hlsdk-xash3d/dlls/nodes.cpp

3642 lines
104 KiB
C++

/***
*
* Copyright (c) 1996-2002, Valve LLC. All rights reserved.
*
* This product contains software technology licensed from Id
* Software, Inc. ("Id Technology"). Id Technology (c) 1996 Id Software, Inc.
* All Rights Reserved.
*
* This source code contains proprietary and confidential information of
* Valve LLC and its suppliers. Access to this code is restricted to
* persons who have executed a written SDK license with Valve. Any access,
* use or distribution of this code by or to any unlicensed person is illegal.
*
****/
//=========================================================
// nodes.cpp - AI node tree stuff.
//=========================================================
#include "extdll.h"
#include "util.h"
#include "cbase.h"
#include "monsters.h"
#include "nodes.h"
#include "animation.h"
#include "doors.h"
#define HULL_STEP_SIZE 16// how far the test hull moves on each step
#define NODE_HEIGHT 8 // how high to lift nodes off the ground after we drop them all (make stair/ramp mapping easier)
// to help eliminate node clutter by level designers, this is used to cap how many other nodes
// any given node is allowed to 'see' in the first stage of graph creation "LinkVisibleNodes()".
#define MAX_NODE_INITIAL_LINKS 128
#define MAX_NODES 1024
extern DLL_GLOBAL edict_t *g_pBodyQueueHead;
Vector VecBModelOrigin( entvars_t* pevBModel );
CGraph WorldGraph;
LINK_ENTITY_TO_CLASS( info_node, CNodeEnt );
LINK_ENTITY_TO_CLASS( info_node_air, CNodeEnt );
#ifdef __linux__
#include <unistd.h>
#include <sys/stat.h>
#define CreateDirectory(p, n) mkdir(p, 0777)
#endif
//=========================================================
// CGraph - InitGraph - prepares the graph for use. Frees any
// memory currently in use by the world graph, NULLs
// all pointers, and zeros the node count.
//=========================================================
void CGraph :: InitGraph( void)
{
// Make the graph unavailable
//
m_fGraphPresent = FALSE;
m_fGraphPointersSet = FALSE;
m_fRoutingComplete = FALSE;
// Free the link pool
//
if ( m_pLinkPool )
{
free ( m_pLinkPool );
m_pLinkPool = NULL;
}
// Free the node info
//
if ( m_pNodes )
{
free ( m_pNodes );
m_pNodes = NULL;
}
if ( m_di )
{
free ( m_di );
m_di = NULL;
}
// Free the routing info.
//
if ( m_pRouteInfo )
{
free ( m_pRouteInfo );
m_pRouteInfo = NULL;
}
if (m_pHashLinks)
{
free(m_pHashLinks);
m_pHashLinks = NULL;
}
// Zero node and link counts
//
m_cNodes = 0;
m_cLinks = 0;
m_nRouteInfo = 0;
m_iLastActiveIdleSearch = 0;
m_iLastCoverSearch = 0;
}
//=========================================================
// CGraph - AllocNodes - temporary function that mallocs a
// reasonable number of nodes so we can build the path which
// will be saved to disk.
//=========================================================
int CGraph :: AllocNodes ( void )
{
// malloc all of the nodes
WorldGraph.m_pNodes = (CNode *)calloc ( sizeof ( CNode ), MAX_NODES );
// could not malloc space for all the nodes!
if ( !WorldGraph.m_pNodes )
{
ALERT ( at_aiconsole, "**ERROR**\nCouldn't malloc %d nodes!\n", WorldGraph.m_cNodes );
return FALSE;
}
return TRUE;
}
//=========================================================
// CGraph - LinkEntForLink - sometimes the ent that blocks
// a path is a usable door, in which case the monster just
// needs to face the door and fire it. In other cases, the
// monster needs to operate a button or lever to get the
// door to open. This function will return a pointer to the
// button if the monster needs to hit a button to open the
// door, or returns a pointer to the door if the monster
// need only use the door.
//
// pNode is the node the monster will be standing on when it
// will need to stop and trigger the ent.
//=========================================================
entvars_t* CGraph :: LinkEntForLink ( CLink *pLink, CNode *pNode )
{
edict_t *pentSearch;
edict_t *pentTrigger;
entvars_t *pevTrigger;
entvars_t *pevLinkEnt;
TraceResult tr;
pevLinkEnt = pLink->m_pLinkEnt;
if ( !pevLinkEnt )
return NULL;
pentSearch = NULL;// start search at the top of the ent list.
if ( FClassnameIs ( pevLinkEnt, "func_door" ) || FClassnameIs ( pevLinkEnt, "func_door_rotating" ) )
{
///!!!UNDONE - check for TOGGLE or STAY open doors here. If a door is in the way, and is
// TOGGLE or STAY OPEN, even monsters that can't open doors can go that way.
if ( ( pevLinkEnt->spawnflags & SF_DOOR_USE_ONLY ) )
{// door is use only, so the door is all the monster has to worry about
return pevLinkEnt;
}
while ( 1 )
{
pentTrigger = FIND_ENTITY_BY_TARGET ( pentSearch, STRING( pevLinkEnt->targetname ) );// find the button or trigger
if ( FNullEnt( pentTrigger ) )
{// no trigger found
// right now this is a problem among auto-open doors, or any door that opens through the use
// of a trigger brush. Trigger brushes have no models, and don't show up in searches. Just allow
// monsters to open these sorts of doors for now.
return pevLinkEnt;
}
pentSearch = pentTrigger;
pevTrigger = VARS( pentTrigger );
if ( FClassnameIs(pevTrigger, "func_button") || FClassnameIs(pevTrigger, "func_rot_button" ) )
{// only buttons are handled right now.
// trace from the node to the trigger, make sure it's one we can see from the node.
// !!!HACKHACK Use bodyqueue here cause there are no ents we really wish to ignore!
UTIL_TraceLine ( pNode->m_vecOrigin, VecBModelOrigin( pevTrigger ), ignore_monsters, g_pBodyQueueHead, &tr );
if ( VARS(tr.pHit) == pevTrigger )
{// good to go!
return VARS( tr.pHit );
}
}
}
}
else
{
ALERT ( at_aiconsole, "Unsupported PathEnt:\n'%s'\n", STRING ( pevLinkEnt->classname ) );
return NULL;
}
}
//=========================================================
// CGraph - HandleLinkEnt - a brush ent is between two
// nodes that would otherwise be able to see each other.
// Given the monster's capability, determine whether
// or not the monster can go this way.
//=========================================================
int CGraph :: HandleLinkEnt ( int iNode, entvars_t *pevLinkEnt, int afCapMask, NODEQUERY queryType )
{
edict_t *pentWorld;
CBaseEntity *pDoor;
TraceResult tr;
if ( !m_fGraphPresent || !m_fGraphPointersSet )
{// protect us in the case that the node graph isn't available
ALERT ( at_aiconsole, "Graph not ready!\n" );
return FALSE;
}
if ( FNullEnt ( pevLinkEnt ) )
{
ALERT ( at_aiconsole, "dead path ent!\n" );
return TRUE;
}
pentWorld = NULL;
// func_door
if ( FClassnameIs( pevLinkEnt, "func_door" ) || FClassnameIs( pevLinkEnt, "func_door_rotating" ) )
{// ent is a door.
pDoor = ( CBaseEntity::Instance( pevLinkEnt ) );
if ( ( pevLinkEnt->spawnflags & SF_DOOR_USE_ONLY ) )
{// door is use only.
if ( ( afCapMask & bits_CAP_OPEN_DOORS ) )
{// let monster right through if he can open doors
return TRUE;
}
else
{
// monster should try for it if the door is open and looks as if it will stay that way
if ( pDoor->GetToggleState()== TS_AT_TOP && ( pevLinkEnt->spawnflags & SF_DOOR_NO_AUTO_RETURN ) )
{
return TRUE;
}
return FALSE;
}
}
else
{// door must be opened with a button or trigger field.
// monster should try for it if the door is open and looks as if it will stay that way
if ( pDoor->GetToggleState() == TS_AT_TOP && ( pevLinkEnt->spawnflags & SF_DOOR_NO_AUTO_RETURN ) )
{
return TRUE;
}
if ( ( afCapMask & bits_CAP_OPEN_DOORS ) )
{
if ( !( pevLinkEnt->spawnflags & SF_DOOR_NOMONSTERS ) || queryType == NODEGRAPH_STATIC )
return TRUE;
}
return FALSE;
}
}
// func_breakable
else if ( FClassnameIs( pevLinkEnt, "func_breakable" ) && queryType == NODEGRAPH_STATIC )
{
return TRUE;
}
else
{
ALERT ( at_aiconsole, "Unhandled Ent in Path %s\n", STRING( pevLinkEnt->classname ) );
return FALSE;
}
return FALSE;
}
#if 0
//=========================================================
// FindNearestLink - finds the connection (line) nearest
// the given point. Returns FALSE if fails, or TRUE if it
// has stuffed the index into the nearest link pool connection
// into the passed int pointer, and a BOOL telling whether or
// not the point is along the line into the passed BOOL pointer.
//=========================================================
int CGraph :: FindNearestLink ( const Vector &vecTestPoint, int *piNearestLink, BOOL *pfAlongLine )
{
int i, j;// loops
int iNearestLink;// index into the link pool, this is the nearest node at any time.
float flMinDist;// the distance of of the nearest case so far
float flDistToLine;// the distance of the current test case
BOOL fCurrentAlongLine;
BOOL fSuccess;
//float flConstant;// line constant
Vector vecSpot1, vecSpot2;
Vector2D vec2Spot1, vec2Spot2, vec2TestPoint;
Vector2D vec2Normal;// line normal
Vector2D vec2Line;
TraceResult tr;
iNearestLink = -1;// prepare for failure
fSuccess = FALSE;
flMinDist = 9999;// anything will be closer than this
// go through all of the nodes, and each node's connections
int cSkip = 0;// how many links proper pairing allowed us to skip
int cChecked = 0;// how many links were checked
for ( i = 0 ; i < m_cNodes ; i++ )
{
vecSpot1 = m_pNodes[ i ].m_vecOrigin;
if ( m_pNodes[ i ].m_cNumLinks <= 0 )
{// this shouldn't happen!
ALERT ( at_aiconsole, "**Node %d has no links\n", i );
continue;
}
for ( j = 0 ; j < m_pNodes[ i ].m_cNumLinks ; j++ )
{
/*
!!!This optimization only works when the node graph consists of properly linked pairs.
if ( INodeLink ( i, j ) <= i )
{
// since we're going through the nodes in order, don't check
// any connections whose second node is lower in the list
// than the node we're currently working with. This eliminates
// redundant checks.
cSkip++;
continue;
}
*/
vecSpot2 = PNodeLink ( i, j )->m_vecOrigin;
// these values need a little attention now and then, or sometimes ramps cause trouble.
if ( fabs ( vecSpot1.z - vecTestPoint.z ) > 48 && fabs ( vecSpot2.z - vecTestPoint.z ) > 48 )
{
// if both endpoints of the line are 32 units or more above or below the monster,
// the monster won't be able to get to them, so we do a bit of trivial rejection here.
// this may change if monsters are allowed to jump down.
//
// !!!LATER: some kind of clever X/Y hashing should be used here, too
continue;
}
// now we have two endpoints for a line segment that we've not already checked.
// since all lines that make it this far are within -/+ 32 units of the test point's
// Z Plane, we can get away with doing the point->line check in 2d.
cChecked++;
vec2Spot1 = vecSpot1.Make2D();
vec2Spot2 = vecSpot2.Make2D();
vec2TestPoint = vecTestPoint.Make2D();
// get the line normal.
vec2Line = ( vec2Spot1 - vec2Spot2 ).Normalize();
vec2Normal.x = -vec2Line.y;
vec2Normal.y = vec2Line.x;
if ( DotProduct ( vec2Line, ( vec2TestPoint - vec2Spot1 ) ) > 0 )
{// point outside of line
flDistToLine = ( vec2TestPoint - vec2Spot1 ).Length();
fCurrentAlongLine = FALSE;
}
else if ( DotProduct ( vec2Line, ( vec2TestPoint - vec2Spot2 ) ) < 0 )
{// point outside of line
flDistToLine = ( vec2TestPoint - vec2Spot2 ).Length();
fCurrentAlongLine = FALSE;
}
else
{// point inside line
flDistToLine = fabs( DotProduct ( vec2TestPoint - vec2Spot2, vec2Normal ) );
fCurrentAlongLine = TRUE;
}
if ( flDistToLine < flMinDist )
{// just found a line nearer than any other so far
UTIL_TraceLine ( vecTestPoint, SourceNode( i, j ).m_vecOrigin, ignore_monsters, g_pBodyQueueHead, &tr );
if ( tr.flFraction != 1.0 )
{// crap. can't see the first node of this link, try to see the other
UTIL_TraceLine ( vecTestPoint, DestNode( i, j ).m_vecOrigin, ignore_monsters, g_pBodyQueueHead, &tr );
if ( tr.flFraction != 1.0 )
{// can't use this link, cause can't see either node!
continue;
}
}
fSuccess = TRUE;// we know there will be something to return.
flMinDist = flDistToLine;
iNearestLink = m_pNodes [ i ].m_iFirstLink + j;
*piNearestLink = m_pNodes[ i ].m_iFirstLink + j;
*pfAlongLine = fCurrentAlongLine;
}
}
}
/*
if ( fSuccess )
{
WRITE_BYTE(MSG_BROADCAST, SVC_TEMPENTITY);
WRITE_BYTE(MSG_BROADCAST, TE_SHOWLINE);
WRITE_COORD(MSG_BROADCAST, m_pNodes[ m_pLinkPool[ iNearestLink ].m_iSrcNode ].m_vecOrigin.x );
WRITE_COORD(MSG_BROADCAST, m_pNodes[ m_pLinkPool[ iNearestLink ].m_iSrcNode ].m_vecOrigin.y );
WRITE_COORD(MSG_BROADCAST, m_pNodes[ m_pLinkPool[ iNearestLink ].m_iSrcNode ].m_vecOrigin.z + NODE_HEIGHT);
WRITE_COORD(MSG_BROADCAST, m_pNodes[ m_pLinkPool[ iNearestLink ].m_iDestNode ].m_vecOrigin.x );
WRITE_COORD(MSG_BROADCAST, m_pNodes[ m_pLinkPool[ iNearestLink ].m_iDestNode ].m_vecOrigin.y );
WRITE_COORD(MSG_BROADCAST, m_pNodes[ m_pLinkPool[ iNearestLink ].m_iDestNode ].m_vecOrigin.z + NODE_HEIGHT);
}
*/
ALERT ( at_aiconsole, "%d Checked\n", cChecked );
return fSuccess;
}
#endif
int CGraph::HullIndex( const CBaseEntity *pEntity )
{
if ( pEntity->pev->movetype == MOVETYPE_FLY)
return NODE_FLY_HULL;
if ( pEntity->pev->mins == Vector( -12, -12, 0 ) )
return NODE_SMALL_HULL;
else if ( pEntity->pev->mins == VEC_HUMAN_HULL_MIN )
return NODE_HUMAN_HULL;
else if ( pEntity->pev->mins == Vector ( -32, -32, 0 ) )
return NODE_LARGE_HULL;
// ALERT ( at_aiconsole, "Unknown Hull Mins!\n" );
return NODE_HUMAN_HULL;
}
int CGraph::NodeType( const CBaseEntity *pEntity )
{
if ( pEntity->pev->movetype == MOVETYPE_FLY)
{
if (pEntity->pev->waterlevel != 0)
{
return bits_NODE_WATER;
}
else
{
return bits_NODE_AIR;
}
}
return bits_NODE_LAND;
}
// Sum up graph weights on the path from iStart to iDest to determine path length
float CGraph::PathLength( int iStart, int iDest, int iHull, int afCapMask )
{
float distance = 0;
int iNext;
int iMaxLoop = m_cNodes;
int iCurrentNode = iStart;
int iCap = CapIndex( afCapMask );
while (iCurrentNode != iDest)
{
if (iMaxLoop-- <= 0)
{
ALERT( at_console, "Route Failure\n" );
return 0;
}
iNext = NextNodeInRoute( iCurrentNode, iDest, iHull, iCap );
if (iCurrentNode == iNext)
{
//ALERT(at_aiconsole, "SVD: Can't get there from here..\n");
return 0;
}
int iLink;
HashSearch(iCurrentNode, iNext, iLink);
if (iLink < 0)
{
ALERT(at_console, "HashLinks is broken from %d to %d.\n", iCurrentNode, iDest);
return 0;
}
CLink &link = Link(iLink);
distance += link.m_flWeight;
iCurrentNode = iNext;
}
return distance;
}
// Parse the routing table at iCurrentNode for the next node on the shortest path to iDest
int CGraph::NextNodeInRoute( int iCurrentNode, int iDest, int iHull, int iCap )
{
int iNext = iCurrentNode;
int nCount = iDest+1;
signed char *pRoute = m_pRouteInfo + m_pNodes[ iCurrentNode ].m_pNextBestNode[iHull][iCap];
// Until we decode the next best node
//
while (nCount > 0)
{
signed char ch = *pRoute++;
//ALERT(at_aiconsole, "C(%d)", ch);
if (ch < 0)
{
// Sequence phrase
//
ch = -ch;
if (nCount <= ch)
{
iNext = iDest;
nCount = 0;
//ALERT(at_aiconsole, "SEQ: iNext/iDest=%d\n", iNext);
}
else
{
//ALERT(at_aiconsole, "SEQ: nCount + ch (%d + %d)\n", nCount, ch);
nCount = nCount - ch;
}
}
else
{
//ALERT(at_aiconsole, "C(%d)", *pRoute);
// Repeat phrase
//
if (nCount <= ch+1)
{
iNext = iCurrentNode + *pRoute;
if (iNext >= m_cNodes) iNext -= m_cNodes;
else if (iNext < 0) iNext += m_cNodes;
nCount = 0;
//ALERT(at_aiconsole, "REP: iNext=%d\n", iNext);
}
else
{
//ALERT(at_aiconsole, "REP: nCount - ch+1 (%d - %d+1)\n", nCount, ch);
nCount = nCount - ch - 1;
}
pRoute++;
}
}
return iNext;
}
//=========================================================
// CGraph - FindShortestPath
//
// accepts a capability mask (afCapMask), and will only
// find a path usable by a monster with those capabilities
// returns the number of nodes copied into supplied array
//=========================================================
int CGraph :: FindShortestPath ( int *piPath, int iStart, int iDest, int iHull, int afCapMask)
{
int iVisitNode;
int iCurrentNode;
int iNumPathNodes;
int iHullMask;
if ( !m_fGraphPresent || !m_fGraphPointersSet )
{// protect us in the case that the node graph isn't available or built
ALERT ( at_aiconsole, "Graph not ready!\n" );
return FALSE;
}
if ( iStart < 0 || iStart > m_cNodes )
{// The start node is bad?
ALERT ( at_aiconsole, "Can't build a path, iStart is %d!\n", iStart );
return FALSE;
}
if (iStart == iDest)
{
piPath[0] = iStart;
piPath[1] = iDest;
return 2;
}
// Is routing information present.
//
if (m_fRoutingComplete)
{
int iCap = CapIndex( afCapMask );
iNumPathNodes = 0;
piPath[iNumPathNodes++] = iStart;
iCurrentNode = iStart;
int iNext;
//ALERT(at_aiconsole, "GOAL: %d to %d\n", iStart, iDest);
// Until we arrive at the destination
//
while (iCurrentNode != iDest)
{
iNext = NextNodeInRoute( iCurrentNode, iDest, iHull, iCap );
if (iCurrentNode == iNext)
{
//ALERT(at_aiconsole, "SVD: Can't get there from here..\n");
return 0;
break;
}
if (iNumPathNodes >= MAX_PATH_SIZE)
{
//ALERT(at_aiconsole, "SVD: Don't return the entire path.\n");
break;
}
piPath[iNumPathNodes++] = iNext;
iCurrentNode = iNext;
}
//ALERT( at_aiconsole, "SVD: Path with %d nodes.\n", iNumPathNodes);
}
else
{
CQueuePriority queue;
switch( iHull )
{
case NODE_SMALL_HULL:
iHullMask = bits_LINK_SMALL_HULL;
break;
case NODE_HUMAN_HULL:
iHullMask = bits_LINK_HUMAN_HULL;
break;
case NODE_LARGE_HULL:
iHullMask = bits_LINK_LARGE_HULL;
break;
case NODE_FLY_HULL:
iHullMask = bits_LINK_FLY_HULL;
break;
}
// Mark all the nodes as unvisited.
//
for ( int i = 0; i < m_cNodes; i++)
{
m_pNodes[ i ].m_flClosestSoFar = -1.0;
}
m_pNodes[ iStart ].m_flClosestSoFar = 0.0;
m_pNodes[ iStart ].m_iPreviousNode = iStart;// tag this as the origin node
queue.Insert( iStart, 0.0 );// insert start node
while ( !queue.Empty() )
{
// now pull a node out of the queue
float flCurrentDistance;
iCurrentNode = queue.Remove(flCurrentDistance);
// For straight-line weights, the following Shortcut works. For arbitrary weights,
// it doesn't.
//
if (iCurrentNode == iDest) break;
CNode *pCurrentNode = &m_pNodes[ iCurrentNode ];
for ( i = 0 ; i < pCurrentNode->m_cNumLinks ; i++ )
{// run through all of this node's neighbors
iVisitNode = INodeLink ( iCurrentNode, i );
if ( ( m_pLinkPool[ m_pNodes[ iCurrentNode ].m_iFirstLink + i ].m_afLinkInfo & iHullMask ) != iHullMask )
{// monster is too large to walk this connection
//ALERT ( at_aiconsole, "fat ass %d/%d\n",m_pLinkPool[ m_pNodes[ iCurrentNode ].m_iFirstLink + i ].m_afLinkInfo, iMonsterHull );
continue;
}
// check the connection from the current node to the node we're about to mark visited and push into the queue
if ( m_pLinkPool[ m_pNodes[ iCurrentNode ].m_iFirstLink + i ].m_pLinkEnt != NULL )
{// there's a brush ent in the way! Don't mark this node or put it into the queue unless the monster can negotiate it
if ( !HandleLinkEnt ( iCurrentNode, m_pLinkPool[ m_pNodes[ iCurrentNode ].m_iFirstLink + i ].m_pLinkEnt, afCapMask, NODEGRAPH_STATIC ) )
{// monster should not try to go this way.
continue;
}
}
float flOurDistance = flCurrentDistance + m_pLinkPool[ m_pNodes[ iCurrentNode ].m_iFirstLink + i].m_flWeight;
if ( m_pNodes[ iVisitNode ].m_flClosestSoFar < -0.5
|| flOurDistance < m_pNodes[ iVisitNode ].m_flClosestSoFar - 0.001 )
{
m_pNodes[iVisitNode].m_flClosestSoFar = flOurDistance;
m_pNodes[iVisitNode].m_iPreviousNode = iCurrentNode;
queue.Insert ( iVisitNode, flOurDistance );
}
}
}
if ( m_pNodes[iDest].m_flClosestSoFar < -0.5 )
{// Destination is unreachable, no path found.
return 0;
}
// the queue is not empty
// now we must walk backwards through the m_iPreviousNode field, and count how many connections there are in the path
iCurrentNode = iDest;
iNumPathNodes = 1;// count the dest
while ( iCurrentNode != iStart )
{
iNumPathNodes++;
iCurrentNode = m_pNodes[ iCurrentNode ].m_iPreviousNode;
}
iCurrentNode = iDest;
for ( i = iNumPathNodes - 1 ; i >= 0 ; i-- )
{
piPath[ i ] = iCurrentNode;
iCurrentNode = m_pNodes [ iCurrentNode ].m_iPreviousNode;
}
}
#if 0
if (m_fRoutingComplete)
{
// This will draw the entire path that was generated for the monster.
for ( int i = 0 ; i < iNumPathNodes - 1 ; i++ )
{
MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY );
WRITE_BYTE( TE_SHOWLINE);
WRITE_COORD( m_pNodes[ piPath[ i ] ].m_vecOrigin.x );
WRITE_COORD( m_pNodes[ piPath[ i ] ].m_vecOrigin.y );
WRITE_COORD( m_pNodes[ piPath[ i ] ].m_vecOrigin.z + NODE_HEIGHT );
WRITE_COORD( m_pNodes[ piPath[ i + 1 ] ].m_vecOrigin.x );
WRITE_COORD( m_pNodes[ piPath[ i + 1 ] ].m_vecOrigin.y );
WRITE_COORD( m_pNodes[ piPath[ i + 1 ] ].m_vecOrigin.z + NODE_HEIGHT );
MESSAGE_END();
}
}
#endif
#if 0 // MAZE map
MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY );
WRITE_BYTE( TE_SHOWLINE);
WRITE_COORD( m_pNodes[ 4 ].m_vecOrigin.x );
WRITE_COORD( m_pNodes[ 4 ].m_vecOrigin.y );
WRITE_COORD( m_pNodes[ 4 ].m_vecOrigin.z + NODE_HEIGHT );
WRITE_COORD( m_pNodes[ 9 ].m_vecOrigin.x );
WRITE_COORD( m_pNodes[ 9 ].m_vecOrigin.y );
WRITE_COORD( m_pNodes[ 9 ].m_vecOrigin.z + NODE_HEIGHT );
MESSAGE_END();
#endif
return iNumPathNodes;
}
inline ULONG Hash(void *p, int len)
{
CRC32_t ulCrc;
CRC32_INIT(&ulCrc);
CRC32_PROCESS_BUFFER(&ulCrc, p, len);
return CRC32_FINAL(ulCrc);
}
void inline CalcBounds(int &Lower, int &Upper, int Goal, int Best)
{
int Temp = 2*Goal - Best;
if (Best > Goal)
{
Lower = max(0, Temp);
Upper = Best;
}
else
{
Upper = min(255, Temp);
Lower = Best;
}
}
// Convert from [-8192,8192] to [0, 255]
//
inline int CALC_RANGE(int x, int lower, int upper)
{
return NUM_RANGES*(x-lower)/((upper-lower+1));
}
void inline UpdateRange(int &minValue, int &maxValue, int Goal, int Best)
{
int Lower, Upper;
CalcBounds(Lower, Upper, Goal, Best);
if (Upper < maxValue) maxValue = Upper;
if (minValue < Lower) minValue = Lower;
}
void CGraph :: CheckNode(Vector vecOrigin, int iNode)
{
// Have we already seen this point before?.
//
if (m_di[iNode].m_CheckedEvent == m_CheckedCounter) return;
m_di[iNode].m_CheckedEvent = m_CheckedCounter;
float flDist = ( vecOrigin - m_pNodes[ iNode ].m_vecOriginPeek ).Length();
if ( flDist < m_flShortest )
{
TraceResult tr;
// make sure that vecOrigin can trace to this node!
UTIL_TraceLine ( vecOrigin, m_pNodes[ iNode ].m_vecOriginPeek, ignore_monsters, 0, &tr );
if ( tr.flFraction == 1.0 )
{
m_iNearest = iNode;
m_flShortest = flDist;
UpdateRange(m_minX, m_maxX, CALC_RANGE(vecOrigin.x, m_RegionMin[0], m_RegionMax[0]), m_pNodes[iNode].m_Region[0]);
UpdateRange(m_minY, m_maxY, CALC_RANGE(vecOrigin.y, m_RegionMin[1], m_RegionMax[1]), m_pNodes[iNode].m_Region[1]);
UpdateRange(m_minZ, m_maxZ, CALC_RANGE(vecOrigin.z, m_RegionMin[2], m_RegionMax[2]), m_pNodes[iNode].m_Region[2]);
// From maxCircle, calculate maximum bounds box. All points must be
// simultaneously inside all bounds of the box.
//
m_minBoxX = CALC_RANGE(vecOrigin.x - flDist, m_RegionMin[0], m_RegionMax[0]);
m_maxBoxX = CALC_RANGE(vecOrigin.x + flDist, m_RegionMin[0], m_RegionMax[0]);
m_minBoxY = CALC_RANGE(vecOrigin.y - flDist, m_RegionMin[1], m_RegionMax[1]);
m_maxBoxY = CALC_RANGE(vecOrigin.y + flDist, m_RegionMin[1], m_RegionMax[1]);
m_minBoxZ = CALC_RANGE(vecOrigin.z - flDist, m_RegionMin[2], m_RegionMax[2]);
m_maxBoxZ = CALC_RANGE(vecOrigin.z + flDist, m_RegionMin[2], m_RegionMax[2]);
}
}
}
//=========================================================
// CGraph - FindNearestNode - returns the index of the node nearest
// the given vector -1 is failure (couldn't find a valid
// near node )
//=========================================================
int CGraph :: FindNearestNode ( const Vector &vecOrigin, CBaseEntity *pEntity )
{
return FindNearestNode( vecOrigin, NodeType( pEntity ) );
}
int CGraph :: FindNearestNode ( const Vector &vecOrigin, int afNodeTypes )
{
int i;
TraceResult tr;
if ( !m_fGraphPresent || !m_fGraphPointersSet )
{// protect us in the case that the node graph isn't available
ALERT ( at_aiconsole, "Graph not ready!\n" );
return -1;
}
// Check with the cache
//
ULONG iHash = (CACHE_SIZE-1) & Hash((void *)(const float *)vecOrigin, sizeof(vecOrigin));
if (m_Cache[iHash].v == vecOrigin)
{
//ALERT(at_aiconsole, "Cache Hit.\n");
return m_Cache[iHash].n;
}
else
{
//ALERT(at_aiconsole, "Cache Miss.\n");
}
// Mark all points as unchecked.
//
m_CheckedCounter++;
if (m_CheckedCounter == 0)
{
for (int i = 0; i < m_cNodes; i++)
{
m_di[i].m_CheckedEvent = 0;
}
m_CheckedCounter++;
}
m_iNearest = -1;
m_flShortest = 999999.0; // just a big number.
// If we can find a visible point, then let CalcBounds set the limits, but if
// we have no visible point at all to start with, then don't restrict the limits.
//
#if 1
m_minX = 0; m_maxX = 255;
m_minY = 0; m_maxY = 255;
m_minZ = 0; m_maxZ = 255;
m_minBoxX = 0; m_maxBoxX = 255;
m_minBoxY = 0; m_maxBoxY = 255;
m_minBoxZ = 0; m_maxBoxZ = 255;
#else
m_minBoxX = CALC_RANGE(vecOrigin.x - flDist, m_RegionMin[0], m_RegionMax[0]);
m_maxBoxX = CALC_RANGE(vecOrigin.x + flDist, m_RegionMin[0], m_RegionMax[0]);
m_minBoxY = CALC_RANGE(vecOrigin.y - flDist, m_RegionMin[1], m_RegionMax[1]);
m_maxBoxY = CALC_RANGE(vecOrigin.y + flDist, m_RegionMin[1], m_RegionMax[1]);
m_minBoxZ = CALC_RANGE(vecOrigin.z - flDist, m_RegionMin[2], m_RegionMax[2]);
m_maxBoxZ = CALC_RANGE(vecOrigin.z + flDist, m_RegionMin[2], m_RegionMax[2])
CalcBounds(m_minX, m_maxX, CALC_RANGE(vecOrigin.x, m_RegionMin[0], m_RegionMax[0]), m_pNodes[m_iNearest].m_Region[0]);
CalcBounds(m_minY, m_maxY, CALC_RANGE(vecOrigin.y, m_RegionMin[1], m_RegionMax[1]), m_pNodes[m_iNearest].m_Region[1]);
CalcBounds(m_minZ, m_maxZ, CALC_RANGE(vecOrigin.z, m_RegionMin[2], m_RegionMax[2]), m_pNodes[m_iNearest].m_Region[2]);
#endif
int halfX = (m_minX+m_maxX)/2;
int halfY = (m_minY+m_maxY)/2;
int halfZ = (m_minZ+m_maxZ)/2;
int j;
for (i = halfX; i >= m_minX; i--)
{
for (j = m_RangeStart[0][i]; j <= m_RangeEnd[0][i]; j++)
{
if (!(m_pNodes[m_di[j].m_SortedBy[0]].m_afNodeInfo & afNodeTypes)) continue;
int rgY = m_pNodes[m_di[j].m_SortedBy[0]].m_Region[1];
if (rgY > m_maxBoxY) break;
if (rgY < m_minBoxY) continue;
int rgZ = m_pNodes[m_di[j].m_SortedBy[0]].m_Region[2];
if (rgZ < m_minBoxZ) continue;
if (rgZ > m_maxBoxZ) continue;
CheckNode(vecOrigin, m_di[j].m_SortedBy[0]);
}
}
for (i = max(m_minY,halfY+1); i <= m_maxY; i++)
{
for (j = m_RangeStart[1][i]; j <= m_RangeEnd[1][i]; j++)
{
if (!(m_pNodes[m_di[j].m_SortedBy[1]].m_afNodeInfo & afNodeTypes)) continue;
int rgZ = m_pNodes[m_di[j].m_SortedBy[1]].m_Region[2];
if (rgZ > m_maxBoxZ) break;
if (rgZ < m_minBoxZ) continue;
int rgX = m_pNodes[m_di[j].m_SortedBy[1]].m_Region[0];
if (rgX < m_minBoxX) continue;
if (rgX > m_maxBoxX) continue;
CheckNode(vecOrigin, m_di[j].m_SortedBy[1]);
}
}
for (i = min(m_maxZ,halfZ); i >= m_minZ; i--)
{
for (j = m_RangeStart[2][i]; j <= m_RangeEnd[2][i]; j++)
{
if (!(m_pNodes[m_di[j].m_SortedBy[2]].m_afNodeInfo & afNodeTypes)) continue;
int rgX = m_pNodes[m_di[j].m_SortedBy[2]].m_Region[0];
if (rgX > m_maxBoxX) break;
if (rgX < m_minBoxX) continue;
int rgY = m_pNodes[m_di[j].m_SortedBy[2]].m_Region[1];
if (rgY < m_minBoxY) continue;
if (rgY > m_maxBoxY) continue;
CheckNode(vecOrigin, m_di[j].m_SortedBy[2]);
}
}
for (i = max(m_minX,halfX+1); i <= m_maxX; i++)
{
for (j = m_RangeStart[0][i]; j <= m_RangeEnd[0][i]; j++)
{
if (!(m_pNodes[m_di[j].m_SortedBy[0]].m_afNodeInfo & afNodeTypes)) continue;
int rgY = m_pNodes[m_di[j].m_SortedBy[0]].m_Region[1];
if (rgY > m_maxBoxY) break;
if (rgY < m_minBoxY) continue;
int rgZ = m_pNodes[m_di[j].m_SortedBy[0]].m_Region[2];
if (rgZ < m_minBoxZ) continue;
if (rgZ > m_maxBoxZ) continue;
CheckNode(vecOrigin, m_di[j].m_SortedBy[0]);
}
}
for (i = min(m_maxY,halfY); i >= m_minY; i--)
{
for (j = m_RangeStart[1][i]; j <= m_RangeEnd[1][i]; j++)
{
if (!(m_pNodes[m_di[j].m_SortedBy[1]].m_afNodeInfo & afNodeTypes)) continue;
int rgZ = m_pNodes[m_di[j].m_SortedBy[1]].m_Region[2];
if (rgZ > m_maxBoxZ) break;
if (rgZ < m_minBoxZ) continue;
int rgX = m_pNodes[m_di[j].m_SortedBy[1]].m_Region[0];
if (rgX < m_minBoxX) continue;
if (rgX > m_maxBoxX) continue;
CheckNode(vecOrigin, m_di[j].m_SortedBy[1]);
}
}
for (i = max(m_minZ,halfZ+1); i <= m_maxZ; i++)
{
for (j = m_RangeStart[2][i]; j <= m_RangeEnd[2][i]; j++)
{
if (!(m_pNodes[m_di[j].m_SortedBy[2]].m_afNodeInfo & afNodeTypes)) continue;
int rgX = m_pNodes[m_di[j].m_SortedBy[2]].m_Region[0];
if (rgX > m_maxBoxX) break;
if (rgX < m_minBoxX) continue;
int rgY = m_pNodes[m_di[j].m_SortedBy[2]].m_Region[1];
if (rgY < m_minBoxY) continue;
if (rgY > m_maxBoxY) continue;
CheckNode(vecOrigin, m_di[j].m_SortedBy[2]);
}
}
#if 0
// Verify our answers.
//
int iNearestCheck = -1;
m_flShortest = 8192;// find nodes within this radius
for ( i = 0 ; i < m_cNodes ; i++ )
{
float flDist = ( vecOrigin - m_pNodes[ i ].m_vecOriginPeek ).Length();
if ( flDist < m_flShortest )
{
// make sure that vecOrigin can trace to this node!
UTIL_TraceLine ( vecOrigin, m_pNodes[ i ].m_vecOriginPeek, ignore_monsters, 0, &tr );
if ( tr.flFraction == 1.0 )
{
iNearestCheck = i;
m_flShortest = flDist;
}
}
}
if (iNearestCheck != m_iNearest)
{
ALERT( at_aiconsole, "NOT closest %d(%f,%f,%f) %d(%f,%f,%f).\n",
iNearestCheck,
m_pNodes[iNearestCheck].m_vecOriginPeek.x,
m_pNodes[iNearestCheck].m_vecOriginPeek.y,
m_pNodes[iNearestCheck].m_vecOriginPeek.z,
m_iNearest,
(m_iNearest == -1?0.0:m_pNodes[m_iNearest].m_vecOriginPeek.x),
(m_iNearest == -1?0.0:m_pNodes[m_iNearest].m_vecOriginPeek.y),
(m_iNearest == -1?0.0:m_pNodes[m_iNearest].m_vecOriginPeek.z));
}
if (m_iNearest == -1)
{
ALERT(at_aiconsole, "All that work for nothing.\n");
}
#endif
m_Cache[iHash].v = vecOrigin;
m_Cache[iHash].n = m_iNearest;
return m_iNearest;
}
//=========================================================
// CGraph - ShowNodeConnections - draws a line from the given node
// to all connected nodes
//=========================================================
void CGraph :: ShowNodeConnections ( int iNode )
{
Vector vecSpot;
CNode *pNode;
CNode *pLinkNode;
int i;
if ( !m_fGraphPresent || !m_fGraphPointersSet )
{// protect us in the case that the node graph isn't available or built
ALERT ( at_aiconsole, "Graph not ready!\n" );
return;
}
if ( iNode < 0 )
{
ALERT( at_aiconsole, "Can't show connections for node %d\n", iNode );
return;
}
pNode = &m_pNodes[ iNode ];
UTIL_ParticleEffect( pNode->m_vecOrigin, g_vecZero, 255, 20 );// show node position
if ( pNode->m_cNumLinks <= 0 )
{// no connections!
ALERT ( at_aiconsole, "**No Connections!\n" );
}
for ( i = 0 ; i < pNode->m_cNumLinks ; i++ )
{
pLinkNode = &Node( NodeLink( iNode, i).m_iDestNode );
vecSpot = pLinkNode->m_vecOrigin;
MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY );
WRITE_BYTE( TE_SHOWLINE);
WRITE_COORD( m_pNodes[ iNode ].m_vecOrigin.x );
WRITE_COORD( m_pNodes[ iNode ].m_vecOrigin.y );
WRITE_COORD( m_pNodes[ iNode ].m_vecOrigin.z + NODE_HEIGHT );
WRITE_COORD( vecSpot.x );
WRITE_COORD( vecSpot.y );
WRITE_COORD( vecSpot.z + NODE_HEIGHT );
MESSAGE_END();
}
}
//=========================================================
// CGraph - LinkVisibleNodes - the first, most basic
// function of node graph creation, this connects every
// node to every other node that it can see. Expects a
// pointer to an empty connection pool and a file pointer
// to write progress to. Returns the total number of initial
// links.
//
// If there's a problem with this process, the index
// of the offending node will be written to piBadNode
//=========================================================
int CGraph :: LinkVisibleNodes ( CLink *pLinkPool, FILE *file, int *piBadNode )
{
int i,j,z;
edict_t *pTraceEnt;
int cTotalLinks, cLinksThisNode, cMaxInitialLinks;
TraceResult tr;
// !!!BUGBUG - this function returns 0 if there is a problem in the middle of connecting the graph
// it also returns 0 if none of the nodes in a level can see each other. piBadNode is ALWAYS read
// by BuildNodeGraph() if this function returns a 0, so make sure that it doesn't get some random
// number back.
*piBadNode = 0;
if ( m_cNodes <= 0 )
{
ALERT ( at_aiconsole, "No Nodes!\n" );
return FALSE;
}
// if the file pointer is bad, don't blow up, just don't write the
// file.
if ( !file )
{
ALERT ( at_aiconsole, "**LinkVisibleNodes:\ncan't write to file." );
}
else
{
fprintf ( file, "----------------------------------------------------------------------------\n" );
fprintf ( file, "LinkVisibleNodes - Initial Connections\n" );
fprintf ( file, "----------------------------------------------------------------------------\n" );
}
cTotalLinks = 0;// start with no connections
// to keep track of the maximum number of initial links any node had so far.
// this lets us keep an eye on MAX_NODE_INITIAL_LINKS to ensure that we are
// being generous enough.
cMaxInitialLinks = 0;
for ( i = 0 ; i < m_cNodes ; i++ )
{
cLinksThisNode = 0;// reset this count for each node.
if ( file )
{
fprintf ( file, "Node #%4d:\n\n", i );
}
for ( z = 0 ; z < MAX_NODE_INITIAL_LINKS ; z++ )
{// clear out the important fields in the link pool for this node
pLinkPool [ cTotalLinks + z ].m_iSrcNode = i;// so each link knows which node it originates from
pLinkPool [ cTotalLinks + z ].m_iDestNode = 0;
pLinkPool [ cTotalLinks + z ].m_pLinkEnt = NULL;
}
m_pNodes [ i ].m_iFirstLink = cTotalLinks;
// now build a list of every other node that this node can see
for ( j = 0 ; j < m_cNodes ; j++ )
{
if ( j == i )
{// don't connect to self!
continue;
}
#if 0
if ( (m_pNodes[ i ].m_afNodeInfo & bits_NODE_WATER) != (m_pNodes[ j ].m_afNodeInfo & bits_NODE_WATER) )
{
// don't connect water nodes to air nodes or land nodes. It just wouldn't be prudent at this juncture.
continue;
}
#else
if ( (m_pNodes[ i ].m_afNodeInfo & bits_NODE_GROUP_REALM) != (m_pNodes[ j ].m_afNodeInfo & bits_NODE_GROUP_REALM) )
{
// don't connect air nodes to water nodes to land nodes. It just wouldn't be prudent at this juncture.
continue;
}
#endif
tr.pHit = NULL;// clear every time so we don't get stuck with last trace's hit ent
pTraceEnt = 0;
UTIL_TraceLine ( m_pNodes[ i ].m_vecOrigin,
m_pNodes[ j ].m_vecOrigin,
ignore_monsters,
g_pBodyQueueHead,//!!!HACKHACK no real ent to supply here, using a global we don't care about
&tr );
if ( tr.fStartSolid )
continue;
if ( tr.flFraction != 1.0 )
{// trace hit a brush ent, trace backwards to make sure that this ent is the only thing in the way.
pTraceEnt = tr.pHit;// store the ent that the trace hit, for comparison
UTIL_TraceLine ( m_pNodes[ j ].m_vecOrigin,
m_pNodes[ i ].m_vecOrigin,
ignore_monsters,
g_pBodyQueueHead,//!!!HACKHACK no real ent to supply here, using a global we don't care about
&tr );
// there is a solid_bsp ent in the way of these two nodes, so we must record several things about in order to keep
// track of it in the pathfinding code, as well as through save and restore of the node graph. ANY data that is manipulated
// as part of the process of adding a LINKENT to a connection here must also be done in CGraph::SetGraphPointers, where reloaded
// graphs are prepared for use.
if ( tr.pHit == pTraceEnt && !FClassnameIs( tr.pHit, "worldspawn" ) )
{
// get a pointer
pLinkPool [ cTotalLinks ].m_pLinkEnt = VARS( tr.pHit );
// record the modelname, so that we can save/load node trees
memcpy( pLinkPool [ cTotalLinks ].m_szLinkEntModelname, STRING( VARS(tr.pHit)->model ), 4 );
// set the flag for this ent that indicates that it is attached to the world graph
// if this ent is removed from the world, it must also be removed from the connections
// that it formerly blocked.
if ( !FBitSet( VARS( tr.pHit )->flags, FL_GRAPHED ) )
{
VARS( tr.pHit )->flags += FL_GRAPHED;
}
}
else
{// even if the ent wasn't there, these nodes couldn't be connected. Skip.
continue;
}
}
if ( file )
{
fprintf ( file, "%4d", j );
if ( !FNullEnt( pLinkPool[ cTotalLinks ].m_pLinkEnt ) )
{// record info about the ent in the way, if any.
fprintf ( file, " Entity on connection: %s, name: %s Model: %s", STRING( VARS( pTraceEnt )->classname ), STRING ( VARS( pTraceEnt )->targetname ), STRING ( VARS(tr.pHit)->model ) );
}
fprintf ( file, "\n", j );
}
pLinkPool [ cTotalLinks ].m_iDestNode = j;
cLinksThisNode++;
cTotalLinks++;
// If we hit this, either a level designer is placing too many nodes in the same area, or
// we need to allow for a larger initial link pool.
if ( cLinksThisNode == MAX_NODE_INITIAL_LINKS )
{
ALERT ( at_aiconsole, "**LinkVisibleNodes:\nNode %d has NodeLinks > MAX_NODE_INITIAL_LINKS", i );
fprintf ( file, "** NODE %d HAS NodeLinks > MAX_NODE_INITIAL_LINKS **\n", i );
*piBadNode = i;
return FALSE;
}
else if ( cTotalLinks > MAX_NODE_INITIAL_LINKS * m_cNodes )
{// this is paranoia
ALERT ( at_aiconsole, "**LinkVisibleNodes:\nTotalLinks > MAX_NODE_INITIAL_LINKS * NUMNODES" );
*piBadNode = i;
return FALSE;
}
if ( cLinksThisNode == 0 )
{
fprintf ( file, "**NO INITIAL LINKS**\n" );
}
// record the connection info in the link pool
WorldGraph.m_pNodes [ i ].m_cNumLinks = cLinksThisNode;
// keep track of the most initial links ANY node had, so we can figure out
// if we have a large enough default link pool
if ( cLinksThisNode > cMaxInitialLinks )
{
cMaxInitialLinks = cLinksThisNode;
}
}
if ( file )
{
fprintf ( file, "----------------------------------------------------------------------------\n" );
}
}
fprintf ( file, "\n%4d Total Initial Connections - %4d Maximum connections for a single node.\n", cTotalLinks, cMaxInitialLinks );
fprintf ( file, "----------------------------------------------------------------------------\n\n\n" );
return cTotalLinks;
}
//=========================================================
// CGraph - RejectInlineLinks - expects a pointer to a link
// pool, and a pointer to and already-open file ( if you
// want status reports written to disk ). RETURNS the number
// of connections that were rejected
//=========================================================
int CGraph :: RejectInlineLinks ( CLink *pLinkPool, FILE *file )
{
int i,j,k;
int cRejectedLinks;
BOOL fRestartLoop;// have to restart the J loop if we eliminate a link.
CNode *pSrcNode;
CNode *pCheckNode;// the node we are testing for (one of pSrcNode's connections)
CNode *pTestNode;// the node we are checking against ( also one of pSrcNode's connections)
float flDistToTestNode, flDistToCheckNode;
Vector2D vec2DirToTestNode, vec2DirToCheckNode;
if ( file )
{
fprintf ( file, "----------------------------------------------------------------------------\n" );
fprintf ( file, "InLine Rejection:\n" );
fprintf ( file, "----------------------------------------------------------------------------\n" );
}
cRejectedLinks = 0;
for ( i = 0 ; i < m_cNodes ; i++ )
{
pSrcNode = &m_pNodes[ i ];
if ( file )
{
fprintf ( file, "Node %3d:\n", i );
}
for ( j = 0 ; j < pSrcNode->m_cNumLinks ; j++ )
{
pCheckNode = &m_pNodes[ pLinkPool[ pSrcNode->m_iFirstLink + j ].m_iDestNode ];
vec2DirToCheckNode = ( pCheckNode->m_vecOrigin - pSrcNode->m_vecOrigin ).Make2D();
flDistToCheckNode = vec2DirToCheckNode.Length();
vec2DirToCheckNode = vec2DirToCheckNode.Normalize();
pLinkPool[ pSrcNode->m_iFirstLink + j ].m_flWeight = flDistToCheckNode;
fRestartLoop = FALSE;
for ( k = 0 ; k < pSrcNode->m_cNumLinks && !fRestartLoop ; k++ )
{
if ( k == j )
{// don't check against same node
continue;
}
pTestNode = &m_pNodes [ pLinkPool[ pSrcNode->m_iFirstLink + k ].m_iDestNode ];
vec2DirToTestNode = ( pTestNode->m_vecOrigin - pSrcNode->m_vecOrigin ).Make2D();
flDistToTestNode = vec2DirToTestNode.Length();
vec2DirToTestNode = vec2DirToTestNode.Normalize();
if ( DotProduct ( vec2DirToCheckNode, vec2DirToTestNode ) >= 0.998 )
{
// there's a chance that TestNode intersects the line to CheckNode. If so, we should disconnect the link to CheckNode.
if ( flDistToTestNode < flDistToCheckNode )
{
if ( file )
{
fprintf ( file, "REJECTED NODE %3d through Node %3d, Dot = %8f\n", pLinkPool[ pSrcNode->m_iFirstLink + j ].m_iDestNode, pLinkPool[ pSrcNode->m_iFirstLink + k ].m_iDestNode, DotProduct ( vec2DirToCheckNode, vec2DirToTestNode ) );
}
pLinkPool[ pSrcNode->m_iFirstLink + j ] = pLinkPool[ pSrcNode->m_iFirstLink + ( pSrcNode->m_cNumLinks - 1 ) ];
pSrcNode->m_cNumLinks--;
j--;
cRejectedLinks++;// keeping track of how many links are cut, so that we can return that value.
fRestartLoop = TRUE;
}
}
}
}
if ( file )
{
fprintf ( file, "----------------------------------------------------------------------------\n\n" );
}
}
return cRejectedLinks;
}
//=========================================================
// TestHull is a modelless clip hull that verifies reachable
// nodes by walking from every node to each of it's connections
//=========================================================
class CTestHull : public CBaseMonster
{
public:
void Spawn( entvars_t *pevMasterNode );
virtual int ObjectCaps( void ) { return CBaseMonster :: ObjectCaps() & ~FCAP_ACROSS_TRANSITION; }
void EXPORT CallBuildNodeGraph ( void );
void BuildNodeGraph ( void );
void EXPORT ShowBadNode ( void );
void EXPORT DropDelay ( void );
void EXPORT PathFind ( void );
Vector vecBadNodeOrigin;
};
LINK_ENTITY_TO_CLASS( testhull, CTestHull );
//=========================================================
// CTestHull::Spawn
//=========================================================
void CTestHull :: Spawn( entvars_t *pevMasterNode )
{
SET_MODEL(ENT(pev), "models/player.mdl");
UTIL_SetSize(pev, VEC_HUMAN_HULL_MIN, VEC_HUMAN_HULL_MAX);
pev->solid = SOLID_SLIDEBOX;
pev->movetype = MOVETYPE_STEP;
pev->effects = 0;
pev->health = 50;
pev->yaw_speed = 8;
if ( WorldGraph.m_fGraphPresent )
{// graph loaded from disk, so we don't need the test hull
SetThink( &SUB_Remove );
pev->nextthink = gpGlobals->time;
}
else
{
SetThink( &DropDelay );
pev->nextthink = gpGlobals->time + 1;
}
// Make this invisible
// UNDONE: Shouldn't we just use EF_NODRAW? This doesn't need to go to the client.
pev->rendermode = kRenderTransTexture;
pev->renderamt = 0;
}
//=========================================================
// TestHull::DropDelay - spawns TestHull on top of
// the 0th node and drops it to the ground.
//=========================================================
void CTestHull::DropDelay ( void )
{
UTIL_CenterPrintAll( "Node Graph out of Date. Rebuilding..." );
UTIL_SetOrigin ( VARS(pev), WorldGraph.m_pNodes[ 0 ].m_vecOrigin );
SetThink( &CallBuildNodeGraph );
pev->nextthink = gpGlobals->time + 1;
}
//=========================================================
// nodes start out as ents in the world. As they are spawned,
// the node info is recorded then the ents are discarded.
//=========================================================
void CNodeEnt :: KeyValue( KeyValueData *pkvd )
{
if (FStrEq(pkvd->szKeyName, "hinttype"))
{
m_sHintType = (short)atoi( pkvd->szValue );
pkvd->fHandled = TRUE;
}
if (FStrEq(pkvd->szKeyName, "activity"))
{
m_sHintActivity = (short)atoi( pkvd->szValue );
pkvd->fHandled = TRUE;
}
else
CBaseEntity::KeyValue( pkvd );
}
//=========================================================
//=========================================================
void CNodeEnt :: Spawn( void )
{
pev->movetype = MOVETYPE_NONE;
pev->solid = SOLID_NOT;// always solid_not
if ( WorldGraph.m_fGraphPresent )
{// graph loaded from disk, so discard all these node ents as soon as they spawn
REMOVE_ENTITY( edict() );
return;
}
if ( WorldGraph.m_cNodes == 0 )
{// this is the first node to spawn, spawn the test hull entity that builds and walks the node tree
CTestHull *pHull = GetClassPtr((CTestHull *)NULL);
pHull->Spawn( pev );
}
if ( WorldGraph.m_cNodes >= MAX_NODES )
{
ALERT ( at_aiconsole, "cNodes > MAX_NODES\n" );
return;
}
WorldGraph.m_pNodes[ WorldGraph.m_cNodes ].m_vecOriginPeek =
WorldGraph.m_pNodes[ WorldGraph.m_cNodes ].m_vecOrigin = pev->origin;
WorldGraph.m_pNodes[ WorldGraph.m_cNodes ].m_flHintYaw = pev->angles.y;
WorldGraph.m_pNodes[ WorldGraph.m_cNodes ].m_sHintType = m_sHintType;
WorldGraph.m_pNodes[ WorldGraph.m_cNodes ].m_sHintActivity = m_sHintActivity;
if (FClassnameIs( pev, "info_node_air" ))
WorldGraph.m_pNodes[ WorldGraph.m_cNodes ].m_afNodeInfo = bits_NODE_AIR;
else
WorldGraph.m_pNodes[ WorldGraph.m_cNodes ].m_afNodeInfo = 0;
WorldGraph.m_cNodes++;
REMOVE_ENTITY( edict() );
}
//=========================================================
// CTestHull - ShowBadNode - makes a bad node fizzle. When
// there's a problem with node graph generation, the test
// hull will be placed up the bad node's location and will generate
// particles
//=========================================================
void CTestHull :: ShowBadNode( void )
{
pev->movetype = MOVETYPE_FLY;
pev->angles.y = pev->angles.y + 4;
UTIL_MakeVectors ( pev->angles );
UTIL_ParticleEffect ( pev->origin, g_vecZero, 255, 25 );
UTIL_ParticleEffect ( pev->origin + gpGlobals->v_forward * 64, g_vecZero, 255, 25 );
UTIL_ParticleEffect ( pev->origin - gpGlobals->v_forward * 64, g_vecZero, 255, 25 );
UTIL_ParticleEffect ( pev->origin + gpGlobals->v_right * 64, g_vecZero, 255, 25 );
UTIL_ParticleEffect ( pev->origin - gpGlobals->v_right * 64, g_vecZero, 255, 25 );
pev->nextthink = gpGlobals->time + 0.1;
}
extern BOOL gTouchDisabled;
void CTestHull::CallBuildNodeGraph( void )
{
// TOUCH HACK -- Don't allow this entity to call anyone's "touch" function
gTouchDisabled = TRUE;
BuildNodeGraph();
gTouchDisabled = FALSE;
// Undo TOUCH HACK
}
//=========================================================
// BuildNodeGraph - think function called by the empty walk
// hull that is spawned by the first node to spawn. This
// function links all nodes that can see each other, then
// eliminates all inline links, then uses a monster-sized
// hull that walks between each node and each of its links
// to ensure that a monster can actually fit through the space
//=========================================================
void CTestHull :: BuildNodeGraph( void )
{
TraceResult tr;
FILE *file;
char szNrpFilename [MAX_PATH];// text node report filename
CLink *pTempPool; // temporary link pool
CNode *pSrcNode;// node we're currently working with
CNode *pDestNode;// the other node in comparison operations
BOOL fSkipRemainingHulls;//if smallest hull can't fit, don't check any others
BOOL fPairsValid;// are all links in the graph evenly paired?
int i, j, hull;
int iBadNode;// this is the node that caused graph generation to fail
int cMaxInitialLinks = 0;
int cMaxValidLinks = 0;
int iPoolIndex = 0;
int cPoolLinks;// number of links in the pool.
Vector vecDirToCheckNode;
Vector vecDirToTestNode;
Vector vecStepCheckDir;
Vector vecTraceSpot;
Vector vecSpot;
Vector2D vec2DirToCheckNode;
Vector2D vec2DirToTestNode;
Vector2D vec2StepCheckDir;
Vector2D vec2TraceSpot;
Vector2D vec2Spot;
float flYaw;// use this stuff to walk the hull between nodes
float flDist;
int step;
SetThink( &SUB_Remove );// no matter what happens, the hull gets rid of itself.
pev->nextthink = gpGlobals->time;
// malloc a swollen temporary connection pool that we trim down after we know exactly how many connections there are.
pTempPool = (CLink *)calloc ( sizeof ( CLink ) , ( WorldGraph.m_cNodes * MAX_NODE_INITIAL_LINKS ) );
if ( !pTempPool )
{
ALERT ( at_aiconsole, "**Could not malloc TempPool!\n" );
return;
}
// make sure directories have been made
GET_GAME_DIR( szNrpFilename );
strcat( szNrpFilename, "/maps" );
CreateDirectory( szNrpFilename, NULL );
strcat( szNrpFilename, "/graphs" );
CreateDirectory( szNrpFilename, NULL );
strcat( szNrpFilename, "/" );
strcat( szNrpFilename, STRING( gpGlobals->mapname ) );
strcat( szNrpFilename, ".nrp" );
file = fopen ( szNrpFilename, "w+" );
if ( !file )
{// file error
ALERT ( at_aiconsole, "Couldn't create %s!\n", szNrpFilename );
if ( pTempPool )
{
free ( pTempPool );
}
return;
}
fprintf( file, "Node Graph Report for map: %s.bsp\n", STRING(gpGlobals->mapname) );
fprintf ( file, "%d Total Nodes\n\n", WorldGraph.m_cNodes );
for ( i = 0 ; i < WorldGraph.m_cNodes ; i++ )
{// print all node numbers and their locations to the file.
WorldGraph.m_pNodes[ i ].m_cNumLinks = 0;
WorldGraph.m_pNodes[ i ].m_iFirstLink = 0;
memset(WorldGraph.m_pNodes[ i ].m_pNextBestNode, 0, sizeof(WorldGraph.m_pNodes[ i ].m_pNextBestNode));
fprintf ( file, "Node# %4d\n", i );
fprintf ( file, "Location %4d,%4d,%4d\n",(int)WorldGraph.m_pNodes[ i ].m_vecOrigin.x, (int)WorldGraph.m_pNodes[ i ].m_vecOrigin.y, (int)WorldGraph.m_pNodes[ i ].m_vecOrigin.z );
fprintf ( file, "HintType: %4d\n", WorldGraph.m_pNodes[ i ].m_sHintType );
fprintf ( file, "HintActivity: %4d\n", WorldGraph.m_pNodes[ i ].m_sHintActivity );
fprintf ( file, "HintYaw: %4f\n", WorldGraph.m_pNodes[ i ].m_flHintYaw );
fprintf ( file, "-------------------------------------------------------------------------------\n" );
}
fprintf ( file, "\n\n" );
// Automatically recognize WATER nodes and drop the LAND nodes to the floor.
//
for ( i = 0; i < WorldGraph.m_cNodes; i++)
{
if (WorldGraph.m_pNodes[ i ].m_afNodeInfo & bits_NODE_AIR)
{
// do nothing
}
else if (UTIL_PointContents(WorldGraph.m_pNodes[ i ].m_vecOrigin) == CONTENTS_WATER)
{
WorldGraph.m_pNodes[ i ].m_afNodeInfo |= bits_NODE_WATER;
}
else
{
WorldGraph.m_pNodes[ i ].m_afNodeInfo |= bits_NODE_LAND;
// trace to the ground, then pop up 8 units and place node there to make it
// easier for them to connect (think stairs, chairs, and bumps in the floor).
// After the routing is done, push them back down.
//
TraceResult tr;
UTIL_TraceLine ( WorldGraph.m_pNodes[i].m_vecOrigin,
WorldGraph.m_pNodes[i].m_vecOrigin - Vector ( 0, 0, 384 ),
ignore_monsters,
g_pBodyQueueHead,//!!!HACKHACK no real ent to supply here, using a global we don't care about
&tr );
// This trace is ONLY used if we hit an entity flagged with FL_WORLDBRUSH
TraceResult trEnt;
UTIL_TraceLine ( WorldGraph.m_pNodes[i].m_vecOrigin,
WorldGraph.m_pNodes[i].m_vecOrigin - Vector ( 0, 0, 384 ),
dont_ignore_monsters,
g_pBodyQueueHead,//!!!HACKHACK no real ent to supply here, using a global we don't care about
&trEnt );
// Did we hit something closer than the floor?
if ( trEnt.flFraction < tr.flFraction )
{
// If it was a world brush entity, copy the node location
if ( trEnt.pHit && (trEnt.pHit->v.flags & FL_WORLDBRUSH) )
tr.vecEndPos = trEnt.vecEndPos;
}
WorldGraph.m_pNodes[i].m_vecOriginPeek.z =
WorldGraph.m_pNodes[i].m_vecOrigin.z = tr.vecEndPos.z + NODE_HEIGHT;
}
}
cPoolLinks = WorldGraph.LinkVisibleNodes( pTempPool, file, &iBadNode );
if ( !cPoolLinks )
{
ALERT ( at_aiconsole, "**ConnectVisibleNodes FAILED!\n" );
SetThink( &ShowBadNode );// send the hull off to show the offending node.
//pev->solid = SOLID_NOT;
pev->origin = WorldGraph.m_pNodes[ iBadNode ].m_vecOrigin;
if ( pTempPool )
{
free ( pTempPool );
}
if ( file )
{// close the file
fclose ( file );
}
return;
}
// send the walkhull to all of this node's connections now. We'll do this here since
// so much of it relies on being able to control the test hull.
fprintf ( file, "----------------------------------------------------------------------------\n" );
fprintf ( file, "Walk Rejection:\n");
for ( i = 0 ; i < WorldGraph.m_cNodes ; i++ )
{
pSrcNode = &WorldGraph.m_pNodes[ i ];
fprintf ( file, "-------------------------------------------------------------------------------\n");
fprintf ( file, "Node %4d:\n\n", i );
for ( j = 0 ; j < pSrcNode->m_cNumLinks ; j++ )
{
// assume that all hulls can walk this link, then eliminate the ones that can't.
pTempPool [ pSrcNode->m_iFirstLink + j ].m_afLinkInfo = bits_LINK_SMALL_HULL | bits_LINK_HUMAN_HULL | bits_LINK_LARGE_HULL | bits_LINK_FLY_HULL;
// do a check for each hull size.
// if we can't fit a tiny hull through a connection, no other hulls with fit either, so we
// should just fall out of the loop. Do so by setting the SkipRemainingHulls flag.
fSkipRemainingHulls = FALSE;
for ( hull = 0 ; hull < MAX_NODE_HULLS; hull++ )
{
if (fSkipRemainingHulls && (hull == NODE_HUMAN_HULL || hull == NODE_LARGE_HULL)) // skip the remaining walk hulls
continue;
switch ( hull )
{
case NODE_SMALL_HULL:
UTIL_SetSize(pev, Vector(-12, -12, 0), Vector(12, 12, 24));
break;
case NODE_HUMAN_HULL:
UTIL_SetSize(pev, VEC_HUMAN_HULL_MIN, VEC_HUMAN_HULL_MAX );
break;
case NODE_LARGE_HULL:
UTIL_SetSize(pev, Vector(-32, -32, 0), Vector(32, 32, 64));
break;
case NODE_FLY_HULL:
UTIL_SetSize(pev, Vector(-32, -32, 0), Vector(32, 32, 64));
// UTIL_SetSize(pev, Vector(0, 0, 0), Vector(0, 0, 0));
break;
}
UTIL_SetOrigin ( pev, pSrcNode->m_vecOrigin );// place the hull on the node
if ( !FBitSet ( pev->flags, FL_ONGROUND ) )
{
ALERT ( at_aiconsole, "OFFGROUND!\n" );
}
// now build a yaw that points to the dest node, and get the distance.
if ( j < 0 )
{
ALERT ( at_aiconsole, "**** j = %d ****\n", j );
if ( pTempPool )
{
free ( pTempPool );
}
if ( file )
{// close the file
fclose ( file );
}
return;
}
pDestNode = &WorldGraph.m_pNodes [ pTempPool[ pSrcNode->m_iFirstLink + j ].m_iDestNode ];
vecSpot = pDestNode->m_vecOrigin;
//vecSpot.z = pev->origin.z;
if (hull < NODE_FLY_HULL)
{
int SaveFlags = pev->flags;
int MoveMode = WALKMOVE_WORLDONLY;
if (pSrcNode->m_afNodeInfo & bits_NODE_WATER)
{
pev->flags |= FL_SWIM;
MoveMode = WALKMOVE_NORMAL;
}
flYaw = UTIL_VecToYaw ( pDestNode->m_vecOrigin - pev->origin );
flDist = ( vecSpot - pev->origin ).Length2D();
int fWalkFailed = FALSE;
// in this loop we take tiny steps from the current node to the nodes that it links to, one at a time.
// pev->angles.y = flYaw;
for ( step = 0 ; step < flDist && !fWalkFailed ; step += HULL_STEP_SIZE )
{
float stepSize = HULL_STEP_SIZE;
if ( (step + stepSize) >= (flDist-1) )
stepSize = (flDist - step) - 1;
if ( !WALK_MOVE( ENT(pev), flYaw, stepSize, MoveMode ) )
{// can't take the next step
fWalkFailed = TRUE;
break;
}
}
if (!fWalkFailed && (pev->origin - vecSpot).Length() > 64)
{
// ALERT( at_console, "bogus walk\n");
// we thought we
fWalkFailed = TRUE;
}
if (fWalkFailed)
{
//pTempPool[ pSrcNode->m_iFirstLink + j ] = pTempPool [ pSrcNode->m_iFirstLink + ( pSrcNode->m_cNumLinks - 1 ) ];
// now me must eliminate the hull that couldn't walk this connection
switch ( hull )
{
case NODE_SMALL_HULL: // if this hull can't fit, nothing can, so drop the connection
fprintf ( file, "NODE_SMALL_HULL step %f\n", step );
pTempPool[ pSrcNode->m_iFirstLink + j ].m_afLinkInfo &= ~(bits_LINK_SMALL_HULL | bits_LINK_HUMAN_HULL | bits_LINK_LARGE_HULL);
fSkipRemainingHulls = TRUE;// don't bother checking larger hulls
break;
case NODE_HUMAN_HULL:
fprintf ( file, "NODE_HUMAN_HULL step %f\n", step );
pTempPool[ pSrcNode->m_iFirstLink + j ].m_afLinkInfo &= ~(bits_LINK_HUMAN_HULL | bits_LINK_LARGE_HULL);
fSkipRemainingHulls = TRUE;// don't bother checking larger hulls
break;
case NODE_LARGE_HULL:
fprintf ( file, "NODE_LARGE_HULL step %f\n", step );
pTempPool[ pSrcNode->m_iFirstLink + j ].m_afLinkInfo &= ~bits_LINK_LARGE_HULL;
break;
}
}
pev->flags = SaveFlags;
}
else
{
TraceResult tr;
UTIL_TraceHull( pSrcNode->m_vecOrigin + Vector( 0, 0, 32 ), pDestNode->m_vecOriginPeek + Vector( 0, 0, 32 ), ignore_monsters, large_hull, ENT( pev ), &tr );
if (tr.fStartSolid || tr.flFraction < 1.0)
{
pTempPool[ pSrcNode->m_iFirstLink + j ].m_afLinkInfo &= ~bits_LINK_FLY_HULL;
}
}
}
if (pTempPool[ pSrcNode->m_iFirstLink + j ].m_afLinkInfo == 0)
{
fprintf ( file, "Rejected Node %3d - Unreachable by ", pTempPool [ pSrcNode->m_iFirstLink + j ].m_iDestNode );
pTempPool[ pSrcNode->m_iFirstLink + j ] = pTempPool [ pSrcNode->m_iFirstLink + ( pSrcNode->m_cNumLinks - 1 ) ];
fprintf ( file, "Any Hull\n" );
pSrcNode->m_cNumLinks--;
cPoolLinks--;// we just removed a link, so decrement the total number of links in the pool.
j--;
}
}
}
fprintf ( file, "-------------------------------------------------------------------------------\n\n\n");
cPoolLinks -= WorldGraph.RejectInlineLinks ( pTempPool, file );
// now malloc a pool just large enough to hold the links that are actually used
WorldGraph.m_pLinkPool = (CLink *) calloc ( sizeof ( CLink ), cPoolLinks );
if ( !WorldGraph.m_pLinkPool )
{// couldn't make the link pool!
ALERT ( at_aiconsole, "Couldn't malloc LinkPool!\n" );
if ( pTempPool )
{
free ( pTempPool );
}
if ( file )
{// close the file
fclose ( file );
}
return;
}
WorldGraph.m_cLinks = cPoolLinks;
//copy only the used portions of the TempPool into the graph's link pool
int iFinalPoolIndex = 0;
int iOldFirstLink;
for ( i = 0 ; i < WorldGraph.m_cNodes ; i++ )
{
iOldFirstLink = WorldGraph.m_pNodes[ i ].m_iFirstLink;// store this, because we have to re-assign it before entering the copy loop
WorldGraph.m_pNodes[ i ].m_iFirstLink = iFinalPoolIndex;
for ( j = 0 ; j < WorldGraph.m_pNodes[ i ].m_cNumLinks ; j++ )
{
WorldGraph.m_pLinkPool[ iFinalPoolIndex++ ] = pTempPool[ iOldFirstLink + j ];
}
}
// Node sorting numbers linked nodes close to each other
//
WorldGraph.SortNodes();
// This is used for HashSearch
//
WorldGraph.BuildLinkLookups();
fPairsValid = TRUE; // assume that the connection pairs are all valid to start
fprintf ( file, "\n\n-------------------------------------------------------------------------------\n");
fprintf ( file, "Link Pairings:\n");
// link integrity check. The idea here is that if Node A links to Node B, node B should
// link to node A. If not, we have a situation that prevents us from using a basic
// optimization in the FindNearestLink function.
for ( i = 0 ; i < WorldGraph.m_cNodes ; i++ )
{
for ( j = 0 ; j < WorldGraph.m_pNodes[ i ].m_cNumLinks ; j++ )
{
int iLink;
WorldGraph.HashSearch(WorldGraph.INodeLink(i,j), i, iLink);
if (iLink < 0)
{
fPairsValid = FALSE;// unmatched link pair.
fprintf ( file, "WARNING: Node %3d does not connect back to Node %3d\n", WorldGraph.INodeLink(i, j), i);
}
}
}
// !!!LATER - if all connections are properly paired, when can enable an optimization in the pathfinding code
// (in the find nearest line function)
if ( fPairsValid )
{
fprintf ( file, "\nAll Connections are Paired!\n");
}
fprintf ( file, "-------------------------------------------------------------------------------\n");
fprintf ( file, "\n\n-------------------------------------------------------------------------------\n");
fprintf ( file, "Total Number of Connections in Pool: %d\n", cPoolLinks );
fprintf ( file, "-------------------------------------------------------------------------------\n");
fprintf ( file, "Connection Pool: %d bytes\n", sizeof ( CLink ) * cPoolLinks );
fprintf ( file, "-------------------------------------------------------------------------------\n");
ALERT ( at_aiconsole, "%d Nodes, %d Connections\n", WorldGraph.m_cNodes, cPoolLinks );
// This is used for FindNearestNode
//
WorldGraph.BuildRegionTables();
// Push all of the LAND nodes down to the ground now. Leave the water and air nodes alone.
//
for ( i = 0 ; i < WorldGraph.m_cNodes ; i++ )
{
if ((WorldGraph.m_pNodes[ i ].m_afNodeInfo & bits_NODE_LAND))
{
WorldGraph.m_pNodes[ i ].m_vecOrigin.z -= NODE_HEIGHT;
}
}
if ( pTempPool )
{// free the temp pool
free ( pTempPool );
}
if ( file )
{
fclose ( file );
}
// We now have some graphing capabilities.
//
WorldGraph.m_fGraphPresent = TRUE;//graph is in memory.
WorldGraph.m_fGraphPointersSet = TRUE;// since the graph was generated, the pointers are ready
WorldGraph.m_fRoutingComplete = FALSE; // Optimal routes aren't computed, yet.
// Compute and compress the routing information.
//
WorldGraph.ComputeStaticRoutingTables();
// save the node graph for this level
WorldGraph.FSaveGraph( (char *)STRING( gpGlobals->mapname ) );
ALERT( at_console, "Done.\n");
}
//=========================================================
// returns a hardcoded path.
//=========================================================
void CTestHull :: PathFind ( void )
{
int iPath[ 50 ];
int iPathSize;
int i;
CNode *pNode, *pNextNode;
if ( !WorldGraph.m_fGraphPresent || !WorldGraph.m_fGraphPointersSet )
{// protect us in the case that the node graph isn't available
ALERT ( at_aiconsole, "Graph not ready!\n" );
return;
}
iPathSize = WorldGraph.FindShortestPath ( iPath, 0, 19, 0, 0 ); // UNDONE use hull constant
if ( !iPathSize )
{
ALERT ( at_aiconsole, "No Path!\n" );
return;
}
ALERT ( at_aiconsole, "%d\n", iPathSize );
pNode = &WorldGraph.m_pNodes[ iPath [ 0 ] ];
for ( i = 0 ; i < iPathSize - 1 ; i++ )
{
pNextNode = &WorldGraph.m_pNodes[ iPath [ i + 1 ] ];
MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY );
WRITE_BYTE( TE_SHOWLINE);
WRITE_COORD( pNode->m_vecOrigin.x );
WRITE_COORD( pNode->m_vecOrigin.y );
WRITE_COORD( pNode->m_vecOrigin.z + NODE_HEIGHT );
WRITE_COORD( pNextNode->m_vecOrigin.x);
WRITE_COORD( pNextNode->m_vecOrigin.y);
WRITE_COORD( pNextNode->m_vecOrigin.z + NODE_HEIGHT);
MESSAGE_END();
pNode = pNextNode;
}
}
//=========================================================
// CStack Constructor
//=========================================================
CStack :: CStack( void )
{
m_level = 0;
}
//=========================================================
// pushes a value onto the stack
//=========================================================
void CStack :: Push( int value )
{
if ( m_level >= MAX_STACK_NODES )
{
printf("Error!\n");
return;
}
m_stack[m_level] = value;
m_level++;
}
//=========================================================
// pops a value off of the stack
//=========================================================
int CStack :: Pop( void )
{
if ( m_level <= 0 )
return -1;
m_level--;
return m_stack[ m_level ];
}
//=========================================================
// returns the value on the top of the stack
//=========================================================
int CStack :: Top ( void )
{
return m_stack[ m_level - 1 ];
}
//=========================================================
// copies every element on the stack into an array LIFO
//=========================================================
void CStack :: CopyToArray ( int *piArray )
{
int i;
for ( i = 0 ; i < m_level ; i++ )
{
piArray[ i ] = m_stack[ i ];
}
}
//=========================================================
// CQueue constructor
//=========================================================
CQueue :: CQueue( void )
{
m_cSize = 0;
m_head = 0;
m_tail = -1;
}
//=========================================================
// inserts a value into the queue
//=========================================================
void CQueue :: Insert ( int iValue, float fPriority )
{
if ( Full() )
{
printf ( "Queue is full!\n" );
return;
}
m_tail++;
if ( m_tail == MAX_STACK_NODES )
{//wrap around
m_tail = 0;
}
m_queue[ m_tail ].Id = iValue;
m_queue[ m_tail ].Priority = fPriority;
m_cSize++;
}
//=========================================================
// removes a value from the queue (FIFO)
//=========================================================
int CQueue :: Remove ( float &fPriority )
{
if ( m_head == MAX_STACK_NODES )
{// wrap
m_head = 0;
}
m_cSize--;
fPriority = m_queue[ m_head ].Priority;
return m_queue[ m_head++ ].Id;
}
//=========================================================
// CQueue constructor
//=========================================================
CQueuePriority :: CQueuePriority( void )
{
m_cSize = 0;
}
//=========================================================
// inserts a value into the priority queue
//=========================================================
void CQueuePriority :: Insert( int iValue, float fPriority )
{
if ( Full() )
{
printf ( "Queue is full!\n" );
return;
}
m_heap[ m_cSize ].Priority = fPriority;
m_heap[ m_cSize ].Id = iValue;
m_cSize++;
Heap_SiftUp();
}
//=========================================================
// removes the smallest item from the priority queue
//
//=========================================================
int CQueuePriority :: Remove( float &fPriority )
{
int iReturn = m_heap[ 0 ].Id;
fPriority = m_heap[ 0 ].Priority;
m_cSize--;
m_heap[ 0 ] = m_heap[ m_cSize ];
Heap_SiftDown(0);
return iReturn;
}
#define HEAP_LEFT_CHILD(x) (2*(x)+1)
#define HEAP_RIGHT_CHILD(x) (2*(x)+2)
#define HEAP_PARENT(x) (((x)-1)/2)
void CQueuePriority::Heap_SiftDown(int iSubRoot)
{
int parent = iSubRoot;
int child = HEAP_LEFT_CHILD(parent);
struct tag_HEAP_NODE Ref = m_heap[ parent ];
while (child < m_cSize)
{
int rightchild = HEAP_RIGHT_CHILD(parent);
if (rightchild < m_cSize)
{
if ( m_heap[ rightchild ].Priority < m_heap[ child ].Priority )
{
child = rightchild;
}
}
if ( Ref.Priority <= m_heap[ child ].Priority )
break;
m_heap[ parent ] = m_heap[ child ];
parent = child;
child = HEAP_LEFT_CHILD(parent);
}
m_heap[ parent ] = Ref;
}
void CQueuePriority::Heap_SiftUp(void)
{
int child = m_cSize-1;
while (child)
{
int parent = HEAP_PARENT(child);
if ( m_heap[ parent ].Priority <= m_heap[ child ].Priority )
break;
struct tag_HEAP_NODE Tmp;
Tmp = m_heap[ child ];
m_heap[ child ] = m_heap[ parent ];
m_heap[ parent ] = Tmp;
child = parent;
}
}
//=========================================================
// CGraph - FLoadGraph - attempts to load a node graph from disk.
// if the current level is maps/snar.bsp, maps/graphs/snar.nod
// will be loaded. If file cannot be loaded, the node tree
// will be created and saved to disk.
//=========================================================
int CGraph :: FLoadGraph ( char *szMapName )
{
char szFilename[MAX_PATH];
int iVersion;
int length;
byte *aMemFile;
byte *pMemFile;
// make sure the directories have been made
char szDirName[MAX_PATH];
GET_GAME_DIR( szDirName );
strcat( szDirName, "/maps" );
CreateDirectory( szDirName, NULL );
strcat( szDirName, "/graphs" );
CreateDirectory( szDirName, NULL );
strcpy ( szFilename, "maps/graphs/" );
strcat ( szFilename, szMapName );
strcat( szFilename, ".nod" );
pMemFile = aMemFile = LOAD_FILE_FOR_ME(szFilename, &length);
if ( !aMemFile )
{
return FALSE;
}
else
{
// Read the graph version number
//
length -= sizeof(int);
if (length < 0) goto ShortFile;
memcpy(&iVersion, pMemFile, sizeof(int));
pMemFile += sizeof(int);
if ( iVersion != GRAPH_VERSION )
{
// This file was written by a different build of the dll!
//
ALERT ( at_aiconsole, "**ERROR** Graph version is %d, expected %d\n",iVersion, GRAPH_VERSION );
goto ShortFile;
}
// Read the graph class
//
length -= sizeof(CGraph);
if (length < 0) goto ShortFile;
memcpy(this, pMemFile, sizeof(CGraph));
pMemFile += sizeof(CGraph);
// Set the pointers to zero, just in case we run out of memory.
//
m_pNodes = NULL;
m_pLinkPool = NULL;
m_di = NULL;
m_pRouteInfo = NULL;
m_pHashLinks = NULL;
// Malloc for the nodes
//
m_pNodes = ( CNode * )calloc ( sizeof ( CNode ), m_cNodes );
if ( !m_pNodes )
{
ALERT ( at_aiconsole, "**ERROR**\nCouldn't malloc %d nodes!\n", m_cNodes );
goto NoMemory;
}
// Read in all the nodes
//
length -= sizeof(CNode) * m_cNodes;
if (length < 0) goto ShortFile;
memcpy(m_pNodes, pMemFile, sizeof(CNode)*m_cNodes);
pMemFile += sizeof(CNode) * m_cNodes;
// Malloc for the link pool
//
m_pLinkPool = ( CLink * )calloc ( sizeof ( CLink ), m_cLinks );
if ( !m_pLinkPool )
{
ALERT ( at_aiconsole, "**ERROR**\nCouldn't malloc %d link!\n", m_cLinks );
goto NoMemory;
}
// Read in all the links
//
length -= sizeof(CLink)*m_cLinks;
if (length < 0) goto ShortFile;
memcpy(m_pLinkPool, pMemFile, sizeof(CLink)*m_cLinks);
pMemFile += sizeof(CLink)*m_cLinks;
// Malloc for the sorting info.
//
m_di = (DIST_INFO *)calloc( sizeof(DIST_INFO), m_cNodes );
if ( !m_di )
{
ALERT ( at_aiconsole, "***ERROR**\nCouldn't malloc %d entries sorting nodes!\n", m_cNodes );
goto NoMemory;
}
// Read it in.
//
length -= sizeof(DIST_INFO)*m_cNodes;
if (length < 0) goto ShortFile;
memcpy(m_di, pMemFile, sizeof(DIST_INFO)*m_cNodes);
pMemFile += sizeof(DIST_INFO)*m_cNodes;
// Malloc for the routing info.
//
m_fRoutingComplete = FALSE;
m_pRouteInfo = (signed char *)calloc( sizeof(signed char), m_nRouteInfo );
if ( !m_pRouteInfo )
{
ALERT ( at_aiconsole, "***ERROR**\nCounldn't malloc %d route bytes!\n", m_nRouteInfo );
goto NoMemory;
}
m_CheckedCounter = 0;
for (int i = 0; i < m_cNodes; i++)
{
m_di[i].m_CheckedEvent = 0;
}
// Read in the route information.
//
length -= sizeof(char)*m_nRouteInfo;
if (length < 0) goto ShortFile;
memcpy(m_pRouteInfo, pMemFile, sizeof(char)*m_nRouteInfo);
pMemFile += sizeof(char)*m_nRouteInfo;
m_fRoutingComplete = TRUE;;
// malloc for the hash links
//
m_pHashLinks = (short *)calloc(sizeof(short), m_nHashLinks);
if (!m_pHashLinks)
{
ALERT ( at_aiconsole, "***ERROR**\nCounldn't malloc %d hash link bytes!\n", m_nHashLinks );
goto NoMemory;
}
// Read in the hash link information
//
length -= sizeof(short)*m_nHashLinks;
if (length < 0) goto ShortFile;
memcpy(m_pHashLinks, pMemFile, sizeof(short)*m_nHashLinks);
pMemFile += sizeof(short)*m_nHashLinks;
// Set the graph present flag, clear the pointers set flag
//
m_fGraphPresent = TRUE;
m_fGraphPointersSet = FALSE;
FREE_FILE(aMemFile);
if (length != 0)
{
ALERT ( at_aiconsole, "***WARNING***:Node graph was longer than expected by %d bytes.!\n", length);
}
return TRUE;
}
ShortFile:
NoMemory:
FREE_FILE(aMemFile);
return FALSE;
}
//=========================================================
// CGraph - FSaveGraph - It's not rocket science.
// this WILL overwrite existing files.
//=========================================================
int CGraph :: FSaveGraph ( char *szMapName )
{
int iVersion = GRAPH_VERSION;
char szFilename[MAX_PATH];
FILE *file;
if ( !m_fGraphPresent || !m_fGraphPointersSet )
{// protect us in the case that the node graph isn't available or built
ALERT ( at_aiconsole, "Graph not ready!\n" );
return FALSE;
}
// make sure directories have been made
GET_GAME_DIR( szFilename );
strcat( szFilename, "/maps" );
CreateDirectory( szFilename, NULL );
strcat( szFilename, "/graphs" );
CreateDirectory( szFilename, NULL );
strcat( szFilename, "/" );
strcat( szFilename, szMapName );
strcat( szFilename, ".nod" );
file = fopen ( szFilename, "wb" );
ALERT ( at_aiconsole, "Created: %s\n", szFilename );
if ( !file )
{// couldn't create
ALERT ( at_aiconsole, "Couldn't Create: %s\n", szFilename );
return FALSE;
}
else
{
// write the version
fwrite ( &iVersion, sizeof ( int ), 1, file );
// write the CGraph class
fwrite ( this, sizeof ( CGraph ), 1, file );
// write the nodes
fwrite ( m_pNodes, sizeof ( CNode ), m_cNodes, file );
// write the links
fwrite ( m_pLinkPool, sizeof ( CLink ), m_cLinks, file );
fwrite ( m_di, sizeof(DIST_INFO), m_cNodes, file );
// Write the route info.
//
if ( m_pRouteInfo && m_nRouteInfo )
{
fwrite ( m_pRouteInfo, sizeof( signed char ), m_nRouteInfo, file );
}
if (m_pHashLinks && m_nHashLinks)
{
fwrite(m_pHashLinks, sizeof(short), m_nHashLinks, file);
}
fclose ( file );
return TRUE;
}
}
//=========================================================
// CGraph - FSetGraphPointers - Takes the modelnames of
// all of the brush ents that block connections in the node
// graph and resolves them into pointers to those entities.
// this is done after loading the graph from disk, whereupon
// the pointers are not valid.
//=========================================================
int CGraph :: FSetGraphPointers ( void )
{
int i;
edict_t *pentLinkEnt;
for ( i = 0 ; i < m_cLinks ; i++ )
{// go through all of the links
if ( m_pLinkPool[ i ].m_pLinkEnt != NULL )
{
char name[5];
// when graphs are saved, any valid pointers are will be non-zero, signifying that we should
// reset those pointers upon reloading. Any pointers that were NULL when the graph was saved
// will be NULL when reloaded, and will ignored by this function.
// m_szLinkEntModelname is not necessarily NULL terminated (so we can store it in a more alignment-friendly 4 bytes)
memcpy( name, m_pLinkPool[ i ].m_szLinkEntModelname, 4 );
name[4] = 0;
pentLinkEnt = FIND_ENTITY_BY_STRING( NULL, "model", name );
if ( FNullEnt ( pentLinkEnt ) )
{
// the ent isn't around anymore? Either there is a major problem, or it was removed from the world
// ( like a func_breakable that's been destroyed or something ). Make sure that LinkEnt is null.
ALERT ( at_aiconsole, "**Could not find model %s\n", name );
m_pLinkPool[ i ].m_pLinkEnt = NULL;
}
else
{
m_pLinkPool[ i ].m_pLinkEnt = VARS( pentLinkEnt );
if ( !FBitSet( m_pLinkPool[ i ].m_pLinkEnt->flags, FL_GRAPHED ) )
{
m_pLinkPool[ i ].m_pLinkEnt->flags += FL_GRAPHED;
}
}
}
}
// the pointers are now set.
m_fGraphPointersSet = TRUE;
return TRUE;
}
//=========================================================
// CGraph - CheckNODFile - this function checks the date of
// the BSP file that was just loaded and the date of the a
// ssociated .NOD file. If the NOD file is not present, or
// is older than the BSP file, we rebuild it.
//
// returns FALSE if the .NOD file doesn't qualify and needs
// to be rebuilt.
//
// !!!BUGBUG - the file times we get back are 20 hours ahead!
// since this happens consistantly, we can still correctly
// determine which of the 2 files is newer. This needs fixed,
// though. ( I now suspect that we are getting GMT back from
// these functions and must compensate for local time ) (sjb)
//=========================================================
int CGraph :: CheckNODFile ( char *szMapName )
{
int retValue;
char szBspFilename[MAX_PATH];
char szGraphFilename[MAX_PATH];
strcpy ( szBspFilename, "maps/" );
strcat ( szBspFilename, szMapName );
strcat ( szBspFilename, ".bsp" );
strcpy ( szGraphFilename, "maps/graphs/" );
strcat ( szGraphFilename, szMapName );
strcat ( szGraphFilename, ".nod" );
retValue = TRUE;
int iCompare;
if (COMPARE_FILE_TIME(szBspFilename, szGraphFilename, &iCompare))
{
if ( iCompare > 0 )
{// BSP file is newer.
ALERT ( at_aiconsole, ".NOD File will be updated\n\n" );
retValue = FALSE;
}
}
else
{
retValue = FALSE;
}
return retValue;
}
#define ENTRY_STATE_EMPTY -1
struct tagNodePair
{
short iSrc;
short iDest;
};
void CGraph::HashInsert(int iSrcNode, int iDestNode, int iKey)
{
struct tagNodePair np;
np.iSrc = iSrcNode;
np.iDest = iDestNode;
CRC32_t dwHash;
CRC32_INIT(&dwHash);
CRC32_PROCESS_BUFFER(&dwHash, &np, sizeof(np));
dwHash = CRC32_FINAL(dwHash);
int di = m_HashPrimes[dwHash&15];
int i = (dwHash >> 4) % m_nHashLinks;
while (m_pHashLinks[i] != ENTRY_STATE_EMPTY)
{
i += di;
if (i >= m_nHashLinks) i -= m_nHashLinks;
}
m_pHashLinks[i] = iKey;
}
void CGraph::HashSearch(int iSrcNode, int iDestNode, int &iKey)
{
struct tagNodePair np;
np.iSrc = iSrcNode;
np.iDest = iDestNode;
CRC32_t dwHash;
CRC32_INIT(&dwHash);
CRC32_PROCESS_BUFFER(&dwHash, &np, sizeof(np));
dwHash = CRC32_FINAL(dwHash);
int di = m_HashPrimes[dwHash&15];
int i = (dwHash >> 4) % m_nHashLinks;
while (m_pHashLinks[i] != ENTRY_STATE_EMPTY)
{
CLink &link = Link(m_pHashLinks[i]);
if (iSrcNode == link.m_iSrcNode && iDestNode == link.m_iDestNode)
{
break;
}
else
{
i += di;
if (i >= m_nHashLinks) i -= m_nHashLinks;
}
}
iKey = m_pHashLinks[i];
}
#define NUMBER_OF_PRIMES 177
int Primes[NUMBER_OF_PRIMES] =
{ 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239,
241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337,
347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433,
439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541,
547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641,
643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743,
751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857,
859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971,
977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 0 };
void CGraph::HashChoosePrimes(int TableSize)
{
int LargestPrime = TableSize/2;
if (LargestPrime > Primes[NUMBER_OF_PRIMES-2])
{
LargestPrime = Primes[NUMBER_OF_PRIMES-2];
}
int Spacing = LargestPrime/16;
// Pick a set primes that are evenly spaced from (0 to LargestPrime)
// We divide this interval into 16 equal sized zones. We want to find
// one prime number that best represents that zone.
//
for (int iZone = 1, iPrime = 0; iPrime < 16; iZone += Spacing)
{
// Search for a prime number that is less than the target zone
// number given by iZone.
//
int Lower = Primes[0];
for (int jPrime = 0; Primes[jPrime] != 0; jPrime++)
{
if (jPrime != 0 && TableSize % Primes[jPrime] == 0) continue;
int Upper = Primes[jPrime];
if (Lower <= iZone && iZone <= Upper)
{
// Choose the closest lower prime number.
//
if (iZone - Lower <= Upper - iZone)
{
m_HashPrimes[iPrime++] = Lower;
}
else
{
m_HashPrimes[iPrime++] = Upper;
}
break;
}
Lower = Upper;
}
}
// Alternate negative and positive numbers
//
for (iPrime = 0; iPrime < 16; iPrime += 2)
{
m_HashPrimes[iPrime] = TableSize-m_HashPrimes[iPrime];
}
// Shuffle the set of primes to reduce correlation with bits in
// hash key.
//
for (iPrime = 0; iPrime < 16-1; iPrime++)
{
int Pick = RANDOM_LONG(0, 15-iPrime);
int Temp = m_HashPrimes[Pick];
m_HashPrimes[Pick] = m_HashPrimes[15-iPrime];
m_HashPrimes[15-iPrime] = Temp;
}
}
// Renumber nodes so that nodes that link together are together.
//
#define UNNUMBERED_NODE -1
void CGraph::SortNodes(void)
{
// We are using m_iPreviousNode to be the new node number.
// After assigning new node numbers to everything, we move
// things and patchup the links.
//
int iNodeCnt = 0;
m_pNodes[0].m_iPreviousNode = iNodeCnt++;
for (int i = 1; i < m_cNodes; i++)
{
m_pNodes[i].m_iPreviousNode = UNNUMBERED_NODE;
}
for (i = 0; i < m_cNodes; i++)
{
// Run through all of this node's neighbors
//
for (int j = 0 ; j < m_pNodes[i].m_cNumLinks; j++ )
{
int iDestNode = INodeLink(i, j);
if (m_pNodes[iDestNode].m_iPreviousNode == UNNUMBERED_NODE)
{
m_pNodes[iDestNode].m_iPreviousNode = iNodeCnt++;
}
}
}
// Assign remaining node numbers to unlinked nodes.
//
for (i = 0; i < m_cNodes; i++)
{
if (m_pNodes[i].m_iPreviousNode == UNNUMBERED_NODE)
{
m_pNodes[i].m_iPreviousNode = iNodeCnt++;
}
}
// Alter links to reflect new node numbers.
//
for (i = 0; i < m_cLinks; i++)
{
m_pLinkPool[i].m_iSrcNode = m_pNodes[m_pLinkPool[i].m_iSrcNode].m_iPreviousNode;
m_pLinkPool[i].m_iDestNode = m_pNodes[m_pLinkPool[i].m_iDestNode].m_iPreviousNode;
}
// Rearrange nodes to reflect new node numbering.
//
for (i = 0; i < m_cNodes; i++)
{
while (m_pNodes[i].m_iPreviousNode != i)
{
// Move current node off to where it should be, and bring
// that other node back into the current slot.
//
int iDestNode = m_pNodes[i].m_iPreviousNode;
CNode TempNode = m_pNodes[iDestNode];
m_pNodes[iDestNode] = m_pNodes[i];
m_pNodes[i] = TempNode;
}
}
}
void CGraph::BuildLinkLookups(void)
{
m_nHashLinks = 3*m_cLinks/2 + 3;
HashChoosePrimes(m_nHashLinks);
m_pHashLinks = (short *)calloc(sizeof(short), m_nHashLinks);
if (!m_pHashLinks)
{
ALERT(at_aiconsole, "Couldn't allocated Link Lookup Table.\n");
return;
}
for (int i = 0; i < m_nHashLinks; i++)
{
m_pHashLinks[i] = ENTRY_STATE_EMPTY;
}
for (i = 0; i < m_cLinks; i++)
{
CLink &link = Link(i);
HashInsert(link.m_iSrcNode, link.m_iDestNode, i);
}
#if 0
for (i = 0; i < m_cLinks; i++)
{
CLink &link = Link(i);
int iKey;
HashSearch(link.m_iSrcNode, link.m_iDestNode, iKey);
if (iKey != i)
{
ALERT(at_aiconsole, "HashLinks don't match (%d versus %d)\n", i, iKey);
}
}
#endif
}
void CGraph::BuildRegionTables(void)
{
if (m_di) free(m_di);
// Go ahead and setup for range searching the nodes for FindNearestNodes
//
m_di = (DIST_INFO *)calloc(sizeof(DIST_INFO), m_cNodes);
if (!m_di)
{
ALERT(at_aiconsole, "Couldn't allocated node ordering array.\n");
return;
}
// Calculate regions for all the nodes.
//
//
for (int i = 0; i < 3; i++)
{
m_RegionMin[i] = 999999999.0; // just a big number out there;
m_RegionMax[i] = -999999999.0; // just a big number out there;
}
for (i = 0; i < m_cNodes; i++)
{
if (m_pNodes[i].m_vecOrigin.x < m_RegionMin[0])
m_RegionMin[0] = m_pNodes[i].m_vecOrigin.x;
if (m_pNodes[i].m_vecOrigin.y < m_RegionMin[1])
m_RegionMin[1] = m_pNodes[i].m_vecOrigin.y;
if (m_pNodes[i].m_vecOrigin.z < m_RegionMin[2])
m_RegionMin[2] = m_pNodes[i].m_vecOrigin.z;
if (m_pNodes[i].m_vecOrigin.x > m_RegionMax[0])
m_RegionMax[0] = m_pNodes[i].m_vecOrigin.x;
if (m_pNodes[i].m_vecOrigin.y > m_RegionMax[1])
m_RegionMax[1] = m_pNodes[i].m_vecOrigin.y;
if (m_pNodes[i].m_vecOrigin.z > m_RegionMax[2])
m_RegionMax[2] = m_pNodes[i].m_vecOrigin.z;
}
for (i = 0; i < m_cNodes; i++)
{
m_pNodes[i].m_Region[0] = CALC_RANGE(m_pNodes[i].m_vecOrigin.x, m_RegionMin[0], m_RegionMax[0]);
m_pNodes[i].m_Region[1] = CALC_RANGE(m_pNodes[i].m_vecOrigin.y, m_RegionMin[1], m_RegionMax[1]);
m_pNodes[i].m_Region[2] = CALC_RANGE(m_pNodes[i].m_vecOrigin.z, m_RegionMin[2], m_RegionMax[2]);
}
for (i = 0; i < 3; i++)
{
for (int j = 0; j < NUM_RANGES; j++)
{
m_RangeStart[i][j] = 255;
m_RangeEnd[i][j] = 0;
}
for (j = 0; j < m_cNodes; j++)
{
m_di[j].m_SortedBy[i] = j;
}
for (j = 0; j < m_cNodes - 1; j++)
{
int jNode = m_di[j].m_SortedBy[i];
int jCodeX = m_pNodes[jNode].m_Region[0];
int jCodeY = m_pNodes[jNode].m_Region[1];
int jCodeZ = m_pNodes[jNode].m_Region[2];
int jCode;
switch (i)
{
case 0:
jCode = (jCodeX << 16) + (jCodeY << 8) + jCodeZ;
break;
case 1:
jCode = (jCodeY << 16) + (jCodeZ << 8) + jCodeX;
break;
case 2:
jCode = (jCodeZ << 16) + (jCodeX << 8) + jCodeY;
break;
}
for (int k = j+1; k < m_cNodes; k++)
{
int kNode = m_di[k].m_SortedBy[i];
int kCodeX = m_pNodes[kNode].m_Region[0];
int kCodeY = m_pNodes[kNode].m_Region[1];
int kCodeZ = m_pNodes[kNode].m_Region[2];
int kCode;
switch (i)
{
case 0:
kCode = (kCodeX << 16) + (kCodeY << 8) + kCodeZ;
break;
case 1:
kCode = (kCodeY << 16) + (kCodeZ << 8) + kCodeX;
break;
case 2:
kCode = (kCodeZ << 16) + (kCodeX << 8) + kCodeY;
break;
}
if (kCode < jCode)
{
// Swap j and k entries.
//
int Tmp = m_di[j].m_SortedBy[i];
m_di[j].m_SortedBy[i] = m_di[k].m_SortedBy[i];
m_di[k].m_SortedBy[i] = Tmp;
}
}
}
}
// Generate lookup tables.
//
for (i = 0; i < m_cNodes; i++)
{
int CodeX = m_pNodes[m_di[i].m_SortedBy[0]].m_Region[0];
int CodeY = m_pNodes[m_di[i].m_SortedBy[1]].m_Region[1];
int CodeZ = m_pNodes[m_di[i].m_SortedBy[2]].m_Region[2];
if (i < m_RangeStart[0][CodeX])
{
m_RangeStart[0][CodeX] = i;
}
if (i < m_RangeStart[1][CodeY])
{
m_RangeStart[1][CodeY] = i;
}
if (i < m_RangeStart[2][CodeZ])
{
m_RangeStart[2][CodeZ] = i;
}
if (m_RangeEnd[0][CodeX] < i)
{
m_RangeEnd[0][CodeX] = i;
}
if (m_RangeEnd[1][CodeY] < i)
{
m_RangeEnd[1][CodeY] = i;
}
if (m_RangeEnd[2][CodeZ] < i)
{
m_RangeEnd[2][CodeZ] = i;
}
}
// Initialize the cache.
//
memset(m_Cache, 0, sizeof(m_Cache));
}
void CGraph :: ComputeStaticRoutingTables( void )
{
int nRoutes = m_cNodes*m_cNodes;
#define FROM_TO(x,y) ((x)*m_cNodes+(y))
short *Routes = new short[nRoutes];
int *pMyPath = new int[m_cNodes];
unsigned short *BestNextNodes = new unsigned short[m_cNodes];
signed char *pRoute = new signed char[m_cNodes*2];
if (Routes && pMyPath && BestNextNodes && pRoute)
{
int nTotalCompressedSize = 0;
for (int iHull = 0; iHull < MAX_NODE_HULLS; iHull++)
{
for (int iCap = 0; iCap < 2; iCap++)
{
int iCapMask;
switch (iCap)
{
case 0:
iCapMask = 0;
break;
case 1:
iCapMask = bits_CAP_OPEN_DOORS | bits_CAP_AUTO_DOORS | bits_CAP_USE;
break;
}
// Initialize Routing table to uncalculated.
//
for (int iFrom = 0; iFrom < m_cNodes; iFrom++)
{
for (int iTo = 0; iTo < m_cNodes; iTo++)
{
Routes[FROM_TO(iFrom, iTo)] = -1;
}
}
for (iFrom = 0; iFrom < m_cNodes; iFrom++)
{
for (int iTo = m_cNodes-1; iTo >= 0; iTo--)
{
if (Routes[FROM_TO(iFrom, iTo)] != -1) continue;
int cPathSize = FindShortestPath(pMyPath, iFrom, iTo, iHull, iCapMask);
// Use the computed path to update the routing table.
//
if (cPathSize > 1)
{
for (int iNode = 0; iNode < cPathSize-1; iNode++)
{
int iStart = pMyPath[iNode];
int iNext = pMyPath[iNode+1];
for (int iNode1 = iNode+1; iNode1 < cPathSize; iNode1++)
{
int iEnd = pMyPath[iNode1];
Routes[FROM_TO(iStart, iEnd)] = iNext;
}
}
#if 0
// Well, at first glance, this should work, but actually it's safer
// to be told explictly that you can take a series of node in a
// particular direction. Some links don't appear to have links in
// the opposite direction.
//
for (iNode = cPathSize-1; iNode >= 1; iNode--)
{
int iStart = pMyPath[iNode];
int iNext = pMyPath[iNode-1];
for (int iNode1 = iNode-1; iNode1 >= 0; iNode1--)
{
int iEnd = pMyPath[iNode1];
Routes[FROM_TO(iStart, iEnd)] = iNext;
}
}
#endif
}
else
{
Routes[FROM_TO(iFrom, iTo)] = iFrom;
Routes[FROM_TO(iTo, iFrom)] = iTo;
}
}
}
for (iFrom = 0; iFrom < m_cNodes; iFrom++)
{
for (int iTo = 0; iTo < m_cNodes; iTo++)
{
BestNextNodes[iTo] = Routes[FROM_TO(iFrom, iTo)];
}
// Compress this node's routing table.
//
int iLastNode = 9999999; // just really big.
int cSequence = 0;
int cRepeats = 0;
int CompressedSize = 0;
signed char *p = pRoute;
for (int i = 0; i < m_cNodes; i++)
{
BOOL CanRepeat = ((BestNextNodes[i] == iLastNode) && cRepeats < 127);
BOOL CanSequence = (BestNextNodes[i] == i && cSequence < 128);
if (cRepeats)
{
if (CanRepeat)
{
cRepeats++;
}
else
{
// Emit the repeat phrase.
//
CompressedSize += 2; // (count-1, iLastNode-i)
*p++ = cRepeats - 1;
int a = iLastNode - iFrom;
int b = iLastNode - iFrom + m_cNodes;
int c = iLastNode - iFrom - m_cNodes;
if (-128 <= a && a <= 127)
{
*p++ = a;
}
else if (-128 <= b && b <= 127)
{
*p++ = b;
}
else if (-128 <= c && c <= 127)
{
*p++ = c;
}
else
{
ALERT( at_aiconsole, "Nodes need sorting (%d,%d)!\n", iLastNode, iFrom);
}
cRepeats = 0;
if (CanSequence)
{
// Start a sequence.
//
cSequence++;
}
else
{
// Start another repeat.
//
cRepeats++;
}
}
}
else if (cSequence)
{
if (CanSequence)
{
cSequence++;
}
else
{
// It may be advantageous to combine
// a single-entry sequence phrase with the
// next repeat phrase.
//
if (cSequence == 1 && CanRepeat)
{
// Combine with repeat phrase.
//
cRepeats = 2;
cSequence = 0;
}
else
{
// Emit the sequence phrase.
//
CompressedSize += 1; // (-count)
*p++ = -cSequence;
cSequence = 0;
// Start a repeat sequence.
//
cRepeats++;
}
}
}
else
{
if (CanSequence)
{
// Start a sequence phrase.
//
cSequence++;
}
else
{
// Start a repeat sequence.
//
cRepeats++;
}
}
iLastNode = BestNextNodes[i];
}
if (cRepeats)
{
// Emit the repeat phrase.
//
CompressedSize += 2;
*p++ = cRepeats - 1;
#if 0
iLastNode = iFrom + *pRoute;
if (iLastNode >= m_cNodes) iLastNode -= m_cNodes;
else if (iLastNode < 0) iLastNode += m_cNodes;
#endif
int a = iLastNode - iFrom;
int b = iLastNode - iFrom + m_cNodes;
int c = iLastNode - iFrom - m_cNodes;
if (-128 <= a && a <= 127)
{
*p++ = a;
}
else if (-128 <= b && b <= 127)
{
*p++ = b;
}
else if (-128 <= c && c <= 127)
{
*p++ = c;
}
else
{
ALERT( at_aiconsole, "Nodes need sorting (%d,%d)!\n", iLastNode, iFrom);
}
}
if (cSequence)
{
// Emit the Sequence phrase.
//
CompressedSize += 1;
*p++ = -cSequence;
}
// Go find a place to store this thing and point to it.
//
int nRoute = p - pRoute;
if (m_pRouteInfo)
{
for (int i = 0; i < m_nRouteInfo - nRoute; i++)
{
if (memcmp(m_pRouteInfo + i, pRoute, nRoute) == 0)
{
break;
}
}
if (i < m_nRouteInfo - nRoute)
{
m_pNodes[ iFrom ].m_pNextBestNode[iHull][iCap] = i;
}
else
{
signed char *Tmp = (signed char *)calloc(sizeof(signed char), (m_nRouteInfo + nRoute));
memcpy(Tmp, m_pRouteInfo, m_nRouteInfo);
free(m_pRouteInfo);
m_pRouteInfo = Tmp;
memcpy(m_pRouteInfo + m_nRouteInfo, pRoute, nRoute);
m_pNodes[ iFrom ].m_pNextBestNode[iHull][iCap] = m_nRouteInfo;
m_nRouteInfo += nRoute;
nTotalCompressedSize += CompressedSize;
}
}
else
{
m_nRouteInfo = nRoute;
m_pRouteInfo = (signed char *)calloc(sizeof(signed char), nRoute);
memcpy(m_pRouteInfo, pRoute, nRoute);
m_pNodes[ iFrom ].m_pNextBestNode[iHull][iCap] = 0;
nTotalCompressedSize += CompressedSize;
}
}
}
}
ALERT( at_aiconsole, "Size of Routes = %d\n", nTotalCompressedSize);
}
if (Routes) delete Routes;
if (BestNextNodes) delete BestNextNodes;
if (pRoute) delete pRoute;
if (pMyPath) delete pMyPath;
Routes = 0;
BestNextNodes = 0;
pRoute = 0;
pMyPath = 0;
#if 0
TestRoutingTables();
#endif
m_fRoutingComplete = TRUE;
}
// Test those routing tables. Doesn't really work, yet.
//
void CGraph :: TestRoutingTables( void )
{
int *pMyPath = new int[m_cNodes];
int *pMyPath2 = new int[m_cNodes];
if (pMyPath && pMyPath2)
{
for (int iHull = 0; iHull < MAX_NODE_HULLS; iHull++)
{
for (int iCap = 0; iCap < 2; iCap++)
{
int iCapMask;
switch (iCap)
{
case 0:
iCapMask = 0;
break;
case 1:
iCapMask = bits_CAP_OPEN_DOORS | bits_CAP_AUTO_DOORS | bits_CAP_USE;
break;
}
for (int iFrom = 0; iFrom < m_cNodes; iFrom++)
{
for (int iTo = 0; iTo < m_cNodes; iTo++)
{
m_fRoutingComplete = FALSE;
int cPathSize1 = FindShortestPath(pMyPath, iFrom, iTo, iHull, iCapMask);
m_fRoutingComplete = TRUE;
int cPathSize2 = FindShortestPath(pMyPath2, iFrom, iTo, iHull, iCapMask);
// Unless we can look at the entire path, we can verify that it's correct.
//
if (cPathSize2 == MAX_PATH_SIZE) continue;
// Compare distances.
//
#if 1
float flDistance1 = 0.0;
for (int i = 0; i < cPathSize1-1; i++)
{
// Find the link from pMyPath[i] to pMyPath[i+1]
//
if (pMyPath[i] == pMyPath[i+1]) continue;
int iVisitNode;
BOOL bFound = FALSE;
for (int iLink = 0; iLink < m_pNodes[pMyPath[i]].m_cNumLinks; iLink++)
{
iVisitNode = INodeLink ( pMyPath[i], iLink );
if (iVisitNode == pMyPath[i+1])
{
flDistance1 += m_pLinkPool[ m_pNodes[ pMyPath[i] ].m_iFirstLink + iLink].m_flWeight;
bFound = TRUE;
break;
}
}
if (!bFound)
{
ALERT(at_aiconsole, "No link.\n");
}
}
float flDistance2 = 0.0;
for (i = 0; i < cPathSize2-1; i++)
{
// Find the link from pMyPath2[i] to pMyPath2[i+1]
//
if (pMyPath2[i] == pMyPath2[i+1]) continue;
int iVisitNode;
BOOL bFound = FALSE;
for (int iLink = 0; iLink < m_pNodes[pMyPath2[i]].m_cNumLinks; iLink++)
{
iVisitNode = INodeLink ( pMyPath2[i], iLink );
if (iVisitNode == pMyPath2[i+1])
{
flDistance2 += m_pLinkPool[ m_pNodes[ pMyPath2[i] ].m_iFirstLink + iLink].m_flWeight;
bFound = TRUE;
break;
}
}
if (!bFound)
{
ALERT(at_aiconsole, "No link.\n");
}
}
if (fabs(flDistance1 - flDistance2) > 0.10)
{
#else
if (cPathSize1 != cPathSize2 || memcmp(pMyPath, pMyPath2, sizeof(int)*cPathSize1) != 0)
{
#endif
ALERT(at_aiconsole, "Routing is inconsistent!!!\n");
ALERT(at_aiconsole, "(%d to %d |%d/%d)1:", iFrom, iTo, iHull, iCap);
for (int i = 0; i < cPathSize1; i++)
{
ALERT(at_aiconsole, "%d ", pMyPath[i]);
}
ALERT(at_aiconsole, "\n(%d to %d |%d/%d)2:", iFrom, iTo, iHull, iCap);
for (i = 0; i < cPathSize2; i++)
{
ALERT(at_aiconsole, "%d ", pMyPath2[i]);
}
ALERT(at_aiconsole, "\n");
m_fRoutingComplete = FALSE;
cPathSize1 = FindShortestPath(pMyPath, iFrom, iTo, iHull, iCapMask);
m_fRoutingComplete = TRUE;
cPathSize2 = FindShortestPath(pMyPath2, iFrom, iTo, iHull, iCapMask);
goto EnoughSaid;
}
}
}
}
}
}
EnoughSaid:
if (pMyPath) delete pMyPath;
if (pMyPath2) delete pMyPath2;
pMyPath = 0;
pMyPath2 = 0;
}
//=========================================================
// CNodeViewer - Draws a graph of the shorted path from all nodes
// to current location (typically the player). It then draws
// as many connects as it can per frame, trying not to overflow the buffer
//=========================================================
class CNodeViewer : public CBaseEntity
{
public:
void Spawn( void );
int m_iBaseNode;
int m_iDraw;
int m_nVisited;
int m_aFrom[128];
int m_aTo[128];
int m_iHull;
int m_afNodeType;
Vector m_vecColor;
void FindNodeConnections( int iNode );
void AddNode( int iFrom, int iTo );
void EXPORT DrawThink( void );
};
LINK_ENTITY_TO_CLASS( node_viewer, CNodeViewer );
LINK_ENTITY_TO_CLASS( node_viewer_human, CNodeViewer );
LINK_ENTITY_TO_CLASS( node_viewer_fly, CNodeViewer );
LINK_ENTITY_TO_CLASS( node_viewer_large, CNodeViewer );
void CNodeViewer::Spawn( )
{
if ( !WorldGraph.m_fGraphPresent || !WorldGraph.m_fGraphPointersSet )
{// protect us in the case that the node graph isn't available or built
ALERT ( at_console, "Graph not ready!\n" );
UTIL_Remove( this );
return;
}
if (FClassnameIs( pev, "node_viewer_fly"))
{
m_iHull = NODE_FLY_HULL;
m_afNodeType = bits_NODE_AIR;
m_vecColor = Vector( 160, 100, 255 );
}
else if (FClassnameIs( pev, "node_viewer_large"))
{
m_iHull = NODE_LARGE_HULL;
m_afNodeType = bits_NODE_LAND | bits_NODE_WATER;
m_vecColor = Vector( 100, 255, 160 );
}
else
{
m_iHull = NODE_HUMAN_HULL;
m_afNodeType = bits_NODE_LAND | bits_NODE_WATER;
m_vecColor = Vector( 255, 160, 100 );
}
m_iBaseNode = WorldGraph.FindNearestNode ( pev->origin, m_afNodeType );
if ( m_iBaseNode < 0 )
{
ALERT( at_console, "No nearby node\n" );
return;
}
m_nVisited = 0;
ALERT( at_aiconsole, "basenode %d\n", m_iBaseNode );
if (WorldGraph.m_cNodes < 128)
{
for (int i = 0; i < WorldGraph.m_cNodes; i++)
{
AddNode( i, WorldGraph.NextNodeInRoute( i, m_iBaseNode, m_iHull, 0 ));
}
}
else
{
// do a depth traversal
FindNodeConnections( m_iBaseNode );
int start = 0;
int end;
do {
end = m_nVisited;
// ALERT( at_console, "%d :", m_nVisited );
for (end = m_nVisited; start < end; start++)
{
FindNodeConnections( m_aFrom[start] );
FindNodeConnections( m_aTo[start] );
}
} while (end != m_nVisited);
}
ALERT( at_aiconsole, "%d nodes\n", m_nVisited );
m_iDraw = 0;
SetThink( &DrawThink );
pev->nextthink = gpGlobals->time;
}
void CNodeViewer :: FindNodeConnections ( int iNode )
{
AddNode( iNode, WorldGraph.NextNodeInRoute( iNode, m_iBaseNode, m_iHull, 0 ));
for ( int i = 0 ; i < WorldGraph.m_pNodes[ iNode ].m_cNumLinks ; i++ )
{
CLink *pToLink = &WorldGraph.NodeLink( iNode, i);
AddNode( pToLink->m_iDestNode, WorldGraph.NextNodeInRoute( pToLink->m_iDestNode, m_iBaseNode, m_iHull, 0 ));
}
}
void CNodeViewer::AddNode( int iFrom, int iTo )
{
if (m_nVisited >= 128)
{
return;
}
else
{
if (iFrom == iTo)
return;
for (int i = 0; i < m_nVisited; i++)
{
if (m_aFrom[i] == iFrom && m_aTo[i] == iTo)
return;
if (m_aFrom[i] == iTo && m_aTo[i] == iFrom)
return;
}
m_aFrom[m_nVisited] = iFrom;
m_aTo[m_nVisited] = iTo;
m_nVisited++;
}
}
void CNodeViewer :: DrawThink( void )
{
pev->nextthink = gpGlobals->time;
for (int i = 0; i < 10; i++)
{
if (m_iDraw == m_nVisited)
{
UTIL_Remove( this );
return;
}
extern short g_sModelIndexLaser;
MESSAGE_BEGIN( MSG_BROADCAST, SVC_TEMPENTITY );
WRITE_BYTE( TE_BEAMPOINTS );
WRITE_COORD( WorldGraph.m_pNodes[ m_aFrom[m_iDraw] ].m_vecOrigin.x );
WRITE_COORD( WorldGraph.m_pNodes[ m_aFrom[m_iDraw] ].m_vecOrigin.y );
WRITE_COORD( WorldGraph.m_pNodes[ m_aFrom[m_iDraw] ].m_vecOrigin.z + NODE_HEIGHT );
WRITE_COORD( WorldGraph.m_pNodes[ m_aTo[m_iDraw] ].m_vecOrigin.x );
WRITE_COORD( WorldGraph.m_pNodes[ m_aTo[m_iDraw] ].m_vecOrigin.y );
WRITE_COORD( WorldGraph.m_pNodes[ m_aTo[m_iDraw] ].m_vecOrigin.z + NODE_HEIGHT );
WRITE_SHORT( g_sModelIndexLaser );
WRITE_BYTE( 0 ); // framerate
WRITE_BYTE( 0 ); // framerate
WRITE_BYTE( 250 ); // life
WRITE_BYTE( 40 ); // width
WRITE_BYTE( 0 ); // noise
WRITE_BYTE( m_vecColor.x ); // r, g, b
WRITE_BYTE( m_vecColor.y ); // r, g, b
WRITE_BYTE( m_vecColor.z ); // r, g, b
WRITE_BYTE( 128 ); // brightness
WRITE_BYTE( 0 ); // speed
MESSAGE_END();
m_iDraw++;
}
}