->name);
PR_DummyDef(parttype, newname, scope, 1, ofs + type->size*a +parttype->ofs, false)->initialized = true;
break;
case ev_void:
break;
}
parttype=parttype->next;
}
}
else if (type->type == ev_vector)
{ //do the vector thing.
sprintf(newname, "%s%s_x", name, array);
PR_DummyDef(type_float, newname, scope, 1, ofs + type->size*a+0, referable);
sprintf(newname, "%s%s_y", name, array);
PR_DummyDef(type_float, newname, scope, 1, ofs + type->size*a+1, referable);
sprintf(newname, "%s%s_z", name, array);
PR_DummyDef(type_float, newname, scope, 1, ofs + type->size*a+2, referable);
}
else if (type->type == ev_field)
{
if (type->aux_type->type == ev_vector)
{
//do the vector thing.
sprintf(newname, "%s%s_x", name, array);
PR_DummyDef(type_floatfield, newname, scope, 1, ofs + type->size*a+0, referable);
sprintf(newname, "%s%s_y", name, array);
PR_DummyDef(type_floatfield, newname, scope, 1, ofs + type->size*a+1, referable);
sprintf(newname, "%s%s_z", name, array);
PR_DummyDef(type_floatfield, newname, scope, 1, ofs + type->size*a+2, referable);
}
}
}
if (referable)
{
if (!pHash_Get(&globalstable, "end_sys_fields"))
first->references++; //anything above needs to be left in, and so warning about not using it is just going to pee people off.
if (arraysize <= 1)
first->constant = false;
if (scope)
pHash_Add(&localstable, first->name, first, Qalloc(sizeof(bucket_t)));
else
pHash_Add(&globalstable, first->name, first, Qalloc(sizeof(bucket_t)));
if (!scope && asmfile)
FS_Printf(asmfile, "%s %s;\n", TypeName(first->type), first->name);
}
return first;
}
/*
============
PR_GetDef
If type is NULL, it will match any type
If allocate is true, a new def will be allocated if it can't be found
============
*/
def_t *PR_GetDef (type_t *type, char *name, def_t *scope, bool allocate, int arraysize)
{
int ofs;
def_t *def;
// char element[MAX_NAME];
unsigned int i;
if (scope)
{
def = Hash_Get(&localstable, name);
while(def)
{
if ( def->scope && def->scope != scope)
{
def = Hash_GetNext(&localstable, name, def);
continue; // in a different function
}
if (type && typecmp(def->type, type))
PR_ParseError (ERR_TYPEMISMATCHREDEC, "Type mismatch on redeclaration of %s. %s, should be %s",name, TypeName(type), TypeName(def->type));
if (def->arraysize != arraysize && arraysize)
PR_ParseError (ERR_TYPEMISMATCHARRAYSIZE, "Array sizes for redecleration of %s do not match",name);
if (allocate && scope)
{
PR_ParseWarning (WARN_DUPLICATEDEFINITION, "%s duplicate definition ignored", name);
PR_ParsePrintDef(WARN_DUPLICATEDEFINITION, def);
// if (!scope)
// PR_ParsePrintDef(def);
}
return def;
}
}
def = Hash_Get(&globalstable, name);
while(def)
{
if ( def->scope && def->scope != scope)
{
def = Hash_GetNext(&globalstable, name, def);
continue; // in a different function
}
if (type && typecmp(def->type, type))
{
if (!pr_scope)
PR_ParseError (ERR_TYPEMISMATCHREDEC, "Type mismatch on redeclaration of %s. %s, should be %s",name, TypeName(type), TypeName(def->type));
}
if (def->arraysize != arraysize && arraysize)
PR_ParseError (ERR_TYPEMISMATCHARRAYSIZE, "Array sizes for redecleration of %s do not match",name);
if (allocate && scope)
{
if (pr_scope)
{ //warn? or would that be pointless?
def = Hash_GetNext(&globalstable, name, def);
continue; // in a different function
}
PR_ParseWarning (WARN_DUPLICATEDEFINITION, "%s duplicate definition ignored", name);
PR_ParsePrintDef(WARN_DUPLICATEDEFINITION, def);
// if (!scope)
// PR_ParsePrintDef(def);
}
return def;
}
if (pHash_Get != &Hash_Get && !allocate) //do we want to try case insensative too?
{
if (scope)
{
def = pHash_Get(&localstable, name);
while(def)
{
if ( def->scope && def->scope != scope)
{
def = pHash_GetNext(&localstable, name, def);
continue; // in a different function
}
if (type && typecmp(def->type, type))
PR_ParseError (ERR_TYPEMISMATCHREDEC, "Type mismatch on redeclaration of %s. %s, should be %s",name, TypeName(type), TypeName(def->type));
if (def->arraysize != arraysize && arraysize)
PR_ParseError (ERR_TYPEMISMATCHARRAYSIZE, "Array sizes for redecleration of %s do not match",name);
if (allocate && scope)
{
PR_ParseWarning (WARN_DUPLICATEDEFINITION, "%s duplicate definition ignored", name);
PR_ParsePrintDef(WARN_DUPLICATEDEFINITION, def);
// if (!scope)
// PR_ParsePrintDef(def);
}
return def;
}
}
def = pHash_Get(&globalstable, name);
while(def)
{
if ( def->scope && def->scope != scope)
{
def = pHash_GetNext(&globalstable, name, def);
continue; // in a different function
}
if (type && typecmp(def->type, type))
{
if (!pr_scope)
PR_ParseError (ERR_TYPEMISMATCHREDEC, "Type mismatch on redeclaration of %s. %s, should be %s",name, TypeName(type), TypeName(def->type));
}
if (def->arraysize != arraysize && arraysize)
PR_ParseError (ERR_TYPEMISMATCHARRAYSIZE, "Array sizes for redecleration of %s do not match",name);
if (allocate && scope)
{
if (pr_scope)
{ //warn? or would that be pointless?
def = pHash_GetNext(&globalstable, name, def);
continue; // in a different function
}
PR_ParseWarning (WARN_DUPLICATEDEFINITION, "%s duplicate definition ignored", name);
PR_ParsePrintDef(WARN_DUPLICATEDEFINITION, def);
// if (!scope)
// PR_ParsePrintDef(def);
}
return def;
}
}
if (!allocate)
return NULL;
if (arraysize < 1)
{
PR_ParseError (ERR_ARRAYNEEDSSIZE, "First declaration of array %s with no size",name);
}
if (scope)
{
if (PR_GetDef(type, name, NULL, false, arraysize))
PR_ParseWarning(WARN_SAMENAMEASGLOBAL, "Local \"%s\" defined with name of a global", name);
}
ofs = numpr_globals;
if (arraysize > 1)
{ //write the array size
ofs = PR_GetFreeOffsetSpace(1 + (type->size * arraysize));
((int *)pr_globals)[ofs] = arraysize-1; //An array needs the size written first. This is a hexen2 opcode thing.
ofs++;
}
else
ofs = PR_GetFreeOffsetSpace(type->size * arraysize);
def = PR_DummyDef(type, name, scope, arraysize, ofs, true);
//fix up fields.
if (type->type == ev_field && allocate != 2)
{
for (i = 0; i < type->size*arraysize; i++) //make arrays of fields work.
*(int *)&pr_globals[def->ofs+i] = pr.size_fields+i;
pr.size_fields += i;
}
if (scope)
{
def->nextlocal = pr.localvars;
pr.localvars = def;
def->local = true;
}
return def;
}
def_t *PR_DummyFieldDef(type_t *type, char *name, def_t *scope, int arraysize, unsigned int *fieldofs)
{
char array[64];
char newname[256];
int a, parms;
def_t *def, *first=NULL;
unsigned int maxfield, startfield;
type_t *ftype;
bool isunion;
startfield = *fieldofs;
maxfield = startfield;
for (a = 0; a < arraysize; a++)
{
if (a == 0)
*array = '\0';
else
sprintf(array, "[%i]", a);
if (*name)
{
sprintf(newname, "%s%s", name, array);
// allocate a new def
def = (void *)Qalloc (sizeof(def_t));
memset (def, 0, sizeof(*def));
def->next = NULL;
def->arraysize = arraysize;
pr.def_tail->next = def;
pr.def_tail = def;
def->s_line = pr_source_line;
def->s_file = s_file;
def->name = (void *)Qalloc (strlen(newname)+1);
strcpy (def->name, newname);
def->type = type;
def->scope = scope;
def->ofs = PR_GetFreeOffsetSpace(1);
((int *)pr_globals)[def->ofs] = *fieldofs;
*fieldofs++;
if (!first)
first = def;
}
else
{
def=NULL;
}
// Msg("Emited %s\n", newname);
if ((type)->type == ev_struct||(type)->type == ev_union)
{
int partnum;
type_t *parttype;
if (def)
def->references++;
parttype = (type)->param;
isunion = ((type)->type == ev_union);
for (partnum = 0, parms = (type)->num_parms; partnum < parms; partnum++)
{
switch (parttype->type)
{
case ev_union:
case ev_struct:
if (*name)
sprintf(newname, "%s%s.%s", name, array, parttype->name);
else
sprintf(newname, "%s%s", parttype->name, array);
def = PR_DummyFieldDef(parttype, newname, scope, 1, fieldofs);
break;
case ev_float:
case ev_string:
case ev_vector:
case ev_entity:
case ev_field:
case ev_pointer:
case ev_integer:
case ev_variant:
if (*name)
sprintf(newname, "%s%s.%s", name, array, parttype->name);
else
sprintf(newname, "%s%s", parttype->name, array);
ftype = PR_NewType("FIELD TYPE", ev_field);
ftype->aux_type = parttype;
if (parttype->type == ev_vector)
ftype->size = parttype->size; //vector fields create a _y and _z too, so we need this still.
def = PR_GetDef(NULL, newname, scope, false, 1);
if (!def)
{
def = PR_GetDef(ftype, newname, scope, true, 1);
}
else
{
PR_ParseWarning(WARN_CONFLICTINGUNIONMEMBER, "conflicting offsets for union/struct expansion of %s. Ignoring new def.", newname);
PR_ParsePrintDef(WARN_CONFLICTINGUNIONMEMBER, def);
}
break;
case ev_function:
if (*name)
sprintf(newname, "%s%s.%s", name, array, parttype->name);
else
sprintf(newname, "%s%s", parttype->name, array);
ftype = PR_NewType("FIELD TYPE", ev_field);
ftype->aux_type = parttype;
def = PR_GetDef(ftype, newname, scope, true, 1);
def->initialized = true;
((int *)pr_globals)[def->ofs] = *fieldofs;
*fieldofs += parttype->size;
break;
case ev_void:
break;
}
if (*fieldofs > maxfield)
maxfield = *fieldofs;
if (isunion)
*fieldofs = startfield;
type = parttype;
parttype=parttype->next;
}
}
}
*fieldofs = maxfield; //final size of the union.
return first;
}
void PR_ExpandUnionToFields(type_t *type, int *fields)
{
type_t *pass = type->aux_type;
PR_DummyFieldDef(pass, "", pr_scope, 1, fields);
}
int accglobalsblock; //0 = error, 1 = var, 2 = function, 3 = objdata
/*
================
PR_ParseDefs
Called at the outer layer and when a local statement is hit
================
*/
void PR_ParseDefs (char *classname)
{
char *name;
type_t *type, *parm;
def_t *def, *d;
function_t *f;
dfunction_t *df;
int i;
bool shared=false;
bool externfnc=false;
bool isconstant = false;
bool isvar = false;
bool noref = false;
bool nosave = false;
bool allocatenew = true;
int ispointer;
gofs_t oldglobals;
int arraysize;
if (PR_CheckKeyword(keyword_enum, "enum"))
{
float v = 0;
PR_Expect("{");
i = 0;
d = NULL;
while(1)
{
name = PR_ParseName();
if (PR_CheckToken("="))
{
if (pr_token_type != tt_immediate && pr_immediate_type->type != ev_float)
{
def = PR_GetDef(NULL, PR_ParseName(), NULL, false, 0);
if (def)
{
if (!def->constant)
PR_ParseError(ERR_NOTANUMBER, "enum - %s is not a constant", def->name);
else
v = G_FLOAT(def->ofs);
}
else
PR_ParseError(ERR_NOTANUMBER, "enum - not a number");
}
else
{
v = pr_immediate._float;
PR_Lex();
}
}
def = PR_MakeFloatDef(v);
pHash_Add(&globalstable, name, def, Qalloc(sizeof(bucket_t)));
v++;
if (PR_CheckToken("}"))
break;
PR_Expect(",");
}
PR_Expect(";");
return;
}
if (PR_CheckKeyword(keyword_enumflags, "enumflags"))
{
float v = 1;
int bits;
PR_Expect("{");
i = 0;
d = NULL;
while(1)
{
name = PR_ParseName();
if (PR_CheckToken("="))
{
if (pr_token_type != tt_immediate && pr_immediate_type->type != ev_float)
{
def = PR_GetDef(NULL, PR_ParseName(), NULL, false, 0);
if (def)
{
if (!def->constant)
PR_ParseError(ERR_NOTANUMBER, "enumflags - %s is not a constant", def->name);
else
v = G_FLOAT(def->ofs);
}
else
PR_ParseError(ERR_NOTANUMBER, "enumflags - not a number");
}
else
{
v = pr_immediate._float;
PR_Lex();
}
}
bits = 0;
i = (int)v;
if (i != v)
PR_ParseWarning(WARN_ENUMFLAGS_NOTINTEGER, "enumflags - %f not an integer", v);
else
{
while(i)
{
if (((i>>1)<<1) != i)
bits++;
i>>=1;
}
if (bits != 1)
PR_ParseWarning(WARN_ENUMFLAGS_NOTBINARY, "enumflags - value %i not a single bit", (int)v);
}
def = PR_MakeFloatDef(v);
pHash_Add(&globalstable, name, def, Qalloc(sizeof(bucket_t)));
v*=2;
if (PR_CheckToken("}"))
break;
PR_Expect(",");
}
PR_Expect(";");
return;
}
if (PR_CheckKeyword (keyword_typedef, "typedef"))
{
type = PR_ParseType(true);
if (!type)
{
PR_ParseError(ERR_NOTANAME, "typedef found unexpected tokens");
}
type->name = PR_CopyString(pr_token)+strings;
PR_Lex();
PR_Expect(";");
return;
}
while(1)
{
if (PR_CheckKeyword(keyword_extern, "extern"))
externfnc=true;
else if (PR_CheckKeyword(keyword_shared, "shared"))
{
shared=true;
if (pr_scope)
PR_ParseError (ERR_NOSHAREDLOCALS, "Cannot have shared locals");
}
else if (PR_CheckKeyword(keyword_const, "const"))
isconstant = true;
else if (PR_CheckKeyword(keyword_var, "var"))
isvar = true;
else if (PR_CheckKeyword(keyword_noref, "noref"))
noref=true;
else if (PR_CheckKeyword(keyword_nosave, "nosave"))
nosave = true;
else
break;
}
type = PR_ParseType (false);
if (type == NULL) //ignore
return;
if (externfnc && type->type != ev_function)
{
Msg ("Only functions may be defined as external (yet)\n");
externfnc=false;
}
do
{
if (PR_CheckToken ("*"))
{
ispointer = 1;
while(PR_CheckToken ("*"))
ispointer++;
name = PR_ParseName ();
}
else if (PR_CheckToken (";"))
{
if (type->type == ev_field && (type->aux_type->type == ev_union || type->aux_type->type == ev_struct))
{
PR_ExpandUnionToFields(type, &pr.size_fields);
return;
}
// if (type->type == ev_union)
// {
// return;
// }
PR_ParseError (ERR_TYPEWITHNONAME, "type with no name");
name = NULL;
ispointer = false;
}
else
{
name = PR_ParseName ();
ispointer = false;
}
if (PR_CheckToken("::") && !classname)
{
classname = name;
name = PR_ParseName();
}
//check for an array
if ( PR_CheckToken ("[") )
{
char *oldprfile = pr_file_p;
arraysize = 0;
if (PR_CheckToken("]"))
{
PR_Expect("=");
PR_Expect("{");
PR_Lex();
arraysize++;
while(1)
{
if(pr_token_type == tt_eof)
break;
if (PR_CheckToken(","))
arraysize++;
if (PR_CheckToken("}"))
break;
PR_Lex();
}
pr_file_p = oldprfile;
PR_Lex();
}
else
{
def = PR_Expression(TOP_PRIORITY, true);
if (!def->constant)
PR_ParseError(ERR_BADARRAYSIZE, "Array size is not a constant value");
else if (def->type->type == ev_integer)
arraysize = G_INT(def->ofs);
else if (def->type->type == ev_float)
{
arraysize = (int)G_FLOAT(def->ofs);
if ((float)arraysize != G_FLOAT(def->ofs))
PR_ParseError(ERR_BADARRAYSIZE, "Array size is not a constant value");
}
else
PR_ParseError(ERR_BADARRAYSIZE, "Array size must be of int value");
/* if(pr_token_type == tt_name)
{
def = PR_GetDef(NULL, PR_ParseName(), pr_scope, false, 0);
if (def && def->arraysize==1)
{
if (def->type->type == ev_integer)
arraysize = G_INT(def->ofs);
else if (def->type->type == ev_float && (float)(int)G_FLOAT(def->ofs) == G_FLOAT(def->ofs))
arraysize = (int)G_FLOAT(def->ofs);
}
}
else if (pr_token_type == tt_immediate)
{
arraysize = atoi (pr_token);
PR_Lex();
}
*/ PR_Expect("]");
}
if (arraysize < 1)
{
PR_ParseError (ERR_BADARRAYSIZE, "Definition of array (%s) size is not of a numerical value", name);
arraysize=0; //grrr...
}
}
else
arraysize = 1;
if (PR_CheckToken("("))
type = PR_ParseFunctionType(false, type);
if (classname)
{
char *membername = name;
name = Qalloc(strlen(classname) + strlen(name) + 3);
sprintf(name, "%s::"MEMBERFIELDNAME, classname, membername);
if (!PR_GetDef(NULL, name, NULL, false, 0))
PR_ParseError(ERR_NOTANAME, "%s %s is not a member of class %s\n", TypeName(type), membername, classname);
sprintf(name, "%s::%s", classname, membername);
pr_classtype = TypeForName(classname);
if (!pr_classtype || !pr_classtype->parentclass)
PR_ParseError(ERR_NOTANAME, "%s is not a class\n", classname);
}
else
pr_classtype = NULL;
oldglobals = numpr_globals;
if (ispointer)
{
parm = type;
while(ispointer)
{
ispointer--;
parm = PR_PointerTypeTo(parm);
}
def = PR_GetDef (parm, name, pr_scope, allocatenew, arraysize);
}
else
def = PR_GetDef (type, name, pr_scope, allocatenew, arraysize);
if (!def)
PR_ParseError(ERR_NOTANAME, "%s is not part of class %s", name, classname);
if (noref)
def->references++;
if (nosave)
def->saved = false;
else def->saved = true;
if (!def->initialized && shared) //shared count as initiialised
{
def->shared = shared;
def->initialized = true;
}
if (externfnc)
def->initialized = 2;
// check for an initialization
if (type->type == ev_function && (pr_scope))
{
if ( PR_CheckToken ("=") )
{
PR_ParseError (ERR_INITIALISEDLOCALFUNCTION, "local functions may not be initialised");
}
arraysize = def->arraysize;
d = def; //apply to ALL elements
while(arraysize--)
{
d->initialized = 1; //fake function
G_FUNCTION(d->ofs) = 0;
d = d->next;
}
continue;
}
if (type->type == ev_field && PR_CheckToken ("alias"))
{
PR_ParseError(ERR_INTERNAL, "FTEQCC does not support this variant of decompiled hexenc\nPlease obtain the original version released by Raven Software instead.");
name = PR_ParseName();
}
else if ( PR_CheckToken ("=") || ((type->type == ev_function) && (pr_token[0] == '{' || pr_token[0] == '[' || pr_token[0] == ':'))) //this is an initialisation (or a function)
{
if (def->shared)
PR_ParseError (ERR_SHAREDINITIALISED, "shared values may not be assigned an initial value", name);
if (def->initialized == 1)
{
if (def->type->type == ev_function)
{
i = G_FUNCTION(def->ofs);
df = &functions[i];
PR_ParseErrorPrintDef (ERR_REDECLARATION, def, "%s redeclared, prev instance is in %s", name, strings+df->s_file);
}
else
PR_ParseErrorPrintDef(ERR_REDECLARATION, def, "%s redeclared", name);
}
if (autoprototype)
{ //ignore the code and stuff
if (PR_CheckToken("["))
{
while (!PR_CheckToken("]"))
{
if (pr_token_type == tt_eof)
break;
PR_Lex();
}
}
if (PR_CheckToken("{"))
{
int blev = 1;
//balance out the { and }
while(blev)
{
if (pr_token_type == tt_eof)
break;
if (PR_CheckToken("{"))
blev++;
else if (PR_CheckToken("}"))
blev--;
else
PR_Lex(); //ignore it.
}
}
else
{
PR_CheckToken("#");
PR_Lex();
}
continue;
}
if (pr_token_type == tt_name)
{
unsigned int i;
if (def->arraysize>1)
PR_ParseError(ERR_ARRAYNEEDSBRACES, "Array initialisation requires curly braces");
d = PR_GetDef(NULL, pr_token, pr_scope, false, 0);
if (!d)
PR_ParseError(ERR_NOTDEFINED, "%s was not defined\n", name);
if (typecmp(def->type, d->type))
PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s", name);
for (i = 0; i < d->type->size; i++)
G_INT(def->ofs) = G_INT(d->ofs);
PR_Lex();
if (type->type == ev_function)
{
def->initialized = 1;
def->constant = !isvar;
}
continue;
}
else if (type->type == ev_function)
{
if (isvar)
def->constant = false;
else
def->constant = true;
if (PR_CheckToken("0"))
{
def->constant = 0;
def->initialized = 1; //fake function
G_FUNCTION(def->ofs) = 0;
continue;
}
if (!def->constant && arraysize==1)
{
def->constant = 0;
def->initialized = 1; //fake function
name = PR_ParseName ();
d = PR_GetDef (NULL, name, pr_scope, false, 0);
if (!d)
PR_ParseError(ERR_NOTDEFINED, "%s was not previously defined", name);
G_FUNCTION(def->ofs+i) = G_FUNCTION(d->ofs);
continue;
}
if (arraysize>1)
{
int i;
def->initialized = 1; //fake function
PR_Expect ("{");
i = 0;
do
{
if (PR_CheckToken("0"))
G_FUNCTION(def->ofs+i) = 0;
else
{
name = PR_ParseName ();
d = PR_GetDef (NULL, name, pr_scope, false, 0);
if (!d)
PR_ParseError(ERR_NOTDEFINED, "%s was not defined", name);
else
{
if (!d->initialized)
PR_ParseWarning(WARN_NOTDEFINED, "initialisation of function arrays must be placed after the body of all functions used (%s)", name);
G_FUNCTION(def->ofs+i) = G_FUNCTION(d->ofs);
}
}
i++;
} while(PR_CheckToken(","));
arraysize = def->arraysize;
d = def; //apply to ALL elements
while(arraysize--)
{
d->initialized = 1; //fake function
d = d->next;
}
PR_Expect("}");
if (i > def->arraysize)
PR_ParseError(ERR_TOOMANYINITIALISERS, "Too many initializers");
continue;
}
if (!def->constant)
PR_ParseError(0, "Initialised functions must be constant");
def->references++;
pr_scope = def;
f = PR_ParseImmediateStatements (type);
pr_scope = NULL;
def->initialized = 1;
G_FUNCTION(def->ofs) = numfunctions;
f->def = def;
// if (pr_dumpasm)
// PR_PrintFunction (def);
// fill in the dfunction
df = &functions[numfunctions];
numfunctions++;
if (f->builtin)
df->first_statement = -f->builtin;
else
df->first_statement = f->code;
if (f->builtin && opt_function_names)
optres_function_names += strlen(f->def->name);
else
df->s_name = PR_CopyString (f->def->name);
df->s_file = s_file2;
df->numparms = f->def->type->num_parms;
df->locals = locals_end - locals_start;
df->parm_start = locals_start;
for (i=0,parm = type->param ; i<df->numparms ; i++, parm = parm->next)
{
df->parm_size[i] = parm->size;
}
continue;
}
else if (type->type == ev_struct)
{
int arraypart, partnum;
type_t *parttype;
def->initialized = 1;
if (isvar)
def->constant = true;
else
def->constant = false;
// if (constant)
// PR_ParseError("const used on a struct isn't useful");
//FIXME: should do this recursivly
PR_Expect("{");
for (arraypart = 0; arraypart < arraysize; arraypart++)
{
parttype = type->param;
PR_Expect("{");
for (partnum = 0; partnum < type->num_parms; partnum++)
{
switch (parttype->type)
{
case ev_float:
case ev_integer:
case ev_vector:
if (pr_token_type == tt_punct)
{
if (PR_CheckToken("{"))
{
PR_Expect("}");
}
else
PR_ParseError(ERR_UNEXPECTEDPUNCTUATION, "Unexpected punctuation");
}
else if (pr_token_type == tt_immediate)
{
if (pr_immediate_type->type == ev_float && parttype->type == ev_integer)
G_INT(def->ofs + arraypart*type->size + parttype->ofs) = (int)pr_immediate._float;
else if (pr_immediate_type->type != parttype->type)
PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate subtype for %s.%s", def->name, parttype->name);
else
memcpy (pr_globals + def->ofs + arraypart*type->size + parttype->ofs, &pr_immediate, 4*type_size[pr_immediate_type->type]);
}
else if (pr_token_type == tt_name)
{
d = PR_GetDef(NULL, pr_token, pr_scope, false, 0);
if (!d)
PR_ParseError(ERR_NOTDEFINED, "%s was not defined\n", pr_token);
else if (d->type->type != parttype->type)
PR_ParseError (ERR_WRONGSUBTYPE, "wrong subtype for %s.%s", def->name, parttype->name);
else if (!d->constant)
PR_ParseError(ERR_NOTACONSTANT, "%s isn't a constant\n", pr_token);
memcpy (pr_globals + def->ofs + arraypart*type->size + parttype->ofs, pr_globals + d->ofs, 4*d->type->size);
}
else
PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate subtype for %s.%s", def->name, parttype->name);
PR_Lex ();
break;
case ev_string:
if (pr_token_type == tt_punct)
{
if (PR_CheckToken("{"))
{
unsigned int i;
for (i = 0; i < parttype->size; i++)
{
/* //the executor defines strings as true c strings, but reads in index from string table.
//structures can hide these strings.
d = (void *)Qalloc (sizeof(def_t));
d->next = NULL;
pr.def_tail->next = d;
pr.def_tail = d;
d->type = parttype;
d->name = "STRUCTIMMEDIATE";
d->constant = constant;
d->initialized = 1;
d->scope = NULL;
d->ofs = def->ofs+arraypart*type->size+parttype->ofs+i;
*/
G_INT(def->ofs+arraypart*type->size+parttype->ofs+i) = PR_CopyString(pr_immediate_string);
PR_Lex ();
if (!PR_CheckToken(","))
{
i++;
break;
}
}
for (; i < parttype->size; i++)
{
/* //the executor defines strings as true c strings, but reads in index from string table.
//structures can hide these strings.
d = (void *)Qalloc (sizeof(def_t));
d->next = NULL;
pr.def_tail->next = d;
pr.def_tail = d;
d->type = parttype;
d->name = "STRUCTIMMEDIATE";
d->constant = constant;
d->initialized = 1;
d->scope = NULL;
d->ofs = def->ofs+arraypart*type->size+parttype->ofs+i;
*/
G_INT(def->ofs+arraypart*type->size+parttype->ofs+i) = 0;
}
PR_Expect("}");
}
else
PR_ParseError(ERR_UNEXPECTEDPUNCTUATION, "Unexpected punctuation");
}
else
{
/* //the executor defines strings as true c strings, but reads in index from string table.
//structures can hide these strings.
d = (void *)Qalloc (sizeof(def_t));
d->next = NULL;
pr.def_tail->next = d;
pr.def_tail = d;
d->type = parttype;
d->name = "STRUCTIMMEDIATE";
d->constant = constant;
d->initialized = 1;
d->scope = NULL;
d->ofs = def->ofs+arraypart*type->size+parttype->ofs;
*/
G_INT(def->ofs+arraypart*type->size+parttype->ofs) = PR_CopyString(pr_immediate_string);
PR_Lex ();
}
break;
case ev_function:
if (pr_token_type == tt_immediate)
{
if (pr_immediate._int != 0)
PR_ParseError(ERR_NOTFUNCTIONTYPE, "Expected function name or NULL");
G_FUNCTION(def->ofs+arraypart*type->size+parttype->ofs) = 0;
PR_Lex();
}
else
{
name = PR_ParseName ();
d = PR_GetDef (NULL, name, pr_scope, false, 0);
if (!d)
PR_ParseError(ERR_NOTDEFINED, "%s was not defined\n", name);
else
G_FUNCTION(def->ofs+arraypart*type->size+parttype->ofs) = G_FUNCTION(d->ofs);
}
break;
default:
PR_ParseError(ERR_TYPEINVALIDINSTRUCT, "type %i not valid in a struct", parttype->type);
PR_Lex();
break;
}
if (!PR_CheckToken(","))
break;
parttype=parttype->next;
}
PR_Expect("}");
if (!PR_CheckToken(","))
break;
}
PR_Expect("}");
continue;
}
else if (type->type == ev_integer) //handle these differently, because they may need conversions
{
if (isvar)
def->constant = false;
else
def->constant = true;
def->initialized = 1;
memcpy (pr_globals + def->ofs, &pr_immediate, 4*type_size[pr_immediate_type->type]);
PR_Lex ();
if (pr_immediate_type->type == ev_float)
G_INT(def->ofs) = (int)pr_immediate._float;
else if (pr_immediate_type->type != ev_integer)
PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s", name);
continue;
}
else if (type->type == ev_string)
{
if (arraysize>=1 && PR_CheckToken("{"))
{
int i;
for (i = 0; i < arraysize; i++)
{
//the executor defines strings as true c strings, but reads in index from string table.
//structures can hide these strings.
if (i != 0) //not for the first entry - already a string def for that
{
d = (void *)Qalloc (sizeof(def_t));
d->next = NULL;
pr.def_tail->next = d;
pr.def_tail = d;
d->type = type_string;
d->name = "IMMEDIATE";
if (isvar)
d->constant = false;
else
d->constant = true;
d->initialized = 1;
d->scope = NULL;
d->ofs = def->ofs+i;
if (d->ofs >= MAX_REGS)
Sys_Error("MAX_REGS is too small");
}
(((int *)pr_globals)[def->ofs+i]) = PR_CopyString(pr_immediate_string);
PR_Lex ();
if (!PR_CheckToken(","))
break;
}
PR_Expect("}");
continue;
}
else if (arraysize<=1)
{
if (isvar)
def->constant = false;
else
def->constant = true;
def->initialized = 1;
(((int *)pr_globals)[def->ofs]) = PR_CopyString(pr_immediate_string);
PR_Lex ();
if (pr_immediate_type->type == ev_float)
G_INT(def->ofs) = (int)pr_immediate._float;
else if (pr_immediate_type->type != ev_string)
PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s", name);
continue;
}
else
PR_ParseError(ERR_ARRAYNEEDSBRACES, "Array initialisation requires curly brasces");
}
else if (type->type == ev_float)
{
if (arraysize>=1 && PR_CheckToken("{"))
{
int i;
for (i = 0; i < arraysize; i++)
{
if (pr_immediate_type->type != ev_float)
PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s", name);
(((float *)pr_globals)[def->ofs+i]) = pr_immediate._float;
PR_Lex ();
if (!PR_CheckToken(","))
break;
}
PR_Expect("}");
continue;
}
else if (arraysize<=1)
{
if (isvar)
def->constant = false;
else
def->constant = true;
def->initialized = 1;
if (pr_immediate_type->type != ev_float)
PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s", name);
if (def->constant && opt_dupconstdefs)
{
if (def->ofs == oldglobals)
{
if (Hash_GetKey(&floatconstdefstable, *(int*)&pr_immediate._float))
optres_dupconstdefs++;
PR_FreeOffset(def->ofs, def->type->size);
d = PR_MakeFloatDef(pr_immediate._float);
d->references++;
def->ofs = d->ofs;
PR_Lex();
continue;
}
}
(((float *)pr_globals)[def->ofs]) = pr_immediate._float;
PR_Lex ();
continue;
}
else
PR_ParseError(ERR_ARRAYNEEDSBRACES, "Array initialisation requires curly brasces");
}
else if (type->type == ev_vector)
{
if (arraysize>=1 && PR_CheckToken("{"))
{
int i;
for (i = 0; i < arraysize; i++)
{
if (pr_immediate_type->type != ev_vector)
PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s", name);
(((float *)pr_globals)[def->ofs+i*3+0]) = pr_immediate.vector[0];
(((float *)pr_globals)[def->ofs+i*3+1]) = pr_immediate.vector[1];
(((float *)pr_globals)[def->ofs+i*3+2]) = pr_immediate.vector[2];
PR_Lex ();
if (!PR_CheckToken(","))
break;
}
PR_Expect("}");
continue;
}
else if (arraysize<=1)
{
if (isvar)
def->constant = false;
else
def->constant = true;
def->initialized = 1;
(((float *)pr_globals)[def->ofs+0]) = pr_immediate.vector[0];
(((float *)pr_globals)[def->ofs+1]) = pr_immediate.vector[1];
(((float *)pr_globals)[def->ofs+2]) = pr_immediate.vector[2];
PR_Lex ();
if (pr_immediate_type->type != ev_vector)
PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s", name);
continue;
}
else
PR_ParseError(ERR_ARRAYNEEDSBRACES, "Array initialisation requires curly brasces");
}
else if (pr_token_type == tt_name)
{
// if (pr_scope)//create a new instance, emit a copy op
// {
// PR_ParseError ("name defined for local : %s", name);
// }
// else
{
d = PR_GetDef (NULL, pr_token, pr_scope, false, 0);
if (!d)
PR_ParseError (ERR_NOTDEFINED, "initialisation name not defined : %s", pr_token);
if (!d->constant)
{
PR_ParseWarning (WARN_NOTCONSTANT, "initialisation name not a constant : %s", pr_token);
PR_ParsePrintDef(WARN_NOTCONSTANT, d);
}
memcpy (def, d, sizeof(*d));
def->name = name;
def->initialized = true;
}
}
else if (pr_token_type != tt_immediate)
PR_ParseError (ERR_BADIMMEDIATETYPE, "not an immediate for %s - %s", name, pr_token);
else if (pr_immediate_type->type != type->type)
PR_ParseError (ERR_BADIMMEDIATETYPE, "wrong immediate type for %s - %s", name, pr_token);
else
memcpy (pr_globals + def->ofs, &pr_immediate, 4*type_size[pr_immediate_type->type]);
if (isvar)
def->constant = false;
else
def->constant = true;
def->initialized = true;
PR_Lex ();
}
else
{
if (type->type == ev_function && isvar)
{
isconstant = !isvar;
def->initialized = 1;
}
if (isconstant && type->type == ev_field)
def->constant = 2; //special flag on fields, 2, makes the pointer obtained from them also constant.
else
def->constant = isconstant;
}
} while (PR_CheckToken (","));
if (type->type == ev_function) PR_CheckToken (";");
else
{
if (!PR_CheckToken (";"))
PR_ParseWarning(WARN_UNDESIRABLECONVENTION, "Missing semicolon at end of definition");
}
}
/*
============
PR_CompileFile
compiles the 0 terminated text, adding defintions to the pr structure
============
*/
bool PR_CompileFile (char *string, char *filename)
{
jmp_buf oldjb;
if (!pr.memory) Sys_Error ("PR_CompileFile: Didn't clear");
PR_ClearGrabMacros (); // clear the frame macros
compilingfile = filename;
if (opt_filenames)
{
optres_filenames += strlen(filename);
pr_file_p = Qalloc(strlen(filename)+1);
strcpy(pr_file_p, filename);
s_file = pr_file_p - strings;
s_file2 = 0;
}
else
{
s_file = s_file2 = PR_CopyString (filename);
}
pr_file_p = string;
pr_source_line = 0;
PR_NewLine (false);
PR_Lex (); // read first token
memcpy(&oldjb, &pr_parse_abort, sizeof(oldjb));
while (pr_token_type != tt_eof)
{
if (setjmp(pr_parse_abort))
{
if (++pr_error_count > MAX_ERRORS)
{
memcpy(&pr_parse_abort, &oldjb, sizeof(oldjb));
return false;
}
PR_SkipToSemicolon ();
if (pr_token_type == tt_eof)
{
Mem_Copy(&pr_parse_abort, &oldjb, sizeof(oldjb));
return false;
}
}
pr_scope = NULL; // outside all functions
PR_ParseDefs (NULL);
}
Mem_Copy(&pr_parse_abort, &oldjb, sizeof(oldjb));
return true;
}
bool PR_Include(char *filename)
{
char *newfile;
char fname[512];
char *opr_file_p;
string_t os_file, os_file2;
int opr_source_line;
char *ocompilingfile;
struct qcc_includechunk_s *oldcurrentchunk;
extern struct qcc_includechunk_s *currentchunk;
ocompilingfile = compilingfile;
os_file = s_file;
os_file2 = s_file2;
opr_source_line = pr_source_line;
opr_file_p = pr_file_p;
oldcurrentchunk = currentchunk;
strcpy(fname, filename);
newfile = QCC_LoadFile(fname);
currentchunk = NULL;
pr_file_p = newfile;
PR_CompileFile(newfile, fname);
currentchunk = oldcurrentchunk;
compilingfile = ocompilingfile;
s_file = os_file;
s_file2 = os_file2;
pr_source_line = opr_source_line;
pr_file_p = opr_file_p;
return true;
}