hlsdk-xash3d/ministl/function.h

286 lines
8.3 KiB
C++

/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*/
#ifndef FUNCTION_H
#define FUNCTION_H
#ifndef __GNUG__
#include <ministl/bool.h>
#endif
#if 0
template <class T1, class T2>
inline bool operator!=(const T1& x, const T2& y) {
return !(x == y);
}
#endif
template <class T1, class T2>
inline bool operator>(const T1& x, const T2& y) {
return y < x;
}
template <class T1, class T2>
inline bool operator<=(const T1& x, const T2& y) {
return !(y < x);
}
template <class T1, class T2>
inline bool operator>=(const T1& x, const T2& y) {
return !(x < y);
}
template <class Arg, class Result>
struct unary_function {
typedef Arg argument_type;
typedef Result result_type;
};
template <class Arg1, class Arg2, class Result>
struct binary_function {
typedef Arg1 first_argument_type;
typedef Arg2 second_argument_type;
typedef Result result_type;
};
template <class T>
struct plus : binary_function<T, T, T> {
T operator()(const T& x, const T& y) const { return x + y; }
};
template <class T>
struct minus : binary_function<T, T, T> {
T operator()(const T& x, const T& y) const { return x - y; }
};
template <class T>
struct multiplies : binary_function<T, T, T> {
T operator()(const T& x, const T& y) const { return x * y; }
};
template <class T>
struct divides : binary_function<T, T, T> {
T operator()(const T& x, const T& y) const { return x / y; }
};
template <class T>
#ifdef __GNU__
struct modulus {
typedef T first_argument_type;
typedef T second_argument_type;
typedef T result_type;
T operator()(const T& x, const T& y) const { return x % y; }
};
#else
struct modulus : binary_function<T, T, T> {
T operator()(const T& x, const T& y) const { return x % y; }
};
#endif
template <class T>
struct negate : unary_function<T, T> {
T operator()(const T& x) const { return -x; }
};
template <class T>
struct equal_to : binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x == y; }
};
template <class T>
struct not_equal_to : binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x != y; }
};
template <class T>
struct greater : binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x > y; }
};
template <class T>
struct less : binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x < y; }
};
template <class T>
struct greater_equal : binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x >= y; }
};
template <class T>
struct less_equal : binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x <= y; }
};
template <class T>
struct logical_and : binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x && y; }
};
template <class T>
struct logical_or : binary_function<T, T, bool> {
bool operator()(const T& x, const T& y) const { return x || y; }
};
template <class T>
struct logical_not : unary_function<T, bool> {
bool operator()(const T& x) const { return !x; }
};
template <class Predicate>
class unary_negate : public unary_function<typename Predicate::argument_type, bool> {
protected:
Predicate pred;
public:
unary_negate(const Predicate& x) : pred(x) {}
bool operator()(const typename Predicate::argument_type& x) const
{ return !pred(x); }
};
template <class Predicate>
unary_negate<Predicate> not1(const Predicate& pred) {
return unary_negate<Predicate>(pred);
}
template <class Predicate>
class binary_negate
: public binary_function<typename Predicate::first_argument_type,
typename Predicate::second_argument_type, bool> {
protected:
Predicate pred;
public:
binary_negate(const Predicate& x) : pred(x) {}
bool operator()(const typename Predicate::first_argument_type& x,
const typename Predicate::second_argument_type& y) const {
return !pred(x, y);
}
};
template <class Predicate>
binary_negate<Predicate> not2(const Predicate& pred) {
return binary_negate<Predicate>(pred);
}
template <class Operation>
class binder1st : public unary_function<typename Operation::second_argument_type,
typename Operation::result_type> {
protected:
Operation op;
typename Operation::first_argument_type value;
public:
binder1st(const Operation& x, const typename Operation::first_argument_type& y)
: op(x), value(y) {}
typename Operation::result_type operator()(const typename Operation::argument_type& x) const {
return op(value, x);
}
};
template <class Operation, class T>
binder1st<Operation> bind1st(const Operation& op, const T& x) {
return binder1st<Operation>(op, Operation::first_argument_type(x));
}
template <class Operation>
class binder2nd : public unary_function<typename Operation::first_argument_type,
typename Operation::result_type> {
protected:
Operation op;
typename Operation::second_argument_type value;
public:
binder2nd(const Operation& x, const typename Operation::second_argument_type& y)
: op(x), value(y) {}
typename Operation::result_type operator()(const typename Operation::argument_type& x) const {
return op(x, value);
}
};
template <class Operation, class T>
binder2nd<Operation> bind2nd(const Operation& op, const T& x) {
return binder2nd<Operation>(op, Operation::second_argument_type(x));
}
template <class Operation1, class Operation2>
class unary_compose : public unary_function<typename Operation2::argument_type,
typename Operation1::result_type> {
protected:
Operation1 op1;
Operation2 op2;
public:
unary_compose(const Operation1& x, const Operation2& y) : op1(x), op2(y) {}
typename Operation1::result_type operator()(const typename Operation2::argument_type& x) const {
return op1(op2(x));
}
};
template <class Operation1, class Operation2>
unary_compose<Operation1, Operation2> compose1(const Operation1& op1,
const Operation2& op2) {
return unary_compose<Operation1, Operation2>(op1, op2);
}
template <class Operation1, class Operation2, class Operation3>
class binary_compose : public unary_function<typename Operation2::argument_type,
typename Operation1::result_type> {
protected:
Operation1 op1;
Operation2 op2;
Operation3 op3;
public:
binary_compose(const Operation1& x, const Operation2& y,
const Operation3& z) : op1(x), op2(y), op3(z) { }
typename Operation1::result_type operator()(const typename Operation2::argument_type& x) const {
return op1(op2(x), op3(x));
}
};
template <class Operation1, class Operation2, class Operation3>
binary_compose<Operation1, Operation2, Operation3>
compose2(const Operation1& op1, const Operation2& op2, const Operation3& op3) {
return binary_compose<Operation1, Operation2, Operation3>(op1, op2, op3);
}
template <class Arg, class Result>
class pointer_to_unary_function : public unary_function<Arg, Result> {
protected:
Result (*ptr)(Arg);
public:
pointer_to_unary_function() {}
pointer_to_unary_function(Result (*x)(Arg)) : ptr(x) {}
Result operator()(Arg x) const { return ptr(x); }
};
template <class Arg, class Result>
pointer_to_unary_function<Arg, Result> ptr_fun(Result (*x)(Arg)) {
return pointer_to_unary_function<Arg, Result>(x);
}
template <class Arg1, class Arg2, class Result>
class pointer_to_binary_function : public binary_function<Arg1, Arg2, Result> {
protected:
Result (*ptr)(Arg1, Arg2);
public:
pointer_to_binary_function() {}
pointer_to_binary_function(Result (*x)(Arg1, Arg2)) : ptr(x) {}
Result operator()(Arg1 x, Arg2 y) const { return ptr(x, y); }
};
template <class Arg1, class Arg2, class Result>
pointer_to_binary_function<Arg1, Arg2, Result>
ptr_fun(Result (*x)(Arg1, Arg2)) {
return pointer_to_binary_function<Arg1, Arg2, Result>(x);
}
#endif