This repository has been archived on 2022-06-27. You can view files and clone it, but cannot push or open issues or pull requests.
Xash3DArchive/engine/client/gl_rmain.c
2022-06-27 01:15:15 +03:00

1008 lines
23 KiB
C

//=======================================================================
// Copyright XashXT Group 2010 ©
// gl_rmain.c - renderer main loop
//=======================================================================
#include "common.h"
#include "client.h"
#include "gl_local.h"
#include "mathlib.h"
msurface_t *r_debug_surface;
const char *r_debug_hitbox;
float gldepthmin, gldepthmax;
qboolean fogEnabled = false;
vec3_t fogColor;
float fogDensity;
ref_params_t r_lastRefdef;
ref_instance_t RI, prevRI;
mleaf_t *r_viewleaf, *r_oldviewleaf;
mleaf_t *r_viewleaf2, *r_oldviewleaf2;
static int R_RankForRenderMode( cl_entity_t *ent )
{
switch( ent->curstate.rendermode )
{
case kRenderTransTexture:
case kRenderTransInverse:
return 1; // draw second
case kRenderTransAdd:
return 2; // draw third
case kRenderGlow:
return 3; // must be last!
}
return 0;
}
/*
===============
R_StaticEntity
Static entity is the brush which has no custom origin and not rotated
typically is a func_wall, func_breakable, func_ladder etc
===============
*/
static qboolean R_StaticEntity( cl_entity_t *ent )
{
if( !gl_allow_static->integer )
return false;
if( ent->curstate.rendermode != kRenderNormal )
return false;
if( ent->model->type != mod_brush )
return false;
if( ent->curstate.frame || ent->model->flags & MODEL_CONVEYOR )
return false;
if( !VectorIsNull( ent->origin ) || !VectorIsNull( ent->angles ))
return false;
return true;
}
/*
===============
R_OpaqueEntity
Opaque entity can be brush or studio model but sprite
===============
*/
static qboolean R_OpaqueEntity( cl_entity_t *ent )
{
if( ent->curstate.rendermode == kRenderNormal )
return true;
if( ent->model->type == mod_sprite )
return false;
if( ent->curstate.rendermode == kRenderTransAlpha )
return true;
return false;
}
/*
===============
R_TransEntityCompare
Sorting translucent entities by rendermode then by distance
===============
*/
static int R_TransEntityCompare( const cl_entity_t **a, const cl_entity_t **b )
{
cl_entity_t *ent1, *ent2;
vec3_t vecLen, org;
float len1, len2;
ent1 = (cl_entity_t *)*a;
ent2 = (cl_entity_t *)*b;
// now sort by rendermode
if( R_RankForRenderMode( ent1 ) > R_RankForRenderMode( ent2 ))
return -1;
if( R_RankForRenderMode( ent1 ) < R_RankForRenderMode( ent2 ))
return 1;
// then by distance
if( ent1->model->type == mod_brush )
{
VectorAverage( ent1->model->mins, ent1->model->maxs, org );
VectorAdd( ent1->origin, org, org );
VectorSubtract( RI.pvsorigin, org, vecLen );
}
else VectorSubtract( RI.pvsorigin, ent1->origin, vecLen );
len1 = VectorLength( vecLen );
if( ent2->model->type == mod_brush )
{
VectorAverage( ent2->model->mins, ent2->model->maxs, org );
VectorAdd( ent2->origin, org, org );
VectorSubtract( RI.pvsorigin, org, vecLen );
}
else VectorSubtract( RI.pvsorigin, ent2->origin, vecLen );
len2 = VectorLength( vecLen );
if( len1 > len2 )
return -1;
if( len1 < len2 )
return 1;
return 0;
}
qboolean R_WorldToScreen( const vec3_t point, vec3_t screen )
{
matrix4x4 worldToScreen;
qboolean behind;
float w;
Matrix4x4_Copy( worldToScreen, RI.worldviewProjectionMatrix );
screen[0] = worldToScreen[0][0] * point[0] + worldToScreen[0][1] * point[1] + worldToScreen[0][2] * point[2] + worldToScreen[0][3];
screen[1] = worldToScreen[1][0] * point[0] + worldToScreen[1][1] * point[1] + worldToScreen[1][2] * point[2] + worldToScreen[1][3];
// z = worldToScreen[2][0] * point[0] + worldToScreen[2][1] * point[1] + worldToScreen[2][2] * point[2] + worldToScreen[2][3];
w = worldToScreen[3][0] * point[0] + worldToScreen[3][1] * point[1] + worldToScreen[3][2] * point[2] + worldToScreen[3][3];
// Just so we have something valid here
screen[2] = 0.0f;
if( w < 0.001f )
{
behind = true;
screen[0] *= 100000;
screen[1] *= 100000;
}
else
{
float invw = 1.0f / w;
behind = false;
screen[0] *= invw;
screen[1] *= invw;
}
return behind;
}
void R_ScreenToWorld( const vec3_t screen, vec3_t point )
{
// TODO: implement
}
/*
===============
R_ComputeFxBlend
===============
*/
int R_ComputeFxBlend( cl_entity_t *e )
{
int blend = 0, renderAmt;
float offset, dist;
vec3_t tmp;
offset = ((int)e->index ) * 363.0f; // Use ent index to de-sync these fx
renderAmt = e->curstate.renderamt;
switch( e->curstate.renderfx )
{
case kRenderFxPulseSlowWide:
blend = renderAmt + 0x40 * sin( RI.refdef.time * 2 + offset );
break;
case kRenderFxPulseFastWide:
blend = renderAmt + 0x40 * sin( RI.refdef.time * 8 + offset );
break;
case kRenderFxPulseSlow:
blend = renderAmt + 0x10 * sin( RI.refdef.time * 2 + offset );
break;
case kRenderFxPulseFast:
blend = renderAmt + 0x10 * sin( RI.refdef.time * 8 + offset );
break;
// JAY: HACK for now -- not time based
case kRenderFxFadeSlow:
if( renderAmt > 0 )
renderAmt -= 1;
else renderAmt = 0;
blend = renderAmt;
break;
case kRenderFxFadeFast:
if( renderAmt > 3 )
renderAmt -= 4;
else renderAmt = 0;
blend = renderAmt;
break;
case kRenderFxSolidSlow:
if( renderAmt < 255 )
renderAmt += 1;
else renderAmt = 255;
blend = renderAmt;
break;
case kRenderFxSolidFast:
if( renderAmt < 252 )
renderAmt += 4;
else renderAmt = 255;
blend = renderAmt;
break;
case kRenderFxStrobeSlow:
blend = 20 * sin( RI.refdef.time * 4 + offset );
if( blend < 0 ) blend = 0;
else blend = renderAmt;
break;
case kRenderFxStrobeFast:
blend = 20 * sin( RI.refdef.time * 16 + offset );
if( blend < 0 ) blend = 0;
else blend = renderAmt;
break;
case kRenderFxStrobeFaster:
blend = 20 * sin( RI.refdef.time * 36 + offset );
if( blend < 0 ) blend = 0;
else blend = renderAmt;
break;
case kRenderFxFlickerSlow:
blend = 20 * (sin( RI.refdef.time * 2 ) + sin( RI.refdef.time * 17 + offset ));
if( blend < 0 ) blend = 0;
else blend = renderAmt;
break;
case kRenderFxFlickerFast:
blend = 20 * (sin( RI.refdef.time * 16 ) + sin( RI.refdef.time * 23 + offset ));
if( blend < 0 ) blend = 0;
else blend = renderAmt;
break;
case kRenderFxHologram:
case kRenderFxDistort:
VectorCopy( e->origin, tmp );
VectorSubtract( tmp, RI.refdef.vieworg, tmp );
dist = DotProduct( tmp, RI.refdef.forward );
// Turn off distance fade
if( e->curstate.renderfx == kRenderFxDistort )
dist = 1;
if( dist <= 0 )
{
blend = 0;
}
else
{
renderAmt = 180;
if( dist <= 100 ) blend = renderAmt;
else blend = (int) ((1.0f - ( dist - 100 ) * ( 1.0f / 400.0f )) * renderAmt );
blend += Com_RandomLong( -32, 31 );
}
break;
case kRenderFxDeadPlayer:
blend = renderAmt; // safe current renderamt because it's player index!
break;
case kRenderFxNone:
case kRenderFxClampMinScale:
default:
if( e->curstate.rendermode == kRenderNormal )
blend = 255;
else blend = renderAmt;
break;
}
blend = bound( 0, blend, 255 );
return blend;
}
/*
===============
R_ClearScene
===============
*/
void R_ClearScene( void )
{
tr.num_solid_entities = tr.num_trans_entities = 0;
tr.num_static_entities = 0;
}
/*
===============
R_AddEntity
===============
*/
qboolean R_AddEntity( struct cl_entity_s *clent, int entityType )
{
if( !r_drawentities->integer )
return false; // not allow to drawing
if( !clent || !clent->model )
return false; // if set to invisible, skip
if( clent->curstate.rendermode != kRenderNormal && clent->curstate.renderamt <= 0.0f )
return true; // done
clent->curstate.entityType = entityType;
clent->curstate.renderamt = R_ComputeFxBlend( clent );
if( R_OpaqueEntity( clent ))
{
if( R_StaticEntity( clent ))
{
// opaque static
if( tr.num_static_entities >= MAX_VISIBLE_PACKET )
return false;
tr.static_entities[tr.num_static_entities] = clent;
tr.num_static_entities++;
}
else
{
// opaque moving
if( tr.num_solid_entities >= MAX_VISIBLE_PACKET )
return false;
tr.solid_entities[tr.num_solid_entities] = clent;
tr.num_solid_entities++;
}
}
else
{
// translucent
if( tr.num_trans_entities >= MAX_VISIBLE_PACKET )
return false;
tr.trans_entities[tr.num_trans_entities] = clent;
tr.num_trans_entities++;
}
return true;
}
/*
=============
R_Clear
=============
*/
static void R_Clear( int bitMask )
{
int bits;
bits = GL_DEPTH_BUFFER_BIT;
if( RI.drawWorld && r_fastsky->integer )
bits |= GL_COLOR_BUFFER_BIT;
if( glState.stencilEnabled && r_shadows->integer )
bits |= GL_STENCIL_BUFFER_BIT;
bits &= bitMask;
if( bits & GL_STENCIL_BUFFER_BIT )
pglClearStencil( 128 );
pglClear( bits );
gldepthmin = 0.0f;
gldepthmax = 1.0f;
pglDepthRange( gldepthmin, gldepthmax );
}
//=============================================================================
/*
===============
R_GetFarClip
===============
*/
static float R_GetFarClip( void )
{
if( cl.worldmodel && RI.drawWorld )
return RI.refdef.movevars->zmax + 1024.0f;
return 2048.0f;
}
/*
===============
R_SetupFrustum
===============
*/
static void R_SetupFrustum( void )
{
vec3_t farPoint;
int i;
// 0 - left
// 1 - right
// 2 - down
// 3 - up
// 4 - farclip
// rotate RI.vforward right by FOV_X/2 degrees
RotatePointAroundVector( RI.frustum[0].normal, RI.vup, RI.vforward, -( 90 - RI.refdef.fov_x / 2 ));
// rotate RI.vforward left by FOV_X/2 degrees
RotatePointAroundVector( RI.frustum[1].normal, RI.vup, RI.vforward, 90 - RI.refdef.fov_x / 2 );
// rotate RI.vforward up by FOV_X/2 degrees
RotatePointAroundVector( RI.frustum[2].normal, RI.vright, RI.vforward, 90 - RI.refdef.fov_y / 2 );
// rotate RI.vforward down by FOV_X/2 degrees
RotatePointAroundVector( RI.frustum[3].normal, RI.vright, RI.vforward, -( 90 - RI.refdef.fov_y / 2 ));
// negate forward vector
VectorNegate( RI.vforward, RI.frustum[4].normal );
for( i = 0; i < 4; i++ )
{
RI.frustum[i].type = PLANE_NONAXIAL;
RI.frustum[i].dist = DotProduct( RI.vieworg, RI.frustum[i].normal );
RI.frustum[i].signbits = SignbitsForPlane( RI.frustum[i].normal );
}
VectorMA( RI.vieworg, R_GetFarClip(), RI.vforward, farPoint );
RI.frustum[i].type = PLANE_NONAXIAL;
RI.frustum[i].dist = DotProduct( farPoint, RI.frustum[i].normal );
RI.frustum[i].signbits = SignbitsForPlane( RI.frustum[i].normal );
}
/*
=============
R_SetupProjectionMatrix
=============
*/
static void R_SetupProjectionMatrix( const ref_params_t *fd, matrix4x4 m )
{
GLdouble xMin, xMax, yMin, yMax, zNear, zFar;
RI.farClip = R_GetFarClip();
zNear = 4.0f;
zFar = max( 256.0f, RI.farClip );
yMax = zNear * tan( fd->fov_y * M_PI / 360.0 );
yMin = -yMax;
xMax = zNear * tan( fd->fov_x * M_PI / 360.0 );
xMin = -xMax;
Matrix4x4_CreateProjection( m, xMax, xMin, yMax, yMin, zNear, zFar );
}
/*
=============
R_SetupModelviewMatrix
=============
*/
static void R_SetupModelviewMatrix( const ref_params_t *fd, matrix4x4 m )
{
#if 0
Matrix4x4_LoadIdentity( m );
Matrix4x4_ConcatRotate( m, -90, 1, 0, 0 );
Matrix4x4_ConcatRotate( m, 90, 0, 0, 1 );
#else
Matrix4x4_CreateModelview( m );
#endif
Matrix4x4_ConcatRotate( m, -fd->viewangles[2], 1, 0, 0 );
Matrix4x4_ConcatRotate( m, -fd->viewangles[0], 0, 1, 0 );
Matrix4x4_ConcatRotate( m, -fd->viewangles[1], 0, 0, 1 );
Matrix4x4_ConcatTranslate( m, -fd->vieworg[0], -fd->vieworg[1], -fd->vieworg[2] );
}
/*
=============
R_LoadIdentity
=============
*/
void R_LoadIdentity( void )
{
if( tr.modelviewIdentity ) return;
Matrix4x4_LoadIdentity( RI.objectMatrix );
Matrix4x4_Copy( RI.modelviewMatrix, RI.worldviewMatrix );
GL_LoadMatrix( RI.modelviewMatrix );
tr.modelviewIdentity = true;
}
/*
=============
R_RotateForEntity
=============
*/
void R_RotateForEntity( cl_entity_t *e )
{
float scale = 1.0f;
if( e == clgame.entities || R_StaticEntity( e ))
{
R_LoadIdentity();
return;
}
if( e->model->type != mod_brush && e->curstate.scale > 0.0f )
scale = e->curstate.scale;
Matrix4x4_CreateFromEntity( RI.objectMatrix, e->angles, e->origin, scale );
Matrix4x4_ConcatTransforms( RI.modelviewMatrix, RI.worldviewMatrix, RI.objectMatrix );
GL_LoadMatrix( RI.modelviewMatrix );
tr.modelviewIdentity = false;
}
/*
=============
R_TranslateForEntity
=============
*/
void R_TranslateForEntity( cl_entity_t *e )
{
float scale = 1.0f;
if( e == clgame.entities || R_StaticEntity( e ))
{
R_LoadIdentity();
return;
}
if( e->model->type != mod_brush && e->curstate.scale > 0.0f )
scale = e->curstate.scale;
Matrix4x4_CreateFromEntity( RI.objectMatrix, vec3_origin, e->origin, scale );
Matrix4x4_ConcatTransforms( RI.modelviewMatrix, RI.worldviewMatrix, RI.objectMatrix );
GL_LoadMatrix( RI.modelviewMatrix );
tr.modelviewIdentity = false;
}
/*
===============
R_SetupFrame
===============
*/
static void R_SetupFrame( void )
{
// build the transformation matrix for the given view angles
VectorCopy( RI.refdef.vieworg, RI.vieworg );
AngleVectors( RI.refdef.viewangles, RI.vforward, RI.vright, RI.vup );
R_AnimateLight();
R_RunViewmodelEvents();
tr.framecount++;
// sort translucents entities by rendermode and distance
qsort( tr.trans_entities, tr.num_trans_entities, sizeof( cl_entity_t* ), R_TransEntityCompare );
// current viewleaf
if( RI.drawWorld )
{
float height;
mleaf_t *leaf;
vec3_t tmp;
VectorCopy( cl.worldmodel->mins, RI.visMins );
VectorCopy( cl.worldmodel->maxs, RI.visMaxs );
RI.waveHeight = RI.refdef.movevars->waveHeight * 2.0f; // set global waveheight
if(!( RI.params & RP_OLDVIEWLEAF ))
{
r_oldviewleaf = r_viewleaf;
r_oldviewleaf2 = r_viewleaf2;
leaf = Mod_PointInLeaf( RI.pvsorigin, cl.worldmodel->nodes );
r_viewleaf2 = r_viewleaf = leaf;
height = RI.waveHeight ? RI.waveHeight : 16;
// check above and below so crossing solid water doesn't draw wrong
if( leaf->contents == CONTENTS_EMPTY )
{
// look down a bit
VectorCopy( RI.pvsorigin, tmp );
tmp[2] -= height;
leaf = Mod_PointInLeaf( tmp, cl.worldmodel->nodes );
if(( leaf->contents != CONTENTS_SOLID ) && ( leaf != r_viewleaf2 ))
r_viewleaf2 = leaf;
}
else
{
// look up a bit
VectorCopy( RI.pvsorigin, tmp );
tmp[2] += height;
leaf = Mod_PointInLeaf( tmp, cl.worldmodel->nodes );
if(( leaf->contents != CONTENTS_SOLID ) && ( leaf != r_viewleaf2 ))
r_viewleaf2 = leaf;
}
}
}
}
/*
=============
R_SetupGL
=============
*/
static void R_SetupGL( void )
{
if( RI.refdef.waterlevel >= 3 )
{
float f;
f = sin( cl.time * 0.4f * ( M_PI * 2.7f ));
RI.refdef.fov_x += f;
RI.refdef.fov_y -= f;
}
R_SetupModelviewMatrix( &RI.refdef, RI.worldviewMatrix );
R_SetupProjectionMatrix( &RI.refdef, RI.projectionMatrix );
if( RI.params & RP_MIRRORVIEW ) RI.projectionMatrix[0][0] = -RI.projectionMatrix[0][0];
Matrix4x4_Concat( RI.worldviewProjectionMatrix, RI.projectionMatrix, RI.worldviewMatrix );
pglScissor( RI.scissor[0], RI.scissor[1], RI.scissor[2], RI.scissor[3] );
pglViewport( RI.viewport[0], RI.viewport[1], RI.viewport[2], RI.viewport[3] );
pglMatrixMode( GL_PROJECTION );
GL_LoadMatrix( RI.projectionMatrix );
pglMatrixMode( GL_MODELVIEW );
GL_LoadMatrix( RI.worldviewMatrix );
if( RI.params & RP_CLIPPLANE )
{
GLdouble clip[4];
mplane_t *p = &RI.clipPlane;
clip[0] = p->normal[0];
clip[1] = p->normal[1];
clip[2] = p->normal[2];
clip[3] = -p->dist;
pglClipPlane( GL_CLIP_PLANE0, clip );
pglEnable( GL_CLIP_PLANE0 );
}
if( RI.params & RP_FLIPFRONTFACE )
GL_FrontFace( !glState.frontFace );
GL_Cull( GL_FRONT );
pglDisable( GL_BLEND );
pglDisable( GL_ALPHA_TEST );
pglColor4f( 1.0f, 1.0f, 1.0f, 1.0f );
}
/*
=============
R_EndGL
=============
*/
static void R_EndGL( void )
{
if( RI.params & RP_FLIPFRONTFACE )
GL_FrontFace( !glState.frontFace );
if( RI.params & RP_CLIPPLANE )
pglDisable( GL_CLIP_PLANE0 );
}
/*
=============
R_CheckFog
check for underwater fog
FIXME: allow TriAPI fog for override
=============
*/
static void R_CheckFog( void )
{
model_t *model;
gltexture_t *tex;
int i, count;
fogEnabled = false;
if( RI.refdef.waterlevel < 3 || !RI.drawWorld || !r_viewleaf )
return;
model = CL_GetWaterModel( cl.refdef.vieworg );
tex = NULL;
// check for water texture
if( model && model->type == mod_brush )
{
msurface_t *surf;
count = model->nummodelsurfaces;
for( i = 0, surf = &model->surfaces[model->firstmodelsurface]; i < count; i++, surf++ )
{
if( surf->flags & SURF_DRAWTURB && surf->texinfo && surf->texinfo->texture )
{
tex = R_GetTexture( surf->texinfo->texture->gl_texturenum );
break;
}
}
}
else
{
msurface_t **surf;
count = r_viewleaf->nummarksurfaces;
for( i = 0, surf = r_viewleaf->firstmarksurface; i < count; i++, surf++ )
{
if((*surf)->flags & SURF_DRAWTURB && (*surf)->texinfo && (*surf)->texinfo->texture )
{
tex = R_GetTexture( (*surf)->texinfo->texture->gl_texturenum );
break;
}
}
}
if( i == count || !tex )
return; // no valid fogs
// copy fog params
fogColor[0] = tex->fogParams[0] / 255.0f;
fogColor[1] = tex->fogParams[1] / 255.0f;
fogColor[2] = tex->fogParams[2] / 255.0f;
fogDensity = tex->fogParams[3] * 0.000025f;
fogEnabled = true;
}
/*
=============
R_DrawFog
=============
*/
void R_DrawFog( void )
{
if( !fogEnabled || RI.refdef.onlyClientDraw )
return;
pglEnable( GL_FOG );
pglFogi( GL_FOG_MODE, GL_EXP );
pglFogf( GL_FOG_DENSITY, fogDensity );
pglFogfv( GL_FOG_COLOR, fogColor );
pglHint( GL_FOG_HINT, GL_NICEST );
}
/*
=============
R_DrawEntitiesOnList
=============
*/
void R_DrawEntitiesOnList( void )
{
int i, numErrors;
glState.drawTrans = false;
// draw the solid submodels fog
R_DrawFog ();
// first draw solid entities
for( i = 0; i < tr.num_solid_entities; i++ )
{
if( RI.refdef.onlyClientDraw )
break;
RI.currententity = tr.solid_entities[i];
RI.currentmodel = RI.currententity->model;
ASSERT( RI.currententity != NULL );
ASSERT( RI.currententity->model != NULL );
switch( RI.currentmodel->type )
{
case mod_brush:
R_DrawBrushModel( RI.currententity );
break;
case mod_studio:
R_DrawStudioModel( RI.currententity );
break;
case mod_sprite:
R_DrawSpriteModel( RI.currententity );
break;
default:
break;
}
}
CL_DrawBeams( false );
clgame.dllFuncs.pfnDrawNormalTriangles();
numErrors = 0;
while( pglGetError() != GL_NO_ERROR )
numErrors++;
if( numErrors )
MsgDev( D_ERROR, "invalid gl operation in HUD_DrawNormalTriangles( %i errors )\n", numErrors );
// don't fogging translucent surfaces
pglDisable( GL_FOG );
pglDepthMask( GL_FALSE );
glState.drawTrans = true;
CL_DrawBeams( true );
CL_DrawParticles();
// then draw translicent entities
for( i = 0; i < tr.num_trans_entities; i++ )
{
if( RI.refdef.onlyClientDraw )
break;
RI.currententity = tr.trans_entities[i];
RI.currentmodel = RI.currententity->model;
ASSERT( RI.currententity != NULL );
ASSERT( RI.currententity->model != NULL );
switch( RI.currentmodel->type )
{
case mod_brush:
R_DrawBrushModel( RI.currententity );
break;
case mod_studio:
R_DrawStudioModel( RI.currententity );
break;
case mod_sprite:
R_DrawSpriteModel( RI.currententity );
break;
default:
break;
}
}
clgame.dllFuncs.pfnDrawTransparentTriangles ();
numErrors = 0;
while( pglGetError() != GL_NO_ERROR )
numErrors++;
if( numErrors )
MsgDev( D_ERROR, "invalid gl operation in HUD_DrawTransparentTriangles( %i errors )\n", numErrors );
glState.drawTrans = false;
pglDepthMask( GL_TRUE );
R_DrawViewModel();
CL_ExtraUpdate();
}
/*
================
R_RenderScene
RI.refdef must be set before the first call
================
*/
void R_RenderScene( const ref_params_t *fd )
{
RI.refdef = *fd;
if( !cl.worldmodel && RI.drawWorld )
Host_Error( "R_RenderView: NULL worldmodel\n" );
R_PushDlights();
R_SetupFrame();
R_SetupFrustum();
R_SetupGL();
R_Clear( ~0 );
R_MarkLeaves();
R_CheckFog();
R_DrawWorld();
CL_ExtraUpdate (); // don't let sound get messed up if going slow
R_DrawEntitiesOnList();
R_DrawWaterSurfaces();
R_EndGL();
}
/*
===============
R_BeginFrame
===============
*/
void R_BeginFrame( qboolean clearScene )
{
if( gl_clear->integer && clearScene && cls.state != ca_cinematic )
{
pglClear( GL_COLOR_BUFFER_BIT );
}
// update gamma
if( vid_gamma->modified )
{
vid_gamma->modified = false;
GL_UpdateGammaRamp();
}
// go into 2D mode
R_Set2DMode( true );
// draw buffer stuff
pglDrawBuffer( GL_BACK );
// texturemode stuff
// update texture parameters
if( gl_texturemode->modified || gl_texture_anisotropy->modified || gl_texture_lodbias ->modified )
R_SetTextureParameters();
// swapinterval stuff
GL_UpdateSwapInterval();
CL_ExtraUpdate ();
}
/*
===============
R_RenderFrame
===============
*/
void R_RenderFrame( const ref_params_t *fd, qboolean drawWorld )
{
if( r_norefresh->integer )
return;
R_Set2DMode( false );
GL_BackendStartFrame();
if( drawWorld ) r_lastRefdef = *fd;
RI.params = RP_NONE;
RI.farClip = 0;
RI.rdflags = 0;
RI.clipFlags = 15;
RI.drawWorld = drawWorld;
RI.lerpFrac = cl.lerpFrac;
RI.thirdPerson = cl.thirdperson;
// adjust field of view for widescreen
if( glState.wideScreen && r_adjust_fov->integer )
V_AdjustFov( &RI.refdef.fov_x, &RI.refdef.fov_y, glState.width, glState.height, false );
if( !r_lockcull->integer )
VectorCopy( fd->vieworg, RI.cullorigin );
VectorCopy( fd->vieworg, RI.pvsorigin );
// setup scissor
RI.scissor[0] = fd->viewport[0];
RI.scissor[1] = glState.height - fd->viewport[3] - fd->viewport[1];
RI.scissor[2] = fd->viewport[2];
RI.scissor[3] = fd->viewport[3];
// setup viewport
RI.viewport[0] = fd->viewport[0];
RI.viewport[1] = glState.height - fd->viewport[3] - fd->viewport[1];
RI.viewport[2] = fd->viewport[2];
RI.viewport[3] = fd->viewport[3];
if( gl_finish->integer && drawWorld )
pglFinish();
R_RenderScene( fd );
// R_BloomBlend( fd );
GL_BackendEndFrame();
// go into 2D mode (in case we draw PlayerSetup between two 2d calls)
R_Set2DMode( true );
}
/*
===============
R_EndFrame
===============
*/
void R_EndFrame( void )
{
// flush any remaining 2D bits
R_Set2DMode( false );
// check errors
GL_CheckForErrors ();
if( !pwglSwapBuffers( glw_state.hDC ))
Sys_Break( "wglSwapBuffers() failed!\n" );
}
/*
===============
R_DrawCubemapView
===============
*/
void R_DrawCubemapView( const vec3_t origin, const vec3_t angles, int size )
{
}