This repository has been archived on 2022-06-27. You can view files and clone it, but cannot push or open issues or pull requests.
Xash3DArchive/game_shared/vmatrix.h

673 lines
19 KiB
C++

//=======================================================================
// Copyright (C) Shambler Team 2006
// vmatrix.h - shared matrix operations
//=======================================================================
#ifndef MATRIX_H
#define MATRIX_H
#include <windows.h>
#include "basetypes.h"
#include "vector.h"
#include "plane.h"
#include "const.h"
struct matrix3x4_t
{
matrix3x4_t() {}
matrix3x4_t(
float m00, float m01, float m02, float m03,
float m10, float m11, float m12, float m13,
float m20, float m21, float m22, float m23 )
{
m_flMatVal[0][0] = m00; m_flMatVal[0][1] = m01; m_flMatVal[0][2] = m02; m_flMatVal[0][3] = m03;
m_flMatVal[1][0] = m10; m_flMatVal[1][1] = m11; m_flMatVal[1][2] = m12; m_flMatVal[1][3] = m13;
m_flMatVal[2][0] = m20; m_flMatVal[2][1] = m21; m_flMatVal[2][2] = m22; m_flMatVal[2][3] = m23;
}
float *operator[]( int i ) { return m_flMatVal[i]; }
const float *operator[]( int i ) const { return m_flMatVal[i]; }
float *Base() { return &m_flMatVal[0][0]; }
const float *Base() const { return &m_flMatVal[0][0]; }
float m_flMatVal[3][4];
};
class VMatrix
{
public:
VMatrix ();
VMatrix(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33
);
// Creates a matrix where the X axis = forward
// the Y axis = left, and the Z axis = up
VMatrix( const Vector& forward, const Vector& left, const Vector& up );
// Construct from a 3x4 matrix
VMatrix( const matrix3x4_t& matrix3x4 );
// Set the values in the matrix.
void Init(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33
);
// Initialize from a 3x4
void Init( const matrix3x4_t& matrix3x4 );
// array access
float* operator[](int i) { return m[i]; }
float const* operator[](int i) const { return m[i]; }
// Access the basis vectors.
Vector GetLeft() const;
Vector GetUp() const;
Vector GetForward() const;
void SetLeft(const Vector &vLeft);
void SetUp(const Vector &vUp);
void SetForward(const Vector &vForward);
void GetBasisVectors(Vector &vForward, Vector &vLeft, Vector &vUp) const;
void SetBasisVectors(const Vector &vForward, const Vector &vLeft, const Vector &vUp);
// Get/set the translation.
Vector GetTranslation() const;
void SetTranslation(const Vector &vTrans);
void PreTranslate(const Vector &vTrans);
void PostTranslate(const Vector &vTrans);
matrix3x4_t& As3x4();
const matrix3x4_t& As3x4() const;
void CopyFrom3x4( const matrix3x4_t &m3x4 );
void Set3x4( matrix3x4_t& matrix3x4 ) const;
// Matrix->vector operations.
public:
// Multiply by a vector (divides by w, assumes input w is 1).
Vector operator*(const Vector &vVec) const;
// Multiply by the upper 3x3 part of the matrix (ie: only apply rotation).
Vector VMul3x3(const Vector &vVec) const;
// Apply the inverse (transposed) rotation (only works on pure rotation matrix)
Vector VMul3x3Transpose(const Vector &vVec) const;
// Multiply by the upper 3 rows.
Vector VMul4x3(const Vector &vVec) const;
// Apply the inverse (transposed) transformation (only works on pure rotation/translation)
Vector VMul4x3Transpose(const Vector &vVec) const;
// Multiply by a 3D vector (same as operator*).
void V3Mul(const Vector &vIn, Vector &vOut) const;
// Multiply by a 4D vector.
void V4Mul(const Vector4D &vIn, Vector4D &vOut) const;
// Applies the rotation (ignores translation in the matrix). (This just calls VMul3x3).
Vector ApplyRotation(const Vector &vVec) const;
// Matrix->plane operations.
public:
// Transform the plane. The matrix can only contain translation and rotation.
void TransformPlane( const VPlane &inPlane, VPlane &outPlane ) const;
// Just calls TransformPlane and returns the result.
VPlane operator*(const VPlane &thePlane) const;
// Matrix->matrix operations.
public:
VMatrix& operator=(const VMatrix &mOther);
// Multiply two matrices (out = this * vm).
void MatrixMul( const VMatrix &vm, VMatrix &out ) const;
// Just calls MatrixMul and returns the result.
VMatrix operator*(const VMatrix &mOther) const;
// Add two matrices.
VMatrix const& operator+=(const VMatrix &other);
// Add/Subtract two matrices.
VMatrix operator+(const VMatrix &other) const;
VMatrix operator-(const VMatrix &other) const;
// Negation.
VMatrix operator-() const;
// Return inverse matrix. Be careful because the results are undefined
// if the matrix doesn't have an inverse (ie: InverseGeneral returns false).
VMatrix operator~() const;
// Matrix operations.
public:
// Set to identity.
void Identity();
// Setup a matrix for origin and angles.
void SetupMatrixOrgAngles( const Vector &origin, const Vector &vAngles );
// General inverse. This may fail so check the return!
bool InverseGeneral(VMatrix &vInverse) const;
// Does a fast inverse, assuming the matrix only contains translation and rotation.
void InverseTR( VMatrix &mRet ) const;
VMatrix InverseTR() const; // This calls the other InverseTR and returns the result.
// Get the scale of the matrix's basis vectors.
Vector GetScale() const;
// (Fast) multiply by a scaling matrix setup from vScale.
VMatrix Scale(const Vector &vScale);
// Normalize the basis vectors.
VMatrix NormalizeBasisVectors() const;
// Transpose.
VMatrix Transpose() const;
// Transpose upper-left 3x3.
VMatrix Transpose3x3() const;
// Usually used for debug checks. Returns true if the upper 3x3 contains
// unit vectors and they are all orthogonal.
bool IsRotationMatrix() const;
public:
// The matrix.
vec_t m[4][4];
};
// ------------------------------------------------------------------------------------------- //
// Helper functions.
// ------------------------------------------------------------------------------------------- //
// Setup an identity matrix.
VMatrix SetupMatrixIdentity();
// Setup as a scaling matrix.
VMatrix SetupMatrixScale(const Vector &vScale);
// Setup a translation matrix.
VMatrix SetupMatrixTranslation(const Vector &vTranslation);
// Setup a matrix to reflect around the plane.
VMatrix SetupMatrixReflection(const VPlane &thePlane);
// Setup a matrix to project from vOrigin onto thePlane.
VMatrix SetupMatrixProjection(const Vector &vOrigin, const VPlane &thePlane);
// Setup a matrix to rotate the specified amount around the specified axis.
VMatrix SetupMatrixAxisRot(const Vector &vAxis, vec_t fDegrees);
// Setup a matrix from euler angles. Just sets identity and calls MatrixAngles.
VMatrix SetupMatrixAngles(const Vector &vAngles);
// Setup a matrix for origin and angles.
VMatrix SetupMatrixOrgAngles(const Vector &origin, const Vector &vAngles);
// Returns the point at the intersection on the 3 planes.
// Returns false if it can't be solved (2 or more planes are parallel).
bool PlaneIntersection(
const VPlane &vp1,
const VPlane &vp2,
const VPlane &vp3,
Vector &vOut
);
//-----------------------------------------------------------------------------
// These methods are faster. Use them if you want faster code
//-----------------------------------------------------------------------------
void MatrixSetIdentity( VMatrix &dst );
void MatrixTranspose( const VMatrix& src, VMatrix& dst );
void MatrixCopy( const VMatrix& src, VMatrix& dst );
void MatrixCopy( const matrix3x4_t &in, matrix3x4_t &out );
void MatrixInvert( const matrix3x4_t& in, matrix3x4_t& out );
void MatrixMultiply( const VMatrix& src1, const VMatrix& src2, VMatrix& dst );
void ConcatTransforms (const matrix3x4_t& in1, const matrix3x4_t& in2, matrix3x4_t& out);
// Accessors
void MatrixGetColumn( const VMatrix &src, int nCol, Vector *pColumn );
void MatrixSetColumn( VMatrix &src, int nCol, const Vector &column );
// Vector3DMultiply treats src2 as if it's a direction vector
void Vector3DMultiply( const VMatrix& src1, const Vector& src2, Vector& dst );
// Vector3DMultiplyPosition treats src2 as if it's a point (adds the translation)
inline void Vector3DMultiplyPosition( const VMatrix& src1, const Vector src2, Vector& dst );
// Vector3DMultiplyPositionProjective treats src2 as if it's a point
// and does the perspective divide at the end
void Vector3DMultiplyPositionProjective( const VMatrix& src1, const Vector &src2, Vector& dst );
// Vector3DMultiplyPosition treats src2 as if it's a direction
// and does the perspective divide at the end
// NOTE: src1 had better be an inverse transpose to use this correctly
void Vector3DMultiplyProjective( const VMatrix& src1, const Vector &src2, Vector& dst );
void Vector4DMultiply( const VMatrix& src1, const Vector4D& src2, Vector4D& dst );
// Multiplies the vector by the transpose of the matrix
void Vector3DMultiplyTranspose( const VMatrix& src1, const Vector& src2, Vector& dst );
void Vector4DMultiplyTranspose( const VMatrix& src1, const Vector4D& src2, Vector4D& dst );
void MatrixBuildTranslation( VMatrix& dst, float x, float y, float z );
void MatrixBuildTranslation( VMatrix& dst, const Vector &translation );
void MatrixBuildRotationAboutAxis( VMatrix& dst, const Vector& vAxisOfRot, float angleDegrees );
void MatrixBuildRotateZ( VMatrix& dst, float angleDegrees );
// Builds a rotation matrix that rotates one direction vector into another
void MatrixBuildRotation( VMatrix &dst, const Vector& initialDirection, const Vector& finalDirection );
// Builds a scale matrix
void MatrixBuildScale( VMatrix &dst, float x, float y, float z );
void MatrixBuildScale( VMatrix &dst, const Vector& scale );
// Setup a matrix from euler angles.
void MatrixFromAngles( const Vector& vAngles, VMatrix& dst );
// Creates euler angles from a matrix
void MatrixToAngles( const VMatrix& src, Vector& vAngles );
// Does a fast inverse, assuming the matrix only contains translation and rotation.
void MatrixInverseTR( const VMatrix& src, VMatrix &dst );
// Inverts any matrix at all
bool MatrixInverseGeneral(const VMatrix& src, VMatrix& dst);
// Computes the inverse transpose
void MatrixInverseTranspose( const VMatrix& src, VMatrix& dst );
// ------------------------------------------------------------------------------------------- //
// VMatrix inlines.
// ------------------------------------------------------------------------------------------- //
inline VMatrix::VMatrix()
{
}
inline VMatrix::VMatrix(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33)
{
Init(
m00, m01, m02, m03,
m10, m11, m12, m13,
m20, m21, m22, m23,
m30, m31, m32, m33
);
}
inline VMatrix::VMatrix( const matrix3x4_t& matrix3x4 )
{
Init( matrix3x4 );
}
//-----------------------------------------------------------------------------
// Creates a matrix where the X axis = forward
// the Y axis = left, and the Z axis = up
//-----------------------------------------------------------------------------
inline VMatrix::VMatrix( const Vector& xAxis, const Vector& yAxis, const Vector& zAxis )
{
Init(
xAxis.x, yAxis.x, zAxis.x, 0.0f,
xAxis.y, yAxis.y, zAxis.y, 0.0f,
xAxis.z, yAxis.z, zAxis.z, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f
);
}
inline void VMatrix::Init(
vec_t m00, vec_t m01, vec_t m02, vec_t m03,
vec_t m10, vec_t m11, vec_t m12, vec_t m13,
vec_t m20, vec_t m21, vec_t m22, vec_t m23,
vec_t m30, vec_t m31, vec_t m32, vec_t m33
)
{
m[0][0] = m00;
m[0][1] = m01;
m[0][2] = m02;
m[0][3] = m03;
m[1][0] = m10;
m[1][1] = m11;
m[1][2] = m12;
m[1][3] = m13;
m[2][0] = m20;
m[2][1] = m21;
m[2][2] = m22;
m[2][3] = m23;
m[3][0] = m30;
m[3][1] = m31;
m[3][2] = m32;
m[3][3] = m33;
}
// Initialize from a 3x4
inline void VMatrix::Init( const matrix3x4_t& matrix3x4 )
{
memcpy(m, matrix3x4.Base(), sizeof( matrix3x4_t ) );
m[3][0] = 0.0f;
m[3][1] = 0.0f;
m[3][2] = 0.0f;
m[3][3] = 1.0f;
}
inline Vector VMatrix::GetForward() const
{
return Vector(m[0][0], m[1][0], m[2][0]);
}
inline Vector VMatrix::GetLeft() const
{
return Vector(m[0][1], m[1][1], m[2][1]);
}
inline Vector VMatrix::GetUp() const
{
return Vector(m[0][2], m[1][2], m[2][2]);
}
inline void VMatrix::SetForward(const Vector &vForward)
{
m[0][0] = vForward.x;
m[1][0] = vForward.y;
m[2][0] = vForward.z;
}
inline void VMatrix::SetLeft(const Vector &vLeft)
{
m[0][1] = vLeft.x;
m[1][1] = vLeft.y;
m[2][1] = vLeft.z;
}
inline void VMatrix::SetUp(const Vector &vUp)
{
m[0][2] = vUp.x;
m[1][2] = vUp.y;
m[2][2] = vUp.z;
}
inline void VMatrix::GetBasisVectors(Vector &vForward, Vector &vLeft, Vector &vUp) const
{
vForward = GetForward();
vLeft = GetLeft();
vUp = GetUp();
}
inline void VMatrix::SetBasisVectors(const Vector &vForward, const Vector &vLeft, const Vector &vUp)
{
SetForward(vForward);
SetLeft(vLeft);
SetUp(vUp);
}
inline Vector VMatrix::GetTranslation() const
{
return Vector(m[0][3], m[1][3], m[2][3]);
}
inline void VMatrix::SetTranslation(const Vector &vTrans)
{
m[0][3] = vTrans.x;
m[1][3] = vTrans.y;
m[2][3] = vTrans.z;
}
// appply translation to this matrix in the input space
inline void VMatrix::PreTranslate(const Vector &vTrans)
{
Vector tmp = VMul4x3( vTrans );
m[0][3] = tmp.x;
m[1][3] = tmp.y;
m[2][3] = tmp.z;
}
// appply translation to this matrix in the output space
inline void VMatrix::PostTranslate(const Vector &vTrans)
{
m[0][3] += vTrans.x;
m[1][3] += vTrans.y;
m[2][3] += vTrans.z;
}
inline const matrix3x4_t& VMatrix::As3x4() const
{
return *((const matrix3x4_t*)this);
}
inline matrix3x4_t& VMatrix::As3x4()
{
return *((matrix3x4_t*)this);
}
inline void VMatrix::CopyFrom3x4( const matrix3x4_t &m3x4 )
{
memcpy( m, m3x4.Base(), sizeof( matrix3x4_t ) );
m[3][0] = m[3][1] = m[3][2] = 0;
m[3][3] = 1;
}
inline void VMatrix::Set3x4( matrix3x4_t& matrix3x4 ) const
{
memcpy(matrix3x4.Base(), m, sizeof( matrix3x4_t ) );
}
inline Vector VMatrix::operator*(const Vector &vVec) const
{
Vector vRet;
vRet.x = m[0][0]*vVec.x + m[0][1]*vVec.y + m[0][2]*vVec.z + m[0][3];
vRet.y = m[1][0]*vVec.x + m[1][1]*vVec.y + m[1][2]*vVec.z + m[1][3];
vRet.z = m[2][0]*vVec.x + m[2][1]*vVec.y + m[2][2]*vVec.z + m[2][3];
return vRet;
}
inline const VMatrix& VMatrix::operator+=(const VMatrix &other)
{
for(int i=0; i < 4; i++)
{
for(int j=0; j < 4; j++)
{
m[i][j] += other.m[i][j];
}
}
return *this;
}
inline VMatrix VMatrix::operator+(const VMatrix &other) const
{
VMatrix ret;
for(int i=0; i < 16; i++)
{
((float*)ret.m)[i] = ((float*)m)[i] + ((float*)other.m)[i];
}
return ret;
}
inline VMatrix VMatrix::operator-(const VMatrix &other) const
{
VMatrix ret;
for(int i=0; i < 4; i++)
{
for(int j=0; j < 4; j++)
{
ret.m[i][j] = m[i][j] - other.m[i][j];
}
}
return ret;
}
inline VMatrix VMatrix::operator-() const
{
VMatrix ret;
for( int i=0; i < 16; i++ )
{
((float*)ret.m)[i] = ((float*)m)[i];
}
return ret;
}
inline Vector VMatrix::VMul4x3(const Vector &vVec) const
{
return Vector(
m[0][0]*vVec.x + m[0][1]*vVec.y + m[0][2]*vVec.z + m[0][3],
m[1][0]*vVec.x + m[1][1]*vVec.y + m[1][2]*vVec.z + m[1][3],
m[2][0]*vVec.x + m[2][1]*vVec.y + m[2][2]*vVec.z + m[2][3]
);
}
inline Vector VMatrix::VMul4x3Transpose(const Vector &vVec) const
{
Vector tmp = vVec;
tmp.x -= m[0][3];
tmp.y -= m[1][3];
tmp.z -= m[2][3];
return Vector(
m[0][0]*tmp.x + m[1][0]*tmp.y + m[2][0]*tmp.z,
m[0][1]*tmp.x + m[1][1]*tmp.y + m[2][1]*tmp.z,
m[0][2]*tmp.x + m[1][2]*tmp.y + m[2][2]*tmp.z
);
}
inline Vector VMatrix::VMul3x3(const Vector &vVec) const
{
return Vector(
m[0][0]*vVec.x + m[0][1]*vVec.y + m[0][2]*vVec.z,
m[1][0]*vVec.x + m[1][1]*vVec.y + m[1][2]*vVec.z,
m[2][0]*vVec.x + m[2][1]*vVec.y + m[2][2]*vVec.z
);
}
inline Vector VMatrix::VMul3x3Transpose(const Vector &vVec) const
{
return Vector(
m[0][0]*vVec.x + m[1][0]*vVec.y + m[2][0]*vVec.z,
m[0][1]*vVec.x + m[1][1]*vVec.y + m[2][1]*vVec.z,
m[0][2]*vVec.x + m[1][2]*vVec.y + m[2][2]*vVec.z
);
}
inline void VMatrix::V3Mul(const Vector &vIn, Vector &vOut) const
{
vec_t rw;
rw = 1.0f / (m[3][0]*vIn.x + m[3][1]*vIn.y + m[3][2]*vIn.z + m[3][3]);
vOut.x = (m[0][0]*vIn.x + m[0][1]*vIn.y + m[0][2]*vIn.z + m[0][3]) * rw;
vOut.y = (m[1][0]*vIn.x + m[1][1]*vIn.y + m[1][2]*vIn.z + m[1][3]) * rw;
vOut.z = (m[2][0]*vIn.x + m[2][1]*vIn.y + m[2][2]*vIn.z + m[2][3]) * rw;
}
inline void VMatrix::V4Mul(const Vector4D &vIn, Vector4D &vOut) const
{
vOut[0] = m[0][0]*vIn[0] + m[0][1]*vIn[1] + m[0][2]*vIn[2] + m[0][3]*vIn[3];
vOut[1] = m[1][0]*vIn[0] + m[1][1]*vIn[1] + m[1][2]*vIn[2] + m[1][3]*vIn[3];
vOut[2] = m[2][0]*vIn[0] + m[2][1]*vIn[1] + m[2][2]*vIn[2] + m[2][3]*vIn[3];
vOut[3] = m[3][0]*vIn[0] + m[3][1]*vIn[1] + m[3][2]*vIn[2] + m[3][3]*vIn[3];
}
inline Vector VMatrix::ApplyRotation(const Vector &vVec) const
{
return VMul3x3(vVec);
}
inline void VMatrix::TransformPlane( const VPlane &inPlane, VPlane &outPlane ) const
{
Vector vPlanePt, vTemp;
outPlane.m_Normal = VMul3x3( inPlane.m_Normal );
vPlanePt = inPlane.GetPointOnPlane();
vTemp = VMul4x3( vPlanePt );
outPlane.m_Dist = DotProduct( outPlane.m_Normal, vTemp );
}
inline VMatrix VMatrix::operator~() const
{
VMatrix mRet;
InverseGeneral(mRet);
return mRet;
}
inline void VMatrix::Identity()
{
*this = SetupMatrixIdentity();
}
//-----------------------------------------------------------------------------
// Accessors
//-----------------------------------------------------------------------------
inline void MatrixGetColumn( const VMatrix &src, int nCol, Vector *pColumn )
{
(*pColumn)[0] = src[0][nCol];
(*pColumn)[1] = src[1][nCol];
(*pColumn)[2] = src[2][nCol];
}
inline void MatrixSetColumn( VMatrix &src, int nCol, const Vector &column )
{
src.m[0][nCol] = column.x;
src.m[1][nCol] = column.y;
src.m[2][nCol] = column.z;
}
inline void MatrixSetColumn( const Vector &in, int column, matrix3x4_t& out )
{
out[0][column] = in.x;
out[1][column] = in.y;
out[2][column] = in.z;
}
//misc utils
void VectorITransform (const float *in1, const matrix3x4_t& in2, float *out);
void VectorTransform (const float *in1, const matrix3x4_t& in2, float *out);
void VectorIRotate( const float *in1, const matrix3x4_t& in2, float *out );
void VectorRotate( const float *in1, const matrix3x4_t& in2, float *out );
void SetIdentityMatrix( matrix3x4_t& matrix );
void MatrixAngles( const matrix3x4_t & matrix, float *angles ); // !!!!
void AngleMatrix( const Vector &angles, matrix3x4_t& matrix );
void AngleMatrix( const Vector &angles, const Vector &position, matrix3x4_t& matrix );
inline void MatrixAngles( const matrix3x4_t &matrix, Vector &angles )
{
MatrixAngles( matrix, &angles.x );
}
#endif