2
0
mirror of https://gitlab.com/ita1024/waf.git synced 2025-01-18 14:20:05 +01:00
waf/playground/go/gmp.go

279 lines
5.7 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gmp
// #include <gmp.h>
// #include <stdlib.h>
// #cgo LDFLAGS: -lgmp
import "C"
import (
"os"
"unsafe"
)
/*
* one of a kind
*/
// An Int represents a signed multi-precision integer.
// The zero value for an Int represents the value 0.
type Int struct {
i C.mpz_t
init bool
}
// NewInt returns a new Int initialized to x.
func NewInt(x int64) *Int { return new(Int).SetInt64(x) }
// Int promises that the zero value is a 0, but in gmp
// the zero value is a crash. To bridge the gap, the
// init bool says whether this is a valid gmp value.
// doinit initializes z.i if it needs it. This is not inherent
// to FFI, just a mismatch between Go's convention of
// making zero values useful and gmp's decision not to.
func (z *Int) doinit() {
if z.init {
return
}
z.init = true
C.mpz_init(&z.i[0])
}
// Bytes returns z's representation as a big-endian byte array.
func (z *Int) Bytes() []byte {
b := make([]byte, (z.Len()+7)/8)
n := C.size_t(len(b))
C.mpz_export(unsafe.Pointer(&b[0]), &n, 1, 1, 1, 0, &z.i[0])
return b[0:n]
}
// Len returns the length of z in bits. 0 is considered to have length 1.
func (z *Int) Len() int {
z.doinit()
return int(C.mpz_sizeinbase(&z.i[0], 2))
}
// Set sets z = x and returns z.
func (z *Int) Set(x *Int) *Int {
z.doinit()
C.mpz_set(&z.i[0], &x.i[0])
return z
}
// SetBytes interprets b as the bytes of a big-endian integer
// and sets z to that value.
func (z *Int) SetBytes(b []byte) *Int {
z.doinit()
if len(b) == 0 {
z.SetInt64(0)
} else {
C.mpz_import(&z.i[0], C.size_t(len(b)), 1, 1, 1, 0, unsafe.Pointer(&b[0]))
}
return z
}
// SetInt64 sets z = x and returns z.
func (z *Int) SetInt64(x int64) *Int {
z.doinit()
// TODO(rsc): more work on 32-bit platforms
C.mpz_set_si(&z.i[0], C.long(x))
return z
}
// SetString interprets s as a number in the given base
// and sets z to that value. The base must be in the range [2,36].
// SetString returns an error if s cannot be parsed or the base is invalid.
func (z *Int) SetString(s string, base int) os.Error {
z.doinit()
if base < 2 || base > 36 {
return os.EINVAL
}
p := C.CString(s)
defer C.free(unsafe.Pointer(p))
if C.mpz_set_str(&z.i[0], p, C.int(base)) < 0 {
return os.EINVAL
}
return nil
}
// String returns the decimal representation of z.
func (z *Int) String() string {
if z == nil {
return "nil"
}
z.doinit()
p := C.mpz_get_str(nil, 10, &z.i[0])
s := C.GoString(p)
C.free(unsafe.Pointer(p))
return s
}
func (z *Int) destroy() {
if z.init {
C.mpz_clear(&z.i[0])
}
z.init = false
}
/*
* arithmetic
*/
// Add sets z = x + y and returns z.
func (z *Int) Add(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
C.mpz_add(&z.i[0], &x.i[0], &y.i[0])
return z
}
// Sub sets z = x - y and returns z.
func (z *Int) Sub(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
C.mpz_sub(&z.i[0], &x.i[0], &y.i[0])
return z
}
// Mul sets z = x * y and returns z.
func (z *Int) Mul(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
C.mpz_mul(&z.i[0], &x.i[0], &y.i[0])
return z
}
// Div sets z = x / y, rounding toward zero, and returns z.
func (z *Int) Div(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
C.mpz_tdiv_q(&z.i[0], &x.i[0], &y.i[0])
return z
}
// Mod sets z = x % y and returns z.
// Like the result of the Go % operator, z has the same sign as x.
func (z *Int) Mod(x, y *Int) *Int {
x.doinit()
y.doinit()
z.doinit()
C.mpz_tdiv_r(&z.i[0], &x.i[0], &y.i[0])
return z
}
// Lsh sets z = x << s and returns z.
func (z *Int) Lsh(x *Int, s uint) *Int {
x.doinit()
z.doinit()
C.mpz_mul_2exp(&z.i[0], &x.i[0], C.mp_bitcnt_t(s))
return z
}
// Rsh sets z = x >> s and returns z.
func (z *Int) Rsh(x *Int, s uint) *Int {
x.doinit()
z.doinit()
C.mpz_div_2exp(&z.i[0], &x.i[0], C.mp_bitcnt_t(s))
return z
}
// Exp sets z = x^y % m and returns z.
// If m == nil, Exp sets z = x^y.
func (z *Int) Exp(x, y, m *Int) *Int {
m.doinit()
x.doinit()
y.doinit()
z.doinit()
if m == nil {
C.mpz_pow_ui(&z.i[0], &x.i[0], C.mpz_get_ui(&y.i[0]))
} else {
C.mpz_powm(&z.i[0], &x.i[0], &y.i[0], &m.i[0])
}
return z
}
func (z *Int) Int64() int64 {
if !z.init {
return 0
}
return int64(C.mpz_get_si(&z.i[0]))
}
// Neg sets z = -x and returns z.
func (z *Int) Neg(x *Int) *Int {
x.doinit()
z.doinit()
C.mpz_neg(&z.i[0], &x.i[0])
return z
}
// Abs sets z to the absolute value of x and returns z.
func (z *Int) Abs(x *Int) *Int {
x.doinit()
z.doinit()
C.mpz_abs(&z.i[0], &x.i[0])
return z
}
/*
* functions without a clear receiver
*/
// CmpInt compares x and y. The result is
//
// -1 if x < y
// 0 if x == y
// +1 if x > y
//
func CmpInt(x, y *Int) int {
x.doinit()
y.doinit()
switch cmp := C.mpz_cmp(&x.i[0], &y.i[0]); {
case cmp < 0:
return -1
case cmp == 0:
return 0
}
return +1
}
// DivModInt sets q = x / y and r = x % y.
func DivModInt(q, r, x, y *Int) {
q.doinit()
r.doinit()
x.doinit()
y.doinit()
C.mpz_tdiv_qr(&q.i[0], &r.i[0], &x.i[0], &y.i[0])
}
// GcdInt sets d to the greatest common divisor of a and b,
// which must be positive numbers.
// If x and y are not nil, GcdInt sets x and y such that d = a*x + b*y.
// If either a or b is not positive, GcdInt sets d = x = y = 0.
func GcdInt(d, x, y, a, b *Int) {
d.doinit()
x.doinit()
y.doinit()
a.doinit()
b.doinit()
C.mpz_gcdext(&d.i[0], &x.i[0], &y.i[0], &a.i[0], &b.i[0])
}
// ProbablyPrime performs n Miller-Rabin tests to check whether z is prime.
// If it returns true, z is prime with probability 1 - 1/4^n.
// If it returns false, z is not prime.
func (z *Int) ProbablyPrime(n int) bool {
z.doinit()
return int(C.mpz_probab_prime_p(&z.i[0], C.int(n))) > 0
}