This repository has been archived on 2022-06-27. You can view files and clone it, but cannot push or open issues or pull requests.
Xash3DArchive/public/mathlib.h

520 lines
13 KiB
C

//=======================================================================
// Copyright XashXT Group 2007 Š
// mathlib.h - base math functions
//=======================================================================
#ifndef BASEMATH_H
#define BASEMATH_H
#include <math.h>
// euler angle order
#define PITCH 0
#define YAW 1
#define ROLL 2
#ifndef M_PI
#define M_PI (float)3.14159265358979323846
#endif
#ifndef M_PI2
#define M_PI2 (float)6.28318530717958647692
#endif
#define M_PI_F ((float)(M_PI))
#define M_PI2_F ((float)(M_PI2))
#define RAD2DEG( x ) ((float)(x) * (float)(180.f / M_PI))
#define DEG2RAD( x ) ((float)(x) * (float)(M_PI / 180.f))
#define SIDE_FRONT 0
#define SIDE_BACK 1
#define SIDE_ON 2
#define SIDE_CROSS -2
#define PLANE_X 0 // 0 - 2 are axial planes
#define PLANE_Y 1 // 3 needs alternate calc
#define PLANE_Z 2
#define PLANE_NONAXIAL 3
#define EQUAL_EPSILON 0.001f
#define STOP_EPSILON 0.1f
#define ON_EPSILON 0.1f
#define RAD_TO_STUDIO (32768.0 / M_PI)
#define STUDIO_TO_RAD (M_PI / 32768.0)
#define nanmask (255<<23)
#define Q_rint(x) ((x) < 0 ? ((int)((x)-0.5f)) : ((int)((x)+0.5f)))
#define IS_NAN(x) (((*(int *)&x)&nanmask)==nanmask)
#define VectorIsNAN(v) (IS_NAN(v[0]) || IS_NAN(v[1]) || IS_NAN(v[2]))
#define DotProduct(x,y) ((x)[0]*(y)[0]+(x)[1]*(y)[1]+(x)[2]*(y)[2])
#define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0])
#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2])
#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2])
#define Vector2Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1])
#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2])
#define Vector4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
#define VectorScale(in, scale, out) ((out)[0] = (in)[0] * (scale),(out)[1] = (in)[1] * (scale),(out)[2] = (in)[2] * (scale))
#define VectorCompare(v1,v2) ((v1)[0]==(v2)[0] && (v1)[1]==(v2)[1] && (v1)[2]==(v2)[2])
#define VectorDivide( in, d, out ) VectorScale( in, (1.0f / (d)), out )
#define VectorMax(a) ( max((a)[0], max((a)[1], (a)[2])) )
#define VectorAvg(a) ( ((a)[0] + (a)[1] + (a)[2]) / 3 )
#define VectorLength(a) (com.sqrt( DotProduct( a, a )))
#define VectorLength2(a) (DotProduct( a, a ))
#define VectorDistance(a, b) (com.sqrt( VectorDistance2( a, b )))
#define VectorDistance2(a, b) (((a)[0] - (b)[0]) * ((a)[0] - (b)[0]) + ((a)[1] - (b)[1]) * ((a)[1] - (b)[1]) + ((a)[2] - (b)[2]) * ((a)[2] - (b)[2]))
#define VectorAverage(a,b,o) ((o)[0]=((a)[0]+(b)[0])*0.5,(o)[1]=((a)[1]+(b)[1])*0.5,(o)[2]=((a)[2]+(b)[2])*0.5)
#define Vector2Set(v, x, y) ((v)[0]=(x),(v)[1]=(y))
#define VectorSet(v, x, y, z) ((v)[0]=(x),(v)[1]=(y),(v)[2]=(z))
#define Vector4Set(v, a, b, c, d) ((v)[0]=(a),(v)[1]=(b),(v)[2]=(c),(v)[3] = (d))
#define VectorClear(x) ((x)[0]=(x)[1]=(x)[2]=0)
#define Vector2Lerp( v1, lerp, v2, c ) ((c)[0] = (v1)[0] + (lerp) * ((v2)[0] - (v1)[0]), (c)[1] = (v1)[1] + (lerp) * ((v2)[1] - (v1)[1]))
#define VectorLerp( v1, lerp, v2, c ) ((c)[0] = (v1)[0] + (lerp) * ((v2)[0] - (v1)[0]), (c)[1] = (v1)[1] + (lerp) * ((v2)[1] - (v1)[1]), (c)[2] = (v1)[2] + (lerp) * ((v2)[2] - (v1)[2]))
#define VectorNormalize( v ) { float ilength = (float)com.sqrt(DotProduct(v, v));if (ilength) ilength = 1.0f / ilength;v[0] *= ilength;v[1] *= ilength;v[2] *= ilength; }
#define VectorNormalize2( v, dest ) {float ilength = (float)com.sqrt(DotProduct(v,v));if (ilength) ilength = 1.0f / ilength;dest[0] = v[0] * ilength;dest[1] = v[1] * ilength;dest[2] = v[2] * ilength; }
#define VectorNormalizeFast( v ) {float ilength = (float)rsqrt(DotProduct(v,v)); v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; }
#define VectorNormalizeLength( v ) VectorNormalizeLength2((v), (v))
#define VectorNegate(x, y) ((y)[0] = -(x)[0], (y)[1] = -(x)[1], (y)[2] = -(x)[2])
#define VectorM(scale1, b1, c) ((c)[0] = (scale1) * (b1)[0],(c)[1] = (scale1) * (b1)[1],(c)[2] = (scale1) * (b1)[2])
#define VectorMA(a, scale, b, c) ((c)[0] = (a)[0] + (scale) * (b)[0],(c)[1] = (a)[1] + (scale) * (b)[1],(c)[2] = (a)[2] + (scale) * (b)[2])
#define VectorMAMAM(scale1, b1, scale2, b2, scale3, b3, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0] + (scale3) * (b3)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1] + (scale3) * (b3)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2] + (scale3) * (b3)[2])
#define MakeRGBA( out, x, y, z, w ) Vector4Set( out, x, y, z, w )
_inline float anglemod(const float a){ return(360.0/65536) * ((int)(a*(65536/360.0)) & 65535); }
/*
=================
rsqrt
=================
*/
_inline float rsqrt( float number )
{
int i;
float x, y;
if( number == 0.0f )
return 0.0f;
x = number * 0.5f;
i = *(int *)&number; // evil floating point bit level hacking
i = 0x5f3759df - (i >> 1); // what the fuck?
y = *(float *)&i;
y = y * (1.5f - (x * y * y)); // first iteration
return y;
}
_inline float VectorNormalizeLength2( const vec3_t v, vec3_t out )
{
float length, ilength;
length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
length = com.sqrt( length );
if( length )
{
ilength = 1.0f / length;
out[0] = v[0] * ilength;
out[1] = v[1] * ilength;
out[2] = v[2] * ilength;
}
else out[0] = out[1] = out[2] = 0.0f;
return length;
}
_inline qboolean VectorIsNull( const vec3_t v )
{
int i;
float result = 0.0f;
if( !v ) return true;
for( i = 0; i< 3; i++ )
result += v[i];
if( result != 0.0f )
return false;
return true;
}
_inline void ClearBounds( vec3_t mins, vec3_t maxs )
{
// make bogus range
mins[0] = mins[1] = mins[2] = 999999;
maxs[0] = maxs[1] = maxs[2] = -999999;
}
_inline void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs )
{
float val;
int i;
for( i = 0; i < 3; i++ )
{
val = v[i];
if( val < mins[i] ) mins[i] = val;
if( val > maxs[i] ) maxs[i] = val;
}
}
_inline void VectorVectors( vec3_t forward, vec3_t right, vec3_t up )
{
float d;
right[0] = forward[2];
right[1] = -forward[0];
right[2] = forward[1];
d = DotProduct(forward, right);
VectorMA(right, -d, forward, right);
VectorNormalize(right);
CrossProduct(right, forward, up);
}
_inline void VectorAngles( const vec3_t forward, vec3_t angles )
{
float tmp, yaw, pitch;
if( forward[1] == 0 && forward[0] == 0 )
{
yaw = 0.0f;
if( forward[2] > 0 )
pitch = 270.0f;
else pitch = 90.0f;
}
else
{
yaw = ( atan2( forward[1], forward[0] ) * 180 / M_PI );
if( yaw < 0 ) yaw += 360;
tmp = com.sqrt( forward[0] * forward[0] + forward[1] * forward[1] );
pitch = ( atan2( -forward[2], tmp ) * 180 / M_PI );
if( pitch < 0 ) pitch += 360;
}
angles[0] = pitch;
angles[1] = yaw;
angles[2] = 0;
}
// similar to MakeNormalVectors but for rotational matrices
// (FIXME: weird, what's the diff between this and VectorVectors?)
_inline void NormalVectorToAxis( const vec3_t forward, vec3_t axis[3] )
{
VectorCopy( forward, axis[0] );
if( forward[0] || forward[1] )
{
VectorSet( axis[1], forward[1], -forward[0], 0 );
VectorNormalize( axis[1] );
CrossProduct( axis[0], axis[1], axis[2] );
}
else
{
VectorSet( axis[1], 1, 0, 0 );
VectorSet( axis[2], 0, 1, 0 );
}
}
_inline void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up)
{
float angle, sr, sp, sy, cr, cp, cy;
angle = angles[YAW] * (M_PI*2 / 360);
com.sincos( angle, &sy, &cy );
angle = angles[PITCH] * (M_PI*2 / 360);
com.sincos( angle, &sp, &cp );
if( forward )
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if( right || up )
{
if( angles[ROLL] )
{
angle = angles[ROLL] * (M_PI*2 / 360);
com.sincos( angle, &sr, &cr );
if( right )
{
right[0] = -1*(sr*sp*cy+cr*-sy);
right[1] = -1*(sr*sp*sy+cr*cy);
right[2] = -1*(sr*cp);
}
if( up )
{
up[0] = (cr*sp*cy+-sr*-sy);
up[1] = (cr*sp*sy+-sr*cy);
up[2] = cr*cp;
}
}
else
{
if( right )
{
right[0] = sy;
right[1] = -cy;
right[2] = 0;
}
if( up )
{
up[0] = (sp*cy);
up[1] = (sp*sy);
up[2] = cp;
}
}
}
}
_inline void AngleVectorsFLU(const vec3_t angles, vec3_t forward, vec3_t left, vec3_t up)
{
float angle, sr, sp, sy, cr, cp, cy;
angle = angles[YAW] * (M_PI*2 / 360);
com.sincos( angle, &sy, &cy );
angle = angles[PITCH] * (M_PI*2 / 360);
com.sincos( angle, &sp, &cp );
if( forward )
{
forward[0] = cp*cy;
forward[1] = cp*sy;
forward[2] = -sp;
}
if( left || up )
{
if( angles[ROLL] )
{
angle = angles[ROLL] * (M_PI*2 / 360);
com.sincos( angle, &sr, &cr );
if( left )
{
left[0] = sr*sp*cy+cr*-sy;
left[1] = sr*sp*sy+cr*cy;
left[2] = sr*cp;
}
if( up )
{
up[0] = cr*sp*cy+-sr*-sy;
up[1] = cr*sp*sy+-sr*cy;
up[2] = cr*cp;
}
}
else
{
if( left )
{
left[0] = -sy;
left[1] = cy;
left[2] = 0;
}
if( up )
{
up[0] = sp*cy;
up[1] = sp*sy;
up[2] = cp;
}
}
}
}
/*
====================
AngleQuaternion
====================
*/
_inline void AngleQuaternion( float *angles, vec4_t q )
{
float angle;
float sr, sp, sy, cr, cp, cy;
// FIXME: rescale the inputs to 1/2 angle
angle = angles[2] * 0.5;
com.sincos( angle, &sy, &cy );
angle = angles[1] * 0.5;
com.sincos( angle, &sp, &cp );
angle = angles[0] * 0.5;
com.sincos( angle, &sr, &cr );
q[0] = sr*cp*cy-cr*sp*sy; // X
q[1] = cr*sp*cy+sr*cp*sy; // Y
q[2] = cr*cp*sy-sr*sp*cy; // Z
q[3] = cr*cp*cy+sr*sp*sy; // W
}
/*
====================
QuaternionSlerp
====================
*/
_inline void QuaternionSlerp( vec4_t p, vec4_t q, float t, vec4_t qt )
{
float omega, cosom, sinom, sclp, sclq;
int i;
// decide if one of the quaternions is backwards
float a = 0;
float b = 0;
for( i = 0; i < 4; i++ )
{
a += (p[i]-q[i])*(p[i]-q[i]);
b += (p[i]+q[i])*(p[i]+q[i]);
}
if( a > b )
{
for( i = 0; i < 4; i++ )
{
q[i] = -q[i];
}
}
cosom = p[0]*q[0] + p[1]*q[1] + p[2]*q[2] + p[3]*q[3];
if(( 1.0 + cosom ) > 0.000001 )
{
if(( 1.0 - cosom ) > 0.000001 )
{
omega = com.acos( cosom );
sinom = com.sin( omega );
sclp = com.sin(( 1.0 - t ) * omega ) / sinom;
sclq = com.sin( t * omega ) / sinom;
}
else
{
sclp = 1.0 - t;
sclq = t;
}
for( i = 0; i < 4; i++ )
qt[i] = sclp * p[i] + sclq * q[i];
}
else
{
qt[0] = -q[1];
qt[1] = q[0];
qt[2] = -q[3];
qt[3] = q[2];
sclp = com.sin(( 1.0 - t ) * ( 0.5 * M_PI ));
sclq = com.sin( t * ( 0.5 * M_PI ));
for( i = 0; i < 3; i++ )
qt[i] = sclp * p[i] + sclq * qt[i];
}
}
/*
=================
BoundsIntersect
=================
*/
_inline qboolean BoundsIntersect( const vec3_t mins1, const vec3_t maxs1, const vec3_t mins2, const vec3_t maxs2 )
{
if( mins1[0] > maxs2[0] || mins1[1] > maxs2[1] || mins1[2] > maxs2[2] )
return false;
if( maxs1[0] < mins2[0] || maxs1[1] < mins2[1] || maxs1[2] < mins2[2] )
return false;
return true;
}
/*
=================
BoundsAndSphereIntersect
=================
*/
_inline qboolean BoundsAndSphereIntersect( const vec3_t mins, const vec3_t maxs, const vec3_t origin, float radius )
{
if( mins[0] > origin[0] + radius || mins[1] > origin[1] + radius || mins[2] > origin[2] + radius )
return false;
if( maxs[0] < origin[0] - radius || maxs[1] < origin[1] - radius || maxs[2] < origin[2] - radius )
return false;
return true;
}
_inline static int PlaneTypeForNormal( const vec3_t normal )
{
if( normal[0] == 1.0 ) return PLANE_X;
if( normal[1] == 1.0 ) return PLANE_Y;
if( normal[2] == 1.0 ) return PLANE_Z;
return PLANE_NONAXIAL;
}
/*
=================
SignbitsForPlane
fast box on planeside test
=================
*/
_inline static int SignbitsForPlane( const vec3_t normal )
{
int bits, i;
for( bits = i = 0; i < 3; i++ )
if( normal[i] < 0.0f ) bits |= 1<<i;
return bits;
}
#define PlaneDist(point,plane) ((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal))
#define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist)
/*
=================
RadiusFromBounds
=================
*/
_inline float RadiusFromBounds( vec3_t mins, vec3_t maxs )
{
int i;
vec3_t corner;
for (i = 0; i < 3; i++)
{
corner[i] = fabs(mins[i]) > fabs(maxs[i]) ? fabs(mins[i]) : fabs(maxs[i]);
}
return VectorLength( corner );
}
/*
=================
SimpleSpline
NOTE: ripped from hl2 source
hermite basis function for smooth interpolation
Similar to Gain() above, but very cheap to call
value should be between 0 & 1 inclusive
=================
*/
_inline float SimpleSpline( float value )
{
float valueSquared = value * value;
// nice little ease-in, ease-out spline-like curve
return (3 * valueSquared - 2 * valueSquared * value);
}
/*
=================
NearestPOW
=================
*/
_inline int NearestPOW( int value, qboolean roundDown )
{
int n = 1;
if( value <= 0 ) return 1;
while( n < value ) n <<= 1;
if( roundDown )
{
if( n > value ) n >>= 1;
}
return n;
}
static vec3_t vec3_origin = { 0, 0, 0 };
#endif//BASEMATH_H