/*** * * Copyright (c) 1996-2002, Valve LLC. All rights reserved. * * This product contains software technology licensed from Id * Software, Inc. ("Id Technology"). Id Technology (c) 1996 Id Software, Inc. * All Rights Reserved. * * Use, distribution, and modification of this source code and/or resulting * object code is restricted to non-commercial enhancements to products from * Valve LLC. All other use, distribution, or modification is prohibited * without written permission from Valve LLC. * ****/ // pm_math.c -- math primitives #include "mathlib.h" #include "const.h" #include // up / down #define PITCH 0 // left / right #define YAW 1 // fall over #define ROLL 2 #pragma warning(disable : 4244) vec3_t vec3_origin = {0,0,0}; int nanmask = 255<<23; float anglemod(float a) { a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535); return a; } void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; float sr, sp, sy, cr, cp, cy; angle = angles[YAW] * (M_PI*2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sin(angle); cr = cos(angle); if (forward) { forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; } if (right) { right[0] = (-1*sr*sp*cy+-1*cr*-sy); right[1] = (-1*sr*sp*sy+-1*cr*cy); right[2] = -1*sr*cp; } if (up) { up[0] = (cr*sp*cy+-sr*-sy); up[1] = (cr*sp*sy+-sr*cy); up[2] = cr*cp; } } void AngleVectorsTranspose (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; float sr, sp, sy, cr, cp, cy; angle = angles[YAW] * (M_PI*2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sin(angle); cr = cos(angle); if (forward) { forward[0] = cp*cy; forward[1] = (sr*sp*cy+cr*-sy); forward[2] = (cr*sp*cy+-sr*-sy); } if (right) { right[0] = cp*sy; right[1] = (sr*sp*sy+cr*cy); right[2] = (cr*sp*sy+-sr*cy); } if (up) { up[0] = -sp; up[1] = sr*cp; up[2] = cr*cp; } } void AngleMatrix (const vec3_t angles, float (*matrix)[4] ) { float angle; float sr, sp, sy, cr, cp, cy; angle = angles[YAW] * (M_PI*2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sin(angle); cr = cos(angle); // matrix = (YAW * PITCH) * ROLL matrix[0][0] = cp*cy; matrix[1][0] = cp*sy; matrix[2][0] = -sp; matrix[0][1] = sr*sp*cy+cr*-sy; matrix[1][1] = sr*sp*sy+cr*cy; matrix[2][1] = sr*cp; matrix[0][2] = (cr*sp*cy+-sr*-sy); matrix[1][2] = (cr*sp*sy+-sr*cy); matrix[2][2] = cr*cp; matrix[0][3] = 0.0; matrix[1][3] = 0.0; matrix[2][3] = 0.0; } void AngleIMatrix (const vec3_t angles, float matrix[3][4] ) { float angle; float sr, sp, sy, cr, cp, cy; angle = angles[YAW] * (M_PI*2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sin(angle); cr = cos(angle); // matrix = (YAW * PITCH) * ROLL matrix[0][0] = cp*cy; matrix[0][1] = cp*sy; matrix[0][2] = -sp; matrix[1][0] = sr*sp*cy+cr*-sy; matrix[1][1] = sr*sp*sy+cr*cy; matrix[1][2] = sr*cp; matrix[2][0] = (cr*sp*cy+-sr*-sy); matrix[2][1] = (cr*sp*sy+-sr*cy); matrix[2][2] = cr*cp; matrix[0][3] = 0.0; matrix[1][3] = 0.0; matrix[2][3] = 0.0; } void NormalizeAngles( float *angles ) { int i; // Normalize angles for ( i = 0; i < 3; i++ ) { if ( angles[i] > 180.0 ) { angles[i] -= 360.0; } else if ( angles[i] < -180.0 ) { angles[i] += 360.0; } } } /* =================== InterpolateAngles Interpolate Euler angles. FIXME: Use Quaternions to avoid discontinuities Frac is 0.0 to 1.0 ( i.e., should probably be clamped, but doesn't have to be ) =================== */ void InterpolateAngles( float *start, float *end, float *output, float frac ) { int i; float ang1, ang2; float d; NormalizeAngles( start ); NormalizeAngles( end ); for ( i = 0 ; i < 3 ; i++ ) { ang1 = start[i]; ang2 = end[i]; d = ang2 - ang1; if ( d > 180 ) { d -= 360; } else if ( d < -180 ) { d += 360; } output[i] = ang1 + d * frac; } NormalizeAngles( output ); } /* =================== AngleBetweenVectors =================== */ float AngleBetweenVectors( const vec3_t v1, const vec3_t v2 ) { float angle; float l1 = Length( v1 ); float l2 = Length( v2 ); if ( !l1 || !l2 ) return 0.0f; angle = acos( DotProduct( v1, v2 ) ) / (l1*l2); angle = ( angle * 180.0f ) / M_PI; return angle; } void VectorTransform (const vec3_t in1, float in2[3][4], vec3_t out) { out[0] = DotProduct(in1, in2[0]) + in2[0][3]; out[1] = DotProduct(in1, in2[1]) + in2[1][3]; out[2] = DotProduct(in1, in2[2]) + in2[2][3]; } int VectorCompare (const vec3_t v1, const vec3_t v2) { int i; for (i=0 ; i<3 ; i++) if (v1[i] != v2[i]) return 0; return 1; } void VectorMA (const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) { vecc[0] = veca[0] + scale*vecb[0]; vecc[1] = veca[1] + scale*vecb[1]; vecc[2] = veca[2] + scale*vecb[2]; } vec_t _DotProduct (vec3_t v1, vec3_t v2) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } void _VectorSubtract (vec3_t veca, vec3_t vecb, vec3_t out) { out[0] = veca[0]-vecb[0]; out[1] = veca[1]-vecb[1]; out[2] = veca[2]-vecb[2]; } void _VectorAdd (vec3_t veca, vec3_t vecb, vec3_t out) { out[0] = veca[0]+vecb[0]; out[1] = veca[1]+vecb[1]; out[2] = veca[2]+vecb[2]; } void _VectorCopy (vec3_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross) { cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; } double sqrt(double x); float Length(const vec3_t v) { int i; float length = 0.0f; for (i=0 ; i< 3 ; i++) length += v[i]*v[i]; length = sqrt (length); // FIXME return length; } float Distance(const vec3_t v1, const vec3_t v2) { vec3_t d; VectorSubtract(v2,v1,d); return Length(d); } float VectorNormalize (vec3_t v) { float length, ilength; length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; length = sqrt (length); // FIXME if (length) { ilength = 1/length; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } void VectorInverse (vec3_t v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } void VectorScale (const vec3_t in, vec_t scale, vec3_t out) { out[0] = in[0]*scale; out[1] = in[1]*scale; out[2] = in[2]*scale; } int Q_log2(int val) { int answer=0; while (val>>=1) answer++; return answer; } void VectorMatrix( vec3_t forward, vec3_t right, vec3_t up) { vec3_t tmp; if (forward[0] == 0 && forward[1] == 0) { right[0] = 1; right[1] = 0; right[2] = 0; up[0] = -forward[2]; up[1] = 0; up[2] = 0; return; } tmp[0] = 0; tmp[1] = 0; tmp[2] = 1.0; CrossProduct( forward, tmp, right ); VectorNormalize( right ); CrossProduct( right, forward, up ); VectorNormalize( up ); } void VectorAngles( const vec3_t forward, vec3_t angles ) { float tmp, yaw, pitch; if (forward[1] == 0 && forward[0] == 0) { yaw = 0; if (forward[2] > 0) pitch = 90; else pitch = 270; } else { yaw = (atan2(forward[1], forward[0]) * 180 / M_PI); if (yaw < 0) yaw += 360; tmp = sqrt (forward[0]*forward[0] + forward[1]*forward[1]); pitch = (atan2(forward[2], tmp) * 180 / M_PI); if (pitch < 0) pitch += 360; } angles[0] = pitch; angles[1] = yaw; angles[2] = 0; }