mirror of
https://github.com/FWGS/hlsdk-xash3d
synced 2024-11-21 17:36:18 +01:00
Merge pull request #379 from MoeMod/studio_util
ARMv8 neon support for studio util
This commit is contained in:
commit
69f27d43bd
356
cl_dll/neon_mathfun.h
Normal file
356
cl_dll/neon_mathfun.h
Normal file
@ -0,0 +1,356 @@
|
||||
/* NEON implementation of sin, cos, exp and log
|
||||
|
||||
Inspired by Intel Approximate Math library, and based on the
|
||||
corresponding algorithms of the cephes math library
|
||||
*/
|
||||
|
||||
/* Copyright (C) 2011 Julien Pommier
|
||||
|
||||
This software is provided 'as-is', without any express or implied
|
||||
warranty. In no event will the authors be held liable for any damages
|
||||
arising from the use of this software.
|
||||
|
||||
Permission is granted to anyone to use this software for any purpose,
|
||||
including commercial applications, and to alter it and redistribute it
|
||||
freely, subject to the following restrictions:
|
||||
|
||||
1. The origin of this software must not be misrepresented; you must not
|
||||
claim that you wrote the original software. If you use this software
|
||||
in a product, an acknowledgment in the product documentation would be
|
||||
appreciated but is not required.
|
||||
2. Altered source versions must be plainly marked as such, and must not be
|
||||
misrepresented as being the original software.
|
||||
3. This notice may not be removed or altered from any source distribution.
|
||||
|
||||
(this is the zlib license)
|
||||
*/
|
||||
|
||||
#include <arm_neon.h>
|
||||
|
||||
typedef float32x4_t v4sf; // vector of 4 float
|
||||
typedef uint32x4_t v4su; // vector of 4 uint32
|
||||
typedef int32x4_t v4si; // vector of 4 uint32
|
||||
|
||||
#define s4f_x(s4f) vgetq_lane_f32(s4f, 0)
|
||||
#define s4f_y(s4f) vgetq_lane_f32(s4f, 1)
|
||||
#define s4f_z(s4f) vgetq_lane_f32(s4f, 2)
|
||||
#define s4f_w(s4f) vgetq_lane_f32(s4f, 3)
|
||||
|
||||
#define c_inv_mant_mask ~0x7f800000u
|
||||
#define c_cephes_SQRTHF 0.707106781186547524
|
||||
#define c_cephes_log_p0 7.0376836292E-2
|
||||
#define c_cephes_log_p1 - 1.1514610310E-1
|
||||
#define c_cephes_log_p2 1.1676998740E-1
|
||||
#define c_cephes_log_p3 - 1.2420140846E-1
|
||||
#define c_cephes_log_p4 + 1.4249322787E-1
|
||||
#define c_cephes_log_p5 - 1.6668057665E-1
|
||||
#define c_cephes_log_p6 + 2.0000714765E-1
|
||||
#define c_cephes_log_p7 - 2.4999993993E-1
|
||||
#define c_cephes_log_p8 + 3.3333331174E-1
|
||||
#define c_cephes_log_q1 -2.12194440e-4
|
||||
#define c_cephes_log_q2 0.693359375
|
||||
|
||||
/* natural logarithm computed for 4 simultaneous float
|
||||
return NaN for x <= 0
|
||||
*/
|
||||
inline v4sf log_ps(v4sf x) {
|
||||
v4sf one = vdupq_n_f32(1);
|
||||
|
||||
x = vmaxq_f32(x, vdupq_n_f32(0)); /* force flush to zero on denormal values */
|
||||
v4su invalid_mask = vcleq_f32(x, vdupq_n_f32(0));
|
||||
|
||||
v4si ux = vreinterpretq_s32_f32(x);
|
||||
|
||||
v4si emm0 = vshrq_n_s32(ux, 23);
|
||||
|
||||
/* keep only the fractional part */
|
||||
ux = vandq_s32(ux, vdupq_n_s32(c_inv_mant_mask));
|
||||
ux = vorrq_s32(ux, vreinterpretq_s32_f32(vdupq_n_f32(0.5f)));
|
||||
x = vreinterpretq_f32_s32(ux);
|
||||
|
||||
emm0 = vsubq_s32(emm0, vdupq_n_s32(0x7f));
|
||||
v4sf e = vcvtq_f32_s32(emm0);
|
||||
|
||||
e = vaddq_f32(e, one);
|
||||
|
||||
/* part2:
|
||||
if( x < SQRTHF ) {
|
||||
e -= 1;
|
||||
x = x + x - 1.0;
|
||||
} else { x = x - 1.0; }
|
||||
*/
|
||||
v4su mask = vcltq_f32(x, vdupq_n_f32(c_cephes_SQRTHF));
|
||||
v4sf tmp = vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(x), mask));
|
||||
x = vsubq_f32(x, one);
|
||||
e = vsubq_f32(e, vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(one), mask)));
|
||||
x = vaddq_f32(x, tmp);
|
||||
|
||||
v4sf z = vmulq_f32(x,x);
|
||||
|
||||
v4sf y = vdupq_n_f32(c_cephes_log_p0);
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p1));
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p2));
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p3));
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p4));
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p5));
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p6));
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p7));
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, vdupq_n_f32(c_cephes_log_p8));
|
||||
y = vmulq_f32(y, x);
|
||||
|
||||
y = vmulq_f32(y, z);
|
||||
|
||||
|
||||
tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q1));
|
||||
y = vaddq_f32(y, tmp);
|
||||
|
||||
|
||||
tmp = vmulq_f32(z, vdupq_n_f32(0.5f));
|
||||
y = vsubq_f32(y, tmp);
|
||||
|
||||
tmp = vmulq_f32(e, vdupq_n_f32(c_cephes_log_q2));
|
||||
x = vaddq_f32(x, y);
|
||||
x = vaddq_f32(x, tmp);
|
||||
x = vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(x), invalid_mask)); // negative arg will be NAN
|
||||
return x;
|
||||
}
|
||||
|
||||
#define c_exp_hi 88.3762626647949f
|
||||
#define c_exp_lo -88.3762626647949f
|
||||
|
||||
#define c_cephes_LOG2EF 1.44269504088896341
|
||||
#define c_cephes_exp_C1 0.693359375
|
||||
#define c_cephes_exp_C2 -2.12194440e-4
|
||||
|
||||
#define c_cephes_exp_p0 1.9875691500E-4
|
||||
#define c_cephes_exp_p1 1.3981999507E-3
|
||||
#define c_cephes_exp_p2 8.3334519073E-3
|
||||
#define c_cephes_exp_p3 4.1665795894E-2
|
||||
#define c_cephes_exp_p4 1.6666665459E-1
|
||||
#define c_cephes_exp_p5 5.0000001201E-1
|
||||
|
||||
/* exp() computed for 4 float at once */
|
||||
inline v4sf exp_ps(v4sf x) {
|
||||
v4sf tmp, fx;
|
||||
|
||||
v4sf one = vdupq_n_f32(1);
|
||||
x = vminq_f32(x, vdupq_n_f32(c_exp_hi));
|
||||
x = vmaxq_f32(x, vdupq_n_f32(c_exp_lo));
|
||||
|
||||
/* express exp(x) as exp(g + n*log(2)) */
|
||||
fx = vmlaq_f32(vdupq_n_f32(0.5f), x, vdupq_n_f32(c_cephes_LOG2EF));
|
||||
|
||||
/* perform a floorf */
|
||||
tmp = vcvtq_f32_s32(vcvtq_s32_f32(fx));
|
||||
|
||||
/* if greater, substract 1 */
|
||||
v4su mask = vcgtq_f32(tmp, fx);
|
||||
mask = vandq_u32(mask, vreinterpretq_u32_f32(one));
|
||||
|
||||
|
||||
fx = vsubq_f32(tmp, vreinterpretq_f32_u32(mask));
|
||||
|
||||
tmp = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C1));
|
||||
v4sf z = vmulq_f32(fx, vdupq_n_f32(c_cephes_exp_C2));
|
||||
x = vsubq_f32(x, tmp);
|
||||
x = vsubq_f32(x, z);
|
||||
|
||||
static const float cephes_exp_p[6] = { c_cephes_exp_p0, c_cephes_exp_p1, c_cephes_exp_p2, c_cephes_exp_p3, c_cephes_exp_p4, c_cephes_exp_p5 };
|
||||
v4sf y = vld1q_dup_f32(cephes_exp_p+0);
|
||||
v4sf c1 = vld1q_dup_f32(cephes_exp_p+1);
|
||||
v4sf c2 = vld1q_dup_f32(cephes_exp_p+2);
|
||||
v4sf c3 = vld1q_dup_f32(cephes_exp_p+3);
|
||||
v4sf c4 = vld1q_dup_f32(cephes_exp_p+4);
|
||||
v4sf c5 = vld1q_dup_f32(cephes_exp_p+5);
|
||||
|
||||
y = vmulq_f32(y, x);
|
||||
z = vmulq_f32(x,x);
|
||||
y = vaddq_f32(y, c1);
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, c2);
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, c3);
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, c4);
|
||||
y = vmulq_f32(y, x);
|
||||
y = vaddq_f32(y, c5);
|
||||
|
||||
y = vmulq_f32(y, z);
|
||||
y = vaddq_f32(y, x);
|
||||
y = vaddq_f32(y, one);
|
||||
|
||||
/* build 2^n */
|
||||
int32x4_t mm;
|
||||
mm = vcvtq_s32_f32(fx);
|
||||
mm = vaddq_s32(mm, vdupq_n_s32(0x7f));
|
||||
mm = vshlq_n_s32(mm, 23);
|
||||
v4sf pow2n = vreinterpretq_f32_s32(mm);
|
||||
|
||||
y = vmulq_f32(y, pow2n);
|
||||
return y;
|
||||
}
|
||||
|
||||
#define c_minus_cephes_DP1 -0.78515625
|
||||
#define c_minus_cephes_DP2 -2.4187564849853515625e-4
|
||||
#define c_minus_cephes_DP3 -3.77489497744594108e-8
|
||||
#define c_sincof_p0 -1.9515295891E-4
|
||||
#define c_sincof_p1 8.3321608736E-3
|
||||
#define c_sincof_p2 -1.6666654611E-1
|
||||
#define c_coscof_p0 2.443315711809948E-005
|
||||
#define c_coscof_p1 -1.388731625493765E-003
|
||||
#define c_coscof_p2 4.166664568298827E-002
|
||||
#define c_cephes_FOPI 1.27323954473516 // 4 / M_PI
|
||||
|
||||
/* evaluation of 4 sines & cosines at once.
|
||||
|
||||
The code is the exact rewriting of the cephes sinf function.
|
||||
Precision is excellent as long as x < 8192 (I did not bother to
|
||||
take into account the special handling they have for greater values
|
||||
-- it does not return garbage for arguments over 8192, though, but
|
||||
the extra precision is missing).
|
||||
|
||||
Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
|
||||
surprising but correct result.
|
||||
|
||||
Note also that when you compute sin(x), cos(x) is available at
|
||||
almost no extra price so both sin_ps and cos_ps make use of
|
||||
sincos_ps..
|
||||
*/
|
||||
inline void sincos_ps(v4sf x, v4sf *ysin, v4sf *ycos) { // any x
|
||||
v4sf y;
|
||||
|
||||
v4su emm2;
|
||||
|
||||
v4su sign_mask_sin, sign_mask_cos;
|
||||
sign_mask_sin = vcltq_f32(x, vdupq_n_f32(0));
|
||||
x = vabsq_f32(x);
|
||||
|
||||
/* scale by 4/Pi */
|
||||
y = vmulq_n_f32(x, c_cephes_FOPI);
|
||||
|
||||
/* store the integer part of y in mm0 */
|
||||
emm2 = vcvtq_u32_f32(y);
|
||||
/* j=(j+1) & (~1) (see the cephes sources) */
|
||||
emm2 = vaddq_u32(emm2, vdupq_n_u32(1));
|
||||
emm2 = vandq_u32(emm2, vdupq_n_u32(~1));
|
||||
y = vcvtq_f32_u32(emm2);
|
||||
|
||||
/* get the polynom selection mask
|
||||
there is one polynom for 0 <= x <= Pi/4
|
||||
and another one for Pi/4<x<=Pi/2
|
||||
|
||||
Both branches will be computed.
|
||||
*/
|
||||
v4su poly_mask = vtstq_u32(emm2, vdupq_n_u32(2));
|
||||
|
||||
/* The magic pass: "Extended precision modular arithmetic"
|
||||
x = ((x - y * DP1) - y * DP2) - y * DP3; */
|
||||
x = vfmaq_n_f32(x, y, c_minus_cephes_DP1);
|
||||
x = vfmaq_n_f32(x, y, c_minus_cephes_DP2);
|
||||
x = vfmaq_n_f32(x, y, c_minus_cephes_DP3);
|
||||
|
||||
sign_mask_sin = veorq_u32(sign_mask_sin, vtstq_u32(emm2, vdupq_n_u32(4)));
|
||||
sign_mask_cos = vtstq_u32(vsubq_u32(emm2, vdupq_n_u32(2)), vdupq_n_u32(4));
|
||||
|
||||
/* Evaluate the first polynom (0 <= x <= Pi/4) in y1,
|
||||
and the second polynom (Pi/4 <= x <= 0) in y2 */
|
||||
v4sf z = vmulq_f32(x,x);
|
||||
v4sf y1, y2;
|
||||
|
||||
y1 = vfmaq_n_f32(vdupq_n_f32(c_coscof_p1), z, c_coscof_p0);
|
||||
y2 = vfmaq_n_f32(vdupq_n_f32(c_sincof_p1), z, c_sincof_p0);
|
||||
y1 = vfmaq_f32(vdupq_n_f32(c_coscof_p2), y1, z);
|
||||
y2 = vfmaq_f32(vdupq_n_f32(c_sincof_p2), y2, z);
|
||||
y1 = vmulq_f32(y1, z);
|
||||
y2 = vmulq_f32(y2, z);
|
||||
y1 = vmulq_f32(y1, z);
|
||||
y1 = vfmsq_n_f32(y1, z, 0.5f);
|
||||
y2 = vfmaq_f32(x, y2, x);
|
||||
y1 = vaddq_f32(y1, vdupq_n_f32(1));
|
||||
|
||||
/* select the correct result from the two polynoms */
|
||||
v4sf ys = vbslq_f32(poly_mask, y1, y2);
|
||||
v4sf yc = vbslq_f32(poly_mask, y2, y1);
|
||||
*ysin = vbslq_f32(sign_mask_sin, vnegq_f32(ys), ys);
|
||||
*ycos = vbslq_f32(sign_mask_cos, yc, vnegq_f32(yc));
|
||||
}
|
||||
|
||||
inline v4sf sin_ps(v4sf x) {
|
||||
v4sf ysin, ycos;
|
||||
sincos_ps(x, &ysin, &ycos);
|
||||
return ysin;
|
||||
}
|
||||
|
||||
inline v4sf cos_ps(v4sf x) {
|
||||
v4sf ysin, ycos;
|
||||
sincos_ps(x, &ysin, &ycos);
|
||||
return ycos;
|
||||
}
|
||||
|
||||
static const float asinf_lut[7] = {
|
||||
1.5707961728,
|
||||
-0.2145852647,
|
||||
0.0887556286,
|
||||
-0.0488025043,
|
||||
0.0268999482,
|
||||
-0.0111462294,
|
||||
0.0022959648
|
||||
};
|
||||
|
||||
inline void asincos_ps(float32x4_t x, float32x4_t* yasin, float32x4_t* yacos)
|
||||
{
|
||||
float32x4_t one = vdupq_n_f32(1);
|
||||
float32x4_t negone = vdupq_n_f32(-1);
|
||||
float32x4_t lut[7];
|
||||
float32x4_t xv[5];
|
||||
float32x4_t sat = vdupq_n_f32(0.9999999f);
|
||||
float32x4_t m_pi_2 = vdupq_n_f32(1.570796326);
|
||||
for (int i = 0; i <= 6; i++)
|
||||
lut[i] = vdupq_n_f32(asinf_lut[i]);
|
||||
|
||||
uint32x4_t sign_mask_asin = vcltq_f32(x, vdupq_n_f32(0));
|
||||
x = vabsq_f32(x);
|
||||
uint32x4_t saturate = vcgeq_f32(x, one);
|
||||
x = vbslq_f32(saturate, sat, x);
|
||||
float32x4_t y = vsubq_f32(one, x);
|
||||
y = vsqrtq_f32(y);
|
||||
|
||||
xv[0] = vmulq_f32(x, x);
|
||||
for (int i = 1; i < 5; i++)
|
||||
xv[i] = vmulq_f32(xv[i - 1], x);
|
||||
|
||||
float32x4_t a0 = vaddq_f32(lut[0], vmulq_f32(lut[1], x));
|
||||
float32x4_t a1 = vaddq_f32(vmulq_f32(lut[2], xv[0]), vmulq_f32(lut[3], xv[1]));
|
||||
float32x4_t a2 = vaddq_f32(vmulq_f32(lut[4], xv[2]), vmulq_f32(lut[5], xv[3]));
|
||||
float32x4_t a3 = vmulq_f32(lut[6], xv[4]);
|
||||
float32x4_t phx = vaddq_f32(vaddq_f32(a0, vaddq_f32(a1, a2)), a3);
|
||||
|
||||
float32x4_t arcsinx = vmulq_f32(y, phx);
|
||||
arcsinx = vsubq_f32(m_pi_2, arcsinx);
|
||||
float32x4_t arcnsinx = vmulq_f32(negone, arcsinx);
|
||||
arcsinx = vbslq_f32(sign_mask_asin, arcnsinx, arcsinx);
|
||||
*yasin = arcsinx;
|
||||
*yacos = vsubq_f32(m_pi_2, arcsinx);
|
||||
}
|
||||
|
||||
inline float32x4_t asin_ps(float32x4_t x)
|
||||
{
|
||||
float32x4_t yasin, yacos;
|
||||
asincos_ps(x, &yasin, &yacos);
|
||||
return yasin;
|
||||
}
|
||||
|
||||
inline float32x4_t acos_ps(float32x4_t x)
|
||||
{
|
||||
float32x4_t yasin, yacos;
|
||||
asincos_ps(x, &yasin, &yacos);
|
||||
return yacos;
|
||||
}
|
@ -10,6 +10,12 @@
|
||||
#include "const.h"
|
||||
#include "com_model.h"
|
||||
#include "studio_util.h"
|
||||
#include "build.h"
|
||||
#if XASH_ARMv8
|
||||
#define XASH_SIMD_NEON 1
|
||||
#include <arm_neon.h>
|
||||
#include "neon_mathfun.h"
|
||||
#endif
|
||||
|
||||
/*
|
||||
====================
|
||||
@ -17,8 +23,59 @@ AngleMatrix
|
||||
|
||||
====================
|
||||
*/
|
||||
#if XASH_SIMD_NEON
|
||||
const uint32x4_t AngleMatrix_sign0 = vreinterpretq_f32_u32(vsetq_lane_u32(0x80000000, vdupq_n_u32(0), 0));
|
||||
const uint32x4_t AngleMatrix_sign1 = vreinterpretq_f32_u32(vsetq_lane_u32(0x80000000, vdupq_n_u32(0), 1));
|
||||
const uint32x4_t AngleMatrix_sign2 = vreinterpretq_f32_u32(vsetq_lane_u32(0x80000000, vdupq_n_u32(0), 2));
|
||||
#endif
|
||||
void AngleMatrix( const float *angles, float (*matrix)[4] )
|
||||
{
|
||||
#if XASH_SIMD_NEON
|
||||
float32x4x3_t out_reg;
|
||||
float32x4_t angles_reg = {};
|
||||
memcpy(&angles_reg, angles, sizeof(float) * 3);
|
||||
|
||||
float32x4x2_t sp_sy_sr_0_cp_cy_cr_1;
|
||||
sincos_ps(vmulq_n_f32(angles_reg, (M_PI * 2 / 360)), &sp_sy_sr_0_cp_cy_cr_1.val[0], &sp_sy_sr_0_cp_cy_cr_1.val[1]);
|
||||
|
||||
float32x4x2_t sp_sr_cp_cr_sy_0_cy_1 = vuzpq_f32(sp_sy_sr_0_cp_cy_cr_1.val[0], sp_sy_sr_0_cp_cy_cr_1.val[1]);
|
||||
float32x4x2_t sp_cp_sy_cy_sr_cr_0_1 = vzipq_f32(sp_sy_sr_0_cp_cy_cr_1.val[0], sp_sy_sr_0_cp_cy_cr_1.val[1]);
|
||||
|
||||
float32x4_t _0_sr_cr_0 = vextq_f32(sp_sy_sr_0_cp_cy_cr_1.val[0], sp_cp_sy_cy_sr_cr_0_1.val[1], 3);
|
||||
float32x4_t cp_cr_sr_0 = vcombine_f32(vget_high_f32(sp_sr_cp_cr_sy_0_cy_1.val[0]), vget_high_f32(sp_sy_sr_0_cp_cy_cr_1.val[0]));
|
||||
float32x4_t cy_sy_sy_0 = vcombine_f32(vrev64_f32(vget_high_f32(sp_cp_sy_cy_sr_cr_0_1.val[0])), vget_low_f32(sp_sr_cp_cr_sy_0_cy_1.val[1]));
|
||||
float32x4_t sy_cy_cy_1 = vcombine_f32(vget_high_f32(sp_cp_sy_cy_sr_cr_0_1.val[0]), vget_high_f32(sp_sr_cp_cr_sy_0_cy_1.val[1]));
|
||||
|
||||
float32x4_t _0_srsp_crsp_0 = vmulq_laneq_f32(_0_sr_cr_0, sp_sy_sr_0_cp_cy_cr_1.val[0], 0); // *sp
|
||||
out_reg.val[0] = vmulq_laneq_f32(_0_srsp_crsp_0, sp_sy_sr_0_cp_cy_cr_1.val[1], 1); // *cy
|
||||
out_reg.val[1] = vmulq_laneq_f32(_0_srsp_crsp_0, sp_sy_sr_0_cp_cy_cr_1.val[0], 1); // *sy
|
||||
|
||||
cy_sy_sy_0 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(cy_sy_sy_0), AngleMatrix_sign1));
|
||||
sy_cy_cy_1 = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(sy_cy_cy_1), AngleMatrix_sign2));
|
||||
out_reg.val[0] = vfmaq_f32(out_reg.val[0], cp_cr_sr_0, cy_sy_sy_0);
|
||||
out_reg.val[1] = vfmaq_f32(out_reg.val[1], cp_cr_sr_0, sy_cy_cy_1);
|
||||
|
||||
float32x4_t cp_cr_0_1 = vcombine_f32(vget_high_f32(sp_sr_cp_cr_sy_0_cy_1.val[0]), vget_high_f32(sp_cp_sy_cy_sr_cr_0_1.val[1]));
|
||||
float32x4_t _1_cp_cr_0 = vextq_f32(cp_cr_0_1, cp_cr_0_1, 3);
|
||||
out_reg.val[2] = vmulq_f32(sp_sr_cp_cr_sy_0_cy_1.val[0], _1_cp_cr_0);
|
||||
out_reg.val[2] = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(out_reg.val[2]), AngleMatrix_sign0));
|
||||
|
||||
memcpy(matrix, &out_reg, sizeof(float) * 3 * 4);
|
||||
/*
|
||||
matrix[0][0] = cp*cy;
|
||||
matrix[0][1] = sr*sp*cy-cr*sy;
|
||||
matrix[0][2] = cr*sp*cy+sr*sy;
|
||||
matrix[0][3] = 0.0;
|
||||
matrix[1][0] = cp*sy;
|
||||
matrix[1][1] = sr*sp*sy+cr*cy;
|
||||
matrix[1][2] = cr*sp*sy-sr*cy;
|
||||
matrix[1][3] = 0.0;
|
||||
matrix[2][0] = -sp*1;
|
||||
matrix[2][1] = sr*cp;
|
||||
matrix[2][2] = cp*cr;
|
||||
matrix[2][3] = cr*0;
|
||||
*/
|
||||
#else
|
||||
float angle;
|
||||
float sr, sp, sy, cr, cp, cy;
|
||||
|
||||
@ -45,6 +102,7 @@ void AngleMatrix( const float *angles, float (*matrix)[4] )
|
||||
matrix[0][3] = 0.0f;
|
||||
matrix[1][3] = 0.0f;
|
||||
matrix[2][3] = 0.0f;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
@ -55,6 +113,13 @@ VectorCompare
|
||||
*/
|
||||
int VectorCompare( const float *v1, const float *v2 )
|
||||
{
|
||||
#if XASH_SIMD_NEON
|
||||
// is this really works?
|
||||
float32x4_t v1_reg = {}, v2_reg = {};
|
||||
memcpy(&v1_reg, v1, sizeof(float) * 3);
|
||||
memcpy(&v2_reg, v2, sizeof(float) * 3);
|
||||
return !vaddvq_u32(vceqq_f32(v1_reg, v2_reg));
|
||||
#else
|
||||
int i;
|
||||
|
||||
for( i = 0; i < 3; i++ )
|
||||
@ -62,6 +127,7 @@ int VectorCompare( const float *v1, const float *v2 )
|
||||
return 0;
|
||||
|
||||
return 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
@ -72,9 +138,23 @@ CrossProduct
|
||||
*/
|
||||
void CrossProduct( const float *v1, const float *v2, float *cross )
|
||||
{
|
||||
#if XASH_SIMD_NEON
|
||||
float32x4_t v1_reg = {}, v2_reg = {};
|
||||
memcpy(&v1_reg, v1, sizeof(float) * 3);
|
||||
memcpy(&v2_reg, v2, sizeof(float) * 3);
|
||||
|
||||
float32x4_t yzxy_a = vextq_f32(vextq_f32(v1_reg, v1_reg, 3), v1_reg, 2); // [aj, ak, ai, aj]
|
||||
float32x4_t yzxy_b = vextq_f32(vextq_f32(v2_reg, v2_reg, 3), v2_reg, 2); // [bj, bk, bi, bj]
|
||||
float32x4_t zxyy_a = vextq_f32(yzxy_a, yzxy_a, 1); // [ak, ai, aj, aj]
|
||||
float32x4_t zxyy_b = vextq_f32(yzxy_b, yzxy_b, 1); // [bk, ai, bj, bj]
|
||||
float32x4_t cross_reg = vfmsq_f32(vmulq_f32(yzxy_a, zxyy_b), zxyy_a, yzxy_b); // [ajbk-akbj, akbi-aibk, aibj-ajbi, 0]
|
||||
|
||||
memcpy(cross, &cross_reg, sizeof(float) * 3);
|
||||
#else
|
||||
cross[0] = v1[1] * v2[2] - v1[2] * v2[1];
|
||||
cross[1] = v1[2] * v2[0] - v1[0] * v2[2];
|
||||
cross[2] = v1[0] * v2[1] - v1[1] * v2[0];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
@ -85,9 +165,26 @@ VectorTransform
|
||||
*/
|
||||
void VectorTransform( const float *in1, float in2[3][4], float *out )
|
||||
{
|
||||
#if XASH_SIMD_NEON
|
||||
float32x4_t in1_reg = {};
|
||||
memcpy(&in1_reg, &in1, sizeof(float) * 3);
|
||||
|
||||
float32x4x4_t in_t;
|
||||
memcpy(&in_t, &in2, sizeof(float) * 3 * 4);
|
||||
//memset(&in_t.val[3], 0, sizeof(in_t.val[3]));
|
||||
in_t = vld4q_f32((const float*)&in_t);
|
||||
|
||||
float32x4_t out_reg = in_t.val[3];
|
||||
out_reg = vfmaq_laneq_f32(out_reg, in_t.val[0], in1_reg, 0);
|
||||
out_reg = vfmaq_laneq_f32(out_reg, in_t.val[1], in1_reg, 1);
|
||||
out_reg = vfmaq_laneq_f32(out_reg, in_t.val[2], in1_reg, 2);
|
||||
|
||||
memcpy(out, &out_reg, sizeof(float) * 3);
|
||||
#else
|
||||
out[0] = DotProduct(in1, in2[0]) + in2[0][3];
|
||||
out[1] = DotProduct(in1, in2[1]) + in2[1][3];
|
||||
out[2] = DotProduct(in1, in2[2]) + in2[2][3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
@ -98,6 +195,29 @@ ConcatTransforms
|
||||
*/
|
||||
void ConcatTransforms( float in1[3][4], float in2[3][4], float out[3][4] )
|
||||
{
|
||||
#if XASH_SIMD_NEON
|
||||
float32x4x3_t in1_reg, in2_reg;
|
||||
memcpy(&in1_reg, in1, sizeof(float) * 3 * 4);
|
||||
memcpy(&in2_reg, in2, sizeof(float) * 3 * 4);
|
||||
float32x4x3_t out_reg = {};
|
||||
|
||||
out_reg.val[0] = vcopyq_laneq_f32(out_reg.val[0], 3, in1_reg.val[0], 3); // out[0][3] = in[0][3]
|
||||
out_reg.val[0] = vfmaq_laneq_f32(out_reg.val[0], in2_reg.val[0], in1_reg.val[0], 0); // out[0][n] += in2[0][n] * in1[0][0]
|
||||
out_reg.val[0] = vfmaq_laneq_f32(out_reg.val[0], in2_reg.val[1], in1_reg.val[0], 1); // out[0][n] += in2[1][n] * in1[0][1]
|
||||
out_reg.val[0] = vfmaq_laneq_f32(out_reg.val[0], in2_reg.val[2], in1_reg.val[0], 2); // out[0][n] += in2[2][n] * in1[0][2]
|
||||
|
||||
out_reg.val[1] = vcopyq_laneq_f32(out_reg.val[1], 3, in1_reg.val[1], 3);
|
||||
out_reg.val[1] = vfmaq_laneq_f32(out_reg.val[1], in2_reg.val[0], in1_reg.val[1], 0);
|
||||
out_reg.val[1] = vfmaq_laneq_f32(out_reg.val[1], in2_reg.val[1], in1_reg.val[1], 1);
|
||||
out_reg.val[1] = vfmaq_laneq_f32(out_reg.val[1], in2_reg.val[2], in1_reg.val[1], 2);
|
||||
|
||||
out_reg.val[2] = vcopyq_laneq_f32(out_reg.val[2], 3, in1_reg.val[2], 3);
|
||||
out_reg.val[2] = vfmaq_laneq_f32(out_reg.val[2], in2_reg.val[0], in1_reg.val[2], 0);
|
||||
out_reg.val[2] = vfmaq_laneq_f32(out_reg.val[2], in2_reg.val[1], in1_reg.val[2], 1);
|
||||
out_reg.val[2] = vfmaq_laneq_f32(out_reg.val[2], in2_reg.val[2], in1_reg.val[2], 2);
|
||||
|
||||
memcpy(&out, &out_reg, sizeof(out));
|
||||
#else
|
||||
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
||||
in1[0][2] * in2[2][0];
|
||||
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
||||
@ -122,6 +242,7 @@ void ConcatTransforms( float in1[3][4], float in2[3][4], float out[3][4] )
|
||||
in1[2][2] * in2[2][2];
|
||||
out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] +
|
||||
in1[2][2] * in2[2][3] + in1[2][3];
|
||||
#endif
|
||||
}
|
||||
|
||||
// angles index are not the same as ROLL, PITCH, YAW
|
||||
@ -132,8 +253,36 @@ AngleQuaternion
|
||||
|
||||
====================
|
||||
*/
|
||||
#if XASH_SIMD_NEON
|
||||
const float32x4_t AngleQuaternion_sign2 = vzipq_f32(vdupq_n_u32(0x80000000), vdupq_n_u32(0x00000000)).val[0]; // { 0x80000000, 0x00000000, 0x80000000, 0x00000000 };
|
||||
#endif
|
||||
void AngleQuaternion( float *angles, vec4_t quaternion )
|
||||
{
|
||||
#if XASH_SIMD_NEON
|
||||
float32x4_t angles_reg = {};
|
||||
memcpy(&angles_reg, angles, sizeof(float) * 3);
|
||||
float32x4x2_t sr_sp_sy_0_cr_cp_cy_1;
|
||||
sincos_ps(vmulq_n_f32(angles_reg, 0.5), &sr_sp_sy_0_cr_cp_cy_1.val[0], &sr_sp_sy_0_cr_cp_cy_1.val[1]);
|
||||
|
||||
float32x4x2_t sr_sy_cr_cy_sp_0_cp_1 = vuzpq_f32(sr_sp_sy_0_cr_cp_cy_1.val[0], sr_sp_sy_0_cr_cp_cy_1.val[1]);
|
||||
float32x4_t cp_cp_cp_cp = vdupq_laneq_f32(sr_sp_sy_0_cr_cp_cy_1.val[1], 1);
|
||||
float32x4_t sp_sp_sp_sp = vdupq_laneq_f32(sr_sp_sy_0_cr_cp_cy_1.val[0], 1);
|
||||
|
||||
float32x4_t sr_sy_cr_cy = sr_sy_cr_cy_sp_0_cp_1.val[0];
|
||||
float32x4_t sy_cr_cy_sr = vextq_f32(sr_sy_cr_cy_sp_0_cp_1.val[0], sr_sy_cr_cy_sp_0_cp_1.val[0], 1);
|
||||
float32x4_t cr_cy_sr_sy = vextq_f32(sr_sy_cr_cy_sp_0_cp_1.val[0], sr_sy_cr_cy_sp_0_cp_1.val[0], 2);
|
||||
float32x4_t cy_sr_sy_cr = vextq_f32(sr_sy_cr_cy_sp_0_cp_1.val[0], sr_sy_cr_cy_sp_0_cp_1.val[0], 3);
|
||||
float32x4_t sp_sp_sp_sp_signed = veorq_u32(sp_sp_sp_sp, AngleQuaternion_sign2);
|
||||
|
||||
float32x4_t left = vmulq_f32(vmulq_f32(sr_sy_cr_cy, cp_cp_cp_cp), cy_sr_sy_cr);
|
||||
|
||||
float32x4_t out_reg = vfmaq_f32(left, vmulq_f32(cr_cy_sr_sy, sp_sp_sp_sp_signed), sy_cr_cy_sr);
|
||||
memcpy(quaternion, &out_reg, sizeof(float) * 4);
|
||||
//quaternion[0] = sr * cp * cy - cr * sp * sy; // X
|
||||
//quaternion[1] = sy * cp * sr + cy * sp * cr; // Y
|
||||
//quaternion[2] = cr * cp * sy - sr * sp * cy; // Z
|
||||
//quaternion[3] = cy * cp * cr + sy * sp * sr; // W
|
||||
#else
|
||||
float angle;
|
||||
float sr, sp, sy, cr, cp, cy;
|
||||
|
||||
@ -152,6 +301,7 @@ void AngleQuaternion( float *angles, vec4_t quaternion )
|
||||
quaternion[1] = cr * sp * cy + sr * cp * sy; // Y
|
||||
quaternion[2] = cr * cp * sy - sr * sp * cy; // Z
|
||||
quaternion[3] = cr * cp * cy + sr * sp * sy; // W
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
@ -162,6 +312,37 @@ QuaternionSlerp
|
||||
*/
|
||||
void QuaternionSlerp( vec4_t p, vec4_t q, float t, vec4_t qt )
|
||||
{
|
||||
#if XASH_SIMD_NEON
|
||||
float32x4_t p_reg = {}, q_reg = {};
|
||||
memcpy(&p_reg, p, sizeof(float) * 4);
|
||||
memcpy(&q_reg, q, sizeof(float) * 4);
|
||||
|
||||
// q = (cos(a/2), xsin(a/2), ysin(a/2), zsin(a/2))
|
||||
// cos(a-b) = cosacosb+sinasinb
|
||||
const uint32x4_t signmask = vdupq_n_u32(0x80000000);
|
||||
const float32x4_t one_minus_epsilon = vdupq_n_f32(1.0f - 0.00001f);
|
||||
|
||||
float32x4_t vcosom = vdupq_n_f32(DotProduct(p, q));
|
||||
uint32x4_t sign = vandq_u32(vreinterpretq_u32_f32(vcosom), signmask);
|
||||
q_reg = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(p_reg), sign));
|
||||
vcosom = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(vcosom), sign));
|
||||
|
||||
float x[4] = {(1.0f - t), t, 1, 0}; // cosom -> 1, sinom -> 0, sinx ~ x
|
||||
float32x4_t x_reg;
|
||||
memcpy(&x_reg, x, sizeof(float) * 4);
|
||||
|
||||
// if ((1.0 - cosom) > 0.000001) x = sin(x * omega)
|
||||
uint32x4_t cosom_less_then_one = vcltq_f32(vcosom, one_minus_epsilon);
|
||||
float32x4_t vomega = acos_ps(vcosom);
|
||||
x_reg = vbslq_f32(cosom_less_then_one, x_reg, sin_ps(vmulq_f32(x_reg, vomega)));
|
||||
|
||||
// qt = (x[0] * p + x[1] * q) / x[2];
|
||||
float32x4_t qt_reg = vmulq_laneq_f32(p_reg, x_reg, 0);
|
||||
qt_reg = vfmaq_laneq_f32(qt_reg, q_reg, x_reg, 1);
|
||||
qt_reg = vdivq_f32(qt_reg, vdupq_laneq_f32(x_reg, 2)); // vdivq_laneq_f32 ?
|
||||
|
||||
memcpy(qt, &qt_reg, sizeof(float) * 4);
|
||||
#else
|
||||
int i;
|
||||
float omega, cosom, sinom, sclp, sclq;
|
||||
|
||||
@ -216,6 +397,7 @@ void QuaternionSlerp( vec4_t p, vec4_t q, float t, vec4_t qt )
|
||||
qt[i] = sclp * p[i] + sclq * qt[i];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
@ -224,8 +406,60 @@ QuaternionMatrix
|
||||
|
||||
====================
|
||||
*/
|
||||
#if XASH_SIMD_NEON
|
||||
const uint32x4_t QuaternionMatrix_sign1 = vsetq_lane_u32(0x80000000, vdupq_n_u32(0x00000000), 0); // { 0x80000000, 0x00000000, 0x00000000, 0x00000000 };
|
||||
const uint32x4_t QuaternionMatrix_sign2 = vsetq_lane_u32(0x80000000, vdupq_n_u32(0x00000000), 1); // { 0x00000000, 0x80000000, 0x00000000, 0x00000000 };
|
||||
const uint32x4_t QuaternionMatrix_sign3 = vsetq_lane_u32(0x00000000, vdupq_n_u32(0x80000000), 2); // { 0x80000000, 0x80000000, 0x00000000, 0x80000000 };
|
||||
const float32x4_t matrix3x4_identity_0 = vsetq_lane_f32(1, vdupq_n_f32(0), 0); // { 1, 0, 0, 0 }
|
||||
const float32x4_t matrix3x4_identity_1 = vsetq_lane_f32(1, vdupq_n_f32(0), 1); // { 0, 1, 0, 0 }
|
||||
const float32x4_t matrix3x4_identity_2 = vsetq_lane_f32(1, vdupq_n_f32(0), 2); // { 0, 0, 1, 0 }
|
||||
#endif
|
||||
|
||||
void QuaternionMatrix( vec4_t quaternion, float (*matrix)[4] )
|
||||
{
|
||||
#if XASH_SIMD_NEON
|
||||
float32x4_t quaternion_reg;
|
||||
memcpy(&quaternion_reg, quaternion, sizeof(float) * 4);
|
||||
|
||||
float32x4_t q1032 = vrev64q_f32(quaternion_reg);
|
||||
float32x4_t q1032_signed = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(q1032), QuaternionMatrix_sign1));
|
||||
float32x4_t q2301 = vextq_f32(quaternion_reg, quaternion_reg, 2);
|
||||
float32x4_t q2301_signed = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(q2301), QuaternionMatrix_sign3));
|
||||
float32x4_t q3210 = vrev64q_f32(q2301);
|
||||
float32x4_t q3210_signed = vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(q3210), QuaternionMatrix_sign2));
|
||||
|
||||
float32x4x3_t out_reg;
|
||||
|
||||
out_reg.val[0] = vmulq_laneq_f32(q2301_signed, quaternion_reg, 2);
|
||||
out_reg.val[0] = vfmaq_laneq_f32(out_reg.val[0], q1032_signed, quaternion_reg, 1);
|
||||
out_reg.val[0] = vfmaq_n_f32(matrix3x4_identity_0, out_reg.val[0], 2.0f);
|
||||
|
||||
out_reg.val[1] = vmulq_laneq_f32(q3210_signed, quaternion_reg, 2);
|
||||
out_reg.val[1] = vfmsq_laneq_f32(out_reg.val[1], q1032_signed, quaternion_reg, 0);
|
||||
out_reg.val[1] = vfmaq_n_f32(matrix3x4_identity_1, out_reg.val[1], 2.0f);
|
||||
|
||||
out_reg.val[2] = vmulq_laneq_f32(q3210_signed, quaternion_reg, 1);
|
||||
out_reg.val[2] = vfmaq_laneq_f32(out_reg.val[2], q2301_signed, quaternion_reg, 0);
|
||||
out_reg.val[2] = vfmsq_n_f32(matrix3x4_identity_2, out_reg.val[2], 2.0f);
|
||||
|
||||
memcpy(matrix, &out_reg, sizeof(float) * 3 * 4);
|
||||
/*
|
||||
matrix[0][0] = 1.0 + 2.0 * ( quaternion[1] * -quaternion[1] + -quaternion[2] * quaternion[2] );
|
||||
matrix[0][1] = 0.0 + 2.0 * ( quaternion[1] * quaternion[0] + -quaternion[3] * quaternion[2] );
|
||||
matrix[0][2] = 0.0 + 2.0 * ( quaternion[1] * quaternion[3] + quaternion[0] * quaternion[2] );
|
||||
matrix[0][3] = 0.0 + 2.0 * ( quaternion[1] * quaternion[2] + -quaternion[1] * quaternion[2] );
|
||||
|
||||
matrix[1][0] = 0.0 + 2.0 * ( -quaternion[0] * -quaternion[1] + quaternion[3] * quaternion[2] );
|
||||
matrix[1][1] = 1.0 + 2.0 * ( -quaternion[0] * quaternion[0] + -quaternion[2] * quaternion[2] );
|
||||
matrix[1][2] = 0.0 + 2.0 * ( -quaternion[0] * quaternion[3] + quaternion[1] * quaternion[2] );
|
||||
matrix[1][3] = 0.0 + 2.0 * ( -quaternion[0] * quaternion[2] + quaternion[0] * quaternion[2] );
|
||||
|
||||
matrix[2][0] = 0.0 + 2.0 * ( -quaternion[0] * -quaternion[2] + -quaternion[3] * quaternion[1] );
|
||||
matrix[2][1] = 0.0 + 2.0 * ( -quaternion[0] * -quaternion[3] + quaternion[2] * quaternion[1] );
|
||||
matrix[2][2] = 1.0 + 2.0 * ( -quaternion[0] * quaternion[0] + -quaternion[1] * quaternion[1] );
|
||||
matrix[2][3] = 0.0 + 2.0 * ( -quaternion[0] * -quaternion[1] + -quaternion[0] * quaternion[1] );
|
||||
*/
|
||||
#else
|
||||
matrix[0][0] = 1.0f - 2.0f * quaternion[1] * quaternion[1] - 2.0f * quaternion[2] * quaternion[2];
|
||||
matrix[1][0] = 2.0f * quaternion[0] * quaternion[1] + 2.0f * quaternion[3] * quaternion[2];
|
||||
matrix[2][0] = 2.0f * quaternion[0] * quaternion[2] - 2.0f * quaternion[3] * quaternion[1];
|
||||
@ -237,6 +471,7 @@ void QuaternionMatrix( vec4_t quaternion, float (*matrix)[4] )
|
||||
matrix[0][2] = 2.0f * quaternion[0] * quaternion[2] + 2.0f * quaternion[3] * quaternion[1];
|
||||
matrix[1][2] = 2.0f * quaternion[1] * quaternion[2] - 2.0f * quaternion[3] * quaternion[0];
|
||||
matrix[2][2] = 1.0f - 2.0f * quaternion[0] * quaternion[0] - 2.0f * quaternion[1] * quaternion[1];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
|
Loading…
Reference in New Issue
Block a user