This repository has been archived on 2022-06-27. You can view files and clone it, but cannot push or open issues or pull requests.
Xash3DArchive/public/mathlib.h

682 lines
18 KiB
C

//=======================================================================
// Copyright XashXT Group 2007 ©
// mathlib.h - base math functions
//=======================================================================
#ifndef BASEMATH_H
#define BASEMATH_H
#include <math.h>
#include "const.h"
#ifndef M_PI
#define M_PI (float)3.14159265358979323846
#endif
#ifndef M_PI2
#define M_PI2 (float)6.28318530717958647692
#endif
#define METERS_PER_INCH 0.0254f
#define EQUAL_EPSILON 0.001f
#define STOP_EPSILON 0.1f
#define ON_EPSILON 0.1f
#define RAD2DEG( x ) ((float)(x) * (float)(180.f / M_PI))
#define DEG2RAD( x ) ((float)(x) * (float)(M_PI / 180.f))
#define METER2INCH(x) (float)(x * (1.0f/METERS_PER_INCH))
#define INCH2METER(x) (float)(x * (METERS_PER_INCH/1.0f))
#define RAD_TO_STUDIO (32768.0 / M_PI)
#define STUDIO_TO_RAD (M_PI / 32768.0)
#define nanmask (255<<23)
#define IS_NAN(x) (((*(int *)&x)&nanmask)==nanmask)
#define RANDOM_LONG(MIN, MAX) ((rand() & 32767) * (((MAX)-(MIN)) * (1.0f / 32767.0f)) + (MIN))
#define RANDOM_FLOAT(MIN,MAX) (((float)rand() / RAND_MAX) * ((MAX)-(MIN)) + (MIN))
#define VectorToPhysic(v) { v[0] = INCH2METER(v[0]), v[1] = INCH2METER(v[1]), v[2] = INCH2METER(v[2]); }
#define VectorToServer(v) { v[0] = METER2INCH(v[0]), v[1] = METER2INCH(v[1]), v[2] = METER2INCH(v[2]); }
#define DotProduct(x,y) ((x)[0]*(y)[0]+(x)[1]*(y)[1]+(x)[2]*(y)[2])
#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2])
#define Vector4Subtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2],(c)[3]=(a)[3]-(b)[3])
#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2])
#define Vector2Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1])
#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2])
#define Vector4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
#define VectorScale(in, scale, out) ((out)[0] = (in)[0] * (scale),(out)[1] = (in)[1] * (scale),(out)[2] = (in)[2] * (scale))
#define Vector4Scale(in, scale, out) ((out)[0] = (in)[0] * (scale),(out)[1] = (in)[1] * (scale),(out)[2] = (in)[2] * (scale),(out)[3] = (in)[3] * (scale))
#define VectorMultiply(a,b,c) ((c)[0]=(a)[0]*(b)[0],(c)[1]=(a)[1]*(b)[1],(c)[2]=(a)[2]*(b)[2])
#define VectorDivide( in, d, out ) VectorScale( in, (1.0f / (d)), out )
#define VectorMax(a) ( max((a)[0], max((a)[1], (a)[2])) )
#define VectorAvg(a) ( ((a)[0] + (a)[1] + (a)[2]) / 3 )
#define VectorLength(a) (sqrt(DotProduct(a, a)))
#define VectorLength2(a) (DotProduct(a, a))
#define VectorDistance(a, b) (sqrt(VectorDistance2(a,b)))
#define VectorDistance2(a, b) (((a)[0] - (b)[0]) * ((a)[0] - (b)[0]) + ((a)[1] - (b)[1]) * ((a)[1] - (b)[1]) + ((a)[2] - (b)[2]) * ((a)[2] - (b)[2]))
#define VectorAverage(a,b,o) ((o)[0]=((a)[0]+(b)[0])*0.5,(o)[1]=((a)[1]+(b)[1])*0.5,(o)[2]=((a)[2]+(b)[2])*0.5)
#define VectorSet(v, x, y, z) ((v)[0]=(x),(v)[1]=(y),(v)[2]=(z))
#define Vector4Set(v, x, y, z, w) {v[0] = x; v[1] = y; v[2] = z; v[3] = w;}
#define VectorClear(x) ((x)[0]=(x)[1]=(x)[2]=0)
#define Vector4Clear(x) ((x)[0]=(x)[1]=(x)[2]=(x)[3]=0)
#define VectorLerp( v1, lerp, v2, c ) ((c)[0] = (v1)[0] + (lerp) * ((v2)[0] - (v1)[0]), (c)[1] = (v1)[1] + (lerp) * ((v2)[1] - (v1)[1]), (c)[2] = (v1)[2] + (lerp) * ((v2)[2] - (v1)[2]))
#define VectorNormalize( v ) { float ilength = (float)sqrt(DotProduct(v, v));if (ilength) ilength = 1.0f / ilength;v[0] *= ilength;v[1] *= ilength;v[2] *= ilength; }
#define VectorNormalize2( v, dest ) {float ilength = (float) sqrt(DotProduct(v,v));if (ilength) ilength = 1.0f / ilength;dest[0] = v[0] * ilength;dest[1] = v[1] * ilength;dest[2] = v[2] * ilength; }
#define VectorNormalizeDouble( v ) {double ilength = sqrt(DotProduct(v,v));if (ilength) ilength = 1.0 / ilength;v[0] *= ilength;v[1] *= ilength;v[2] *= ilength; }
#define VectorNormalizeFast( v ) {float ilength = (float)rsqrt(DotProduct(v,v)); v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; }
#define VectorNegate(x, y) {y[0] =-x[0]; y[1]=-x[1]; y[2]=-x[2];}
#define VectorM(scale1, b1, c) ((c)[0] = (scale1) * (b1)[0],(c)[1] = (scale1) * (b1)[1],(c)[2] = (scale1) * (b1)[2])
#define VectorMA(a, scale, b, c) ((c)[0] = (a)[0] + (scale) * (b)[0],(c)[1] = (a)[1] + (scale) * (b)[1],(c)[2] = (a)[2] + (scale) * (b)[2])
#define VectorMAM(scale1, b1, scale2, b2, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2])
#define VectorMAMAM(scale1, b1, scale2, b2, scale3, b3, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0] + (scale3) * (b3)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1] + (scale3) * (b3)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2] + (scale3) * (b3)[2])
#define VectorMAMAMAM(scale1, b1, scale2, b2, scale3, b3, scale4, b4, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0] + (scale3) * (b3)[0] + (scale4) * (b4)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1] + (scale3) * (b3)[1] + (scale4) * (b4)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2] + (scale3) * (b3)[2] + (scale4) * (b4)[2])
#define VectorReflect( a, r, b, c ) do{ double d; d = DotProduct((a), (b)) * -(1.0 + (r)); VectorMA((a), (d), (b), (c)); } while( 0 )
#define BoxesOverlap(a,b,c,d) ((a)[0] <= (d)[0] && (b)[0] >= (c)[0] && (a)[1] <= (d)[1] && (b)[1] >= (c)[1] && (a)[2] <= (d)[2] && (b)[2] >= (c)[2])
#define BoxInsideBox(a,b,c,d) ((a)[0] >= (c)[0] && (b)[0] <= (d)[0] && (a)[1] >= (c)[1] && (b)[1] <= (d)[1] && (a)[2] >= (c)[2] && (b)[2] <= (d)[2])
#define TriangleOverlapsBox( a, b, c, d, e ) (min((a)[0], min((b)[0], (c)[0])) < (e)[0] && max((a)[0], max((b)[0], (c)[0])) > (d)[0] && min((a)[1], min((b)[1], (c)[1])) < (e)[1] && max((a)[1], max((b)[1], (c)[1])) > (d)[1] && min((a)[2], min((b)[2], (c)[2])) < (e)[2] && max((a)[2], max((b)[2], (c)[2])) > (d)[2])
#define TriangleNormal( a, b, c, n) ((n)[0] = ((a)[1] - (b)[1]) * ((c)[2] - (b)[2]) - ((a)[2] - (b)[2]) * ((c)[1] - (b)[1]), (n)[1] = ((a)[2] - (b)[2]) * ((c)[0] - (b)[0]) - ((a)[0] - (b)[0]) * ((c)[2] - (b)[2]), (n)[2] = ((a)[0] - (b)[0]) * ((c)[1] - (b)[1]) - ((a)[1] - (b)[1]) * ((c)[0] - (b)[0]))
_inline float anglemod(const float a){ return(360.0/65536) * ((int)(a*(65536/360.0)) & 65535); }
// NOTE: this code contain bug, what may invoked infinity loop
_inline int nearest_pow( int size )
{
int i = 2;
while( 1 )
{
i <<= 1;
if( size == i ) return i;
if( size > i && size < (i <<1))
{
if( size >= ((i+(i<<1))/2))
return i<<1;
else return i;
}
}
}
/*
=================
rsqrt
=================
*/
_inline float rsqrt( float number )
{
int i;
float x, y;
x = number * 0.5f;
i = *(int *)&number; // evil floating point bit level hacking
i = 0x5f3759df - (i >> 1); // what the fuck?
y = *(float *)&i;
y = y * (1.5f - (x * y * y)); // first iteration
return y;
}
_inline void ConvertDimensionToPhysic( vec3_t v )
{
vec3_t tmp;
VectorCopy(v, tmp);
v[0] = INCH2METER(tmp[0]);
v[1] = INCH2METER(tmp[1]);
v[2] = INCH2METER(tmp[2]);
}
_inline void ConvertDimensionToGame( vec3_t v )
{
vec3_t tmp;
VectorCopy(v, tmp);
v[0] = METER2INCH(tmp[0]);
v[1] = METER2INCH(tmp[1]);
v[2] = METER2INCH(tmp[2]);
}
_inline void ConvertPositionToPhysic( vec3_t v )
{
vec3_t tmp;
VectorCopy(v, tmp);
v[0] = INCH2METER(tmp[0]);
v[1] = INCH2METER(tmp[2]);
v[2] = INCH2METER(tmp[1]);
}
_inline void ConvertPositionToGame( vec3_t v )
{
vec3_t tmp;
VectorCopy(v, tmp);
v[2] = METER2INCH(tmp[1]);
v[1] = METER2INCH(tmp[2]);
v[0] = METER2INCH(tmp[0]);
}
_inline void ConvertDirectionToPhysic( vec3_t v )
{
vec3_t tmp;
VectorCopy(v, tmp);
v[0] = tmp[0];
v[1] = tmp[2];
v[2] = tmp[1];
}
_inline void ConvertDirectionToGame( vec3_t v )
{
vec3_t tmp;
VectorCopy(v, tmp);
v[0] = tmp[0];
v[1] = tmp[2];
v[2] = tmp[1];
}
_inline void VectorBound(const float min, vec3_t v, const float max)
{
v[0] = bound(min, v[0], max);
v[1] = bound(min, v[1], max);
v[2] = bound(min, v[2], max);
}
// FIXME: convert to #define
_inline float VectorNormalizeLength( vec3_t v )
{
float length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
length = sqrt (length);
if( length )
{
ilength = 1/length;
v[0] *= ilength;
v[1] *= ilength;
v[2] *= ilength;
}
return length;
}
_inline bool VectorIsNull( const vec3_t v )
{
int i;
float result = 0;
if(!v) return true;
for (i = 0; i< 3; i++) result += v[i];
if(result != 0) return false;
return true;
}
_inline bool VectorCompare (const vec3_t v1, const vec3_t v2)
{
int i;
for (i = 0; i < 3; i++ )
if (fabs(v1[i] - v2[i]) > EQUAL_EPSILON)
return false;
return true;
}
_inline void CrossProduct( vec3_t v1, vec3_t v2, vec3_t cross )
{
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
_inline void ClearBounds( vec3_t mins, vec3_t maxs )
{
// make bogus range
mins[0] = mins[1] = mins[2] = 999999;
maxs[0] = maxs[1] = maxs[2] = -999999;
}
_inline void AddPointToBounds( vec3_t v, vec3_t mins, vec3_t maxs )
{
float val;
int i;
for( i = 0; i < 3; i++ )
{
val = v[i];
if( val < mins[i] ) mins[i] = val;
if( val > maxs[i] ) maxs[i] = val;
}
}
_inline void VectorVectors(vec3_t forward, vec3_t right, vec3_t up)
{
float d;
right[0] = forward[2];
right[1] = -forward[0];
right[2] = forward[1];
d = DotProduct(forward, right);
VectorMA(right, -d, forward, right);
VectorNormalize(right);
CrossProduct(right, forward, up);
}
_inline void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
{
double angle, sr, sp, sy, cr, cp, cy;
angle = angles[YAW] * (M_PI*2 / 360);
sy = sin(angle);
cy = cos(angle);
angle = angles[PITCH] * (M_PI*2 / 360);
sp = sin(angle);
cp = cos(angle);
if (forward)
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if (right || up)
{
if (angles[ROLL])
{
angle = angles[ROLL] * (M_PI*2 / 360);
sr = sin(angle);
cr = cos(angle);
if (right)
{
right[0] = -1*(sr*sp*cy+cr*-sy);
right[1] = -1*(sr*sp*sy+cr*cy);
right[2] = -1*(sr*cp);
}
if (up)
{
up[0] = (cr*sp*cy+-sr*-sy);
up[1] = (cr*sp*sy+-sr*cy);
up[2] = cr*cp;
}
}
else
{
if (right)
{
right[0] = sy;
right[1] = -cy;
right[2] = 0;
}
if (up)
{
up[0] = (sp*cy);
up[1] = (sp*sy);
up[2] = cp;
}
}
}
}
_inline void AngleVectorsFLU(const vec3_t angles, vec3_t forward, vec3_t left, vec3_t up)
{
double angle, sr, sp, sy, cr, cp, cy;
angle = angles[YAW] * (M_PI*2 / 360);
sy = sin(angle);
cy = cos(angle);
angle = angles[PITCH] * (M_PI*2 / 360);
sp = sin(angle);
cp = cos(angle);
if (forward)
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if (left || up)
{
if (angles[ROLL])
{
angle = angles[ROLL] * (M_PI*2 / 360);
sr = sin(angle);
cr = cos(angle);
if (left)
{
left[0] = sr*sp*cy+cr*-sy;
left[1] = sr*sp*sy+cr*cy;
left[2] = sr*cp;
}
if (up)
{
up[0] = cr*sp*cy+-sr*-sy;
up[1] = cr*sp*sy+-sr*cy;
up[2] = cr*cp;
}
}
else
{
if (left)
{
left[0] = -sy;
left[1] = cy;
left[2] = 0;
}
if (up)
{
up[0] = sp*cy;
up[1] = sp*sy;
up[2] = cp;
}
}
}
}
// FIXME: get rid of this
_inline void MatrixAngles( matrix3x3 matrix, vec3_t angles )
{
vec3_t forward, right, up;
float xyDist;
forward[0] = matrix[0][0];
forward[1] = matrix[0][2];
forward[2] = matrix[0][1];
right[0] = matrix[1][0];
right[1] = matrix[1][2];
right[2] = matrix[1][1];
up[2] = matrix[2][1];
xyDist = com.sqrt( forward[0] * forward[0] + forward[1] * forward[1] );
if ( xyDist > EQUAL_EPSILON ) // enough here to get angles?
{
angles[1] = RAD2DEG( atan2( forward[1], forward[0] ));
angles[0] = RAD2DEG( atan2( -forward[2], xyDist ));
angles[2] = RAD2DEG( atan2( -right[2], up[2] ));
}
else
{
angles[1] = RAD2DEG( atan2( right[0], -right[1] ) );
angles[0] = RAD2DEG( atan2( -forward[2], xyDist ) );
angles[2] = 0;
}
}
/*
====================
AngleQuaternion
====================
*/
_inline void AngleQuaternion( float *angles, vec4_t q )
{
float angle;
float sr, sp, sy, cr, cp, cy;
// FIXME: rescale the inputs to 1/2 angle
angle = angles[2] * 0.5;
sy = sin(angle);
cy = cos(angle);
angle = angles[1] * 0.5;
sp = sin(angle);
cp = cos(angle);
angle = angles[0] * 0.5;
sr = sin(angle);
cr = cos(angle);
q[0] = sr*cp*cy-cr*sp*sy; // X
q[1] = cr*sp*cy+sr*cp*sy; // Y
q[2] = cr*cp*sy-sr*sp*cy; // Z
q[3] = cr*cp*cy+sr*sp*sy; // W
}
/*
====================
QuaternionSlerp
====================
*/
_inline void QuaternionSlerp( vec4_t p, vec4_t q, float t, vec4_t qt )
{
int i;
float omega, cosom, sinom, sclp, sclq;
// decide if one of the quaternions is backwards
float a = 0;
float b = 0;
for (i = 0; i < 4; i++)
{
a += (p[i]-q[i])*(p[i]-q[i]);
b += (p[i]+q[i])*(p[i]+q[i]);
}
if (a > b)
{
for (i = 0; i < 4; i++)
{
q[i] = -q[i];
}
}
cosom = p[0]*q[0] + p[1]*q[1] + p[2]*q[2] + p[3]*q[3];
if ((1.0 + cosom) > 0.000001)
{
if ((1.0 - cosom) > 0.000001)
{
omega = acos( cosom );
sinom = sin( omega );
sclp = sin( (1.0 - t)*omega) / sinom;
sclq = sin( t*omega ) / sinom;
}
else
{
sclp = 1.0 - t;
sclq = t;
}
for (i = 0; i < 4; i++) qt[i] = sclp * p[i] + sclq * q[i];
}
else
{
qt[0] = -q[1];
qt[1] = q[0];
qt[2] = -q[3];
qt[3] = q[2];
sclp = sin( (1.0 - t) * (0.5 * M_PI));
sclq = sin( t * (0.5 * M_PI));
for (i = 0; i < 3; i++)
{
qt[i] = sclp * p[i] + sclq * qt[i];
}
}
}
_inline float *GetRGBA( float r, float g, float b, float a )
{
static vec4_t color;
Vector4Set( color, r, g, b, a );
return color;
}
_inline dword MakeRGBA( byte red, byte green, byte blue, byte alpha )
{
byte rgba[4];
rgba[0] = red;
rgba[1] = green;
rgba[2] = blue;
rgba[3] = alpha;
return (rgba[3] << 24) | (rgba[2] << 16) | (rgba[1] << 8) | rgba[0];
}
_inline dword PackRGBA( float red, float green, float blue, float alpha )
{
byte rgba[4];
rgba[0] = bound( 0, 255 * red, 255 );
rgba[1] = bound( 0, 255 * green, 255 );
rgba[2] = bound( 0, 255 * blue, 255 );
if( alpha > 0.0f ) rgba[3] = bound( 0, 255 * alpha, 255 );
else rgba[3] = 0xFF; // fullbright
return (rgba[3] << 24) | (rgba[2] << 16) | (rgba[1] << 8) | rgba[0];
}
_inline float *UnpackRGBA( dword icolor )
{
static vec4_t color;
color[0] = ((icolor & 0x000000FF) >> 0 ) / 255.0f;
color[1] = ((icolor & 0x0000FF00) >> 8 ) / 255.0f;
color[2] = ((icolor & 0x00FF0000) >> 16) / 255.0f;
color[3] = ((icolor & 0xFF000000) >> 24) / 255.0f;
return color;
}
/*
=================
BoundsIntersect
=================
*/
_inline bool BoundsIntersect( const vec3_t mins1, const vec3_t maxs1, const vec3_t mins2, const vec3_t maxs2 )
{
if( mins1[0] > maxs2[0] || mins1[1] > maxs2[1] || mins1[2] > maxs2[2] )
return false;
if( maxs1[0] < mins2[0] || maxs1[1] < mins2[1] || maxs1[2] < mins2[2] )
return false;
return true;
}
/*
=================
BoundsAndSphereIntersect
=================
*/
_inline bool BoundsAndSphereIntersect( const vec3_t mins, const vec3_t maxs, const vec3_t origin, float radius )
{
if( mins[0] > origin[0] + radius || mins[1] > origin[1] + radius || mins[2] > origin[2] + radius )
return false;
if( maxs[0] < origin[0] - radius || maxs[1] < origin[1] - radius || maxs[2] < origin[2] - radius )
return false;
return true;
}
_inline bool PlaneIntersect( vec3_t p_n, vec_t p_d, vec3_t l_o, vec3_t l_n, vec3_t out )
{
float dot, t;
dot = DotProduct( p_n, l_n );
if( dot > -0.001 )
return false;
t = (p_d - (l_o[0] * p_n[0]) - (l_o[1] * p_n[1]) - (l_o[2] * p_n[2])) / dot;
if( out )
{
out[0] = l_o[0] + (t * l_n[0]);
out[1] = l_o[1] + (t * l_n[1]);
out[2] = l_o[2] + (t * l_n[2]);
}
return true;
}
#define PlaneDist(point,plane) ((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal))
#define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist)
#define NUM_HULL_ROUNDS (sizeof(hull_table) / sizeof(word))
#define HULL_PRECISION 4
static word hull_table[] = { 0, 4, 8, 16, 18, 24, 28, 30, 32, 40, 48, 54, 56, 60, 64, 72, 80, 112, 120, 128, 140, 176 };
_inline void CM_RoundUpHullSize( vec3_t size )
{
int i, j;
for(i = 0; i < 3; i++)
{
bool negative = false;
float result, value;
value = ceil(size[i] + 0.5f); // round it
if(value < 0) negative = true;
value = fabs( value ); // make positive
// lookup hull table
for(j = 0; j < NUM_HULL_ROUNDS; j++)
{
result = value - hull_table[j];
if(result <= HULL_PRECISION)
{
result = negative ? -hull_table[j] : hull_table[j];
break;
}
}
size[i] = result; // copy new value
}
}
/*
=================
RadiusFromBounds
=================
*/
_inline float RadiusFromBounds( vec3_t mins, vec3_t maxs )
{
int i;
vec3_t corner;
for (i = 0; i < 3; i++)
{
corner[i] = fabs(mins[i]) > fabs(maxs[i]) ? fabs(mins[i]) : fabs(maxs[i]);
}
return VectorLength( corner );
}
_inline float LerpAngle( float a2, float a1, float frac )
{
if( a1 - a2 > 180 ) a1 -= 360;
if( a1 - a2 < -180 ) a1 += 360;
return a2 + frac * (a1 - a2);
}
_inline float LerpView( float org1, float org2, float ofs1, float ofs2, float frac )
{
return org1 + ofs1 + frac * (org2 + ofs2 - (org1 + ofs1));
}
_inline float LerpPoint( float oldpoint, float curpoint, float frac )
{
return oldpoint + frac * (curpoint - oldpoint);
}
/*
=================
NearestPOW
=================
*/
_inline int NearestPOW( int value, bool roundDown )
{
int n = 1;
if( value <= 0 )
return 1;
while( n < value )
n <<= 1;
if( roundDown )
{
if( n > value )
n >>= 1;
}
return n;
}
static vec3_t vec3_origin = { 0, 0, 0 };
static vec3_t vec3_angles = { 0, 0, 0 };
static vec4_t vec4_origin = { 0, 0, 0, 0 };
static vec3_t vec3_up = { 0.0f, 1.0f, 0.0f }; // unconverted up vector
#endif//BASEMATH_H