/* gl_image.c - texture uploading and processing Copyright (C) 2010 Uncle Mike This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. */ #include "r_local.h" #define TEXTURES_HASH_SIZE (MAX_TEXTURES >> 2) static image_t r_images[MAX_TEXTURES]; static image_t* r_imagesHashTable[TEXTURES_HASH_SIZE]; static uint r_numImages; #define IsLightMap( tex ) ( FBitSet(( tex )->flags, TF_ATLAS_PAGE )) /* ================= R_GetTexture acess to array elem ================= */ image_t *R_GetTexture( unsigned int texnum ) { ASSERT( texnum >= 0 && texnum < MAX_TEXTURES ); return &r_images[texnum]; } /* ================= GL_Bind ================= */ void GAME_EXPORT GL_Bind( int tmu, unsigned int texnum ) { image_t *image; extern void (*d_pdrawspans)(void *); extern void R_PolysetFillSpans8 ( void * ); extern void R_PolysetDrawSpansConstant8_33( void *pspanpackage); extern void R_PolysetDrawSpansTextureBlended( void *pspanpackage); extern void R_PolysetDrawSpansBlended( void *pspanpackage); extern void R_PolysetDrawSpansAdditive( void *pspanpackage); extern void R_PolysetDrawSpansGlow( void *pspanpackage); image = &r_images[texnum]; //vid.rendermode = kRenderNormal; if( vid.rendermode == kRenderNormal ) { r_affinetridesc.pskin = image->pixels[0]; d_pdrawspans = R_PolysetFillSpans8 ; } else if( vid.rendermode == kRenderTransAdd) { r_affinetridesc.pskin = image->pixels[0]; d_pdrawspans = R_PolysetDrawSpansAdditive; } else if( vid.rendermode == kRenderGlow ) { r_affinetridesc.pskin = image->pixels[0]; d_pdrawspans = R_PolysetDrawSpansGlow; } else if( image->alpha_pixels ) { r_affinetridesc.pskin = image->alpha_pixels; d_pdrawspans = R_PolysetDrawSpansTextureBlended; } else { r_affinetridesc.pskin = image->pixels[0]; d_pdrawspans = R_PolysetDrawSpansBlended; } r_affinetridesc.skinwidth = image->width; r_affinetridesc.skinheight = image->height; } /* ================= GL_ApplyTextureParams ================= */ void GL_ApplyTextureParams( image_t *tex ) { Assert( tex != NULL ); } /* ================= GL_UpdateTextureParams ================= */ static void GL_UpdateTextureParams( int iTexture ) { image_t *tex = &r_images[iTexture]; Assert( tex != NULL ); if( !tex->pixels) return; // free slot GL_Bind( XASH_TEXTURE0, iTexture ); } /* ================= R_SetTextureParameters ================= */ void R_SetTextureParameters( void ) { int i; // change all the existing mipmapped texture objects for( i = 0; i < r_numImages; i++ ) GL_UpdateTextureParams( i ); } /* ================== GL_CalcImageSize ================== */ static size_t GL_CalcImageSize( pixformat_t format, int width, int height, int depth ) { size_t size = 0; // check the depth error depth = Q_max( 1, depth ); switch( format ) { case PF_RGB_24: case PF_BGR_24: size = width * height * depth * 3; break; case PF_BGRA_32: case PF_RGBA_32: size = width * height * depth * 4; break; case PF_DXT1: size = (((width + 3) >> 2) * ((height + 3) >> 2) * 8) * depth; break; case PF_DXT3: case PF_DXT5: case PF_ATI2: size = (((width + 3) >> 2) * ((height + 3) >> 2) * 16) * depth; break; } return size; } /* ================== GL_CalcTextureSize ================== */ static size_t GL_CalcTextureSize( int width, int height, int depth ) { return width * height * 2; } static int GL_CalcMipmapCount( image_t *tex, qboolean haveBuffer ) { int width, height; int mipcount; Assert( tex != NULL ); if( !haveBuffer ) return 1; // generate mip-levels by user request if( FBitSet( tex->flags, TF_NOMIPMAP )) return 1; // mip-maps can't exceeds 4 for( mipcount = 0; mipcount < 4; mipcount++ ) { width = Q_max( 1, ( tex->width >> mipcount )); height = Q_max( 1, ( tex->height >> mipcount )); if( width == 1 && height == 1 ) break; } return mipcount + 1; } /* ================ GL_SetTextureDimensions ================ */ static void GL_SetTextureDimensions( image_t *tex, int width, int height, int depth ) { int maxTextureSize = 1024; int maxDepthSize = 1; Assert( tex != NULL ); // store original sizes tex->srcWidth = width; tex->srcHeight = height; if( width > maxTextureSize || height > maxTextureSize || depth > maxDepthSize ) { while( width > maxTextureSize || height > maxTextureSize ) { width >>= 1; height >>= 1; } } // set the texture dimensions tex->width = Q_max( 1, width ); tex->height = Q_max( 1, height ); tex->depth = Q_max( 1, depth ); } /* =============== GL_SetTextureTarget =============== */ static void GL_SetTextureTarget( image_t *tex, rgbdata_t *pic ) { Assert( pic != NULL ); Assert( tex != NULL ); // correct depth size pic->depth = Q_max( 1, pic->depth ); tex->numMips = 0; // begin counting // correct mip count pic->numMips = Q_max( 1, pic->numMips ); } /* =============== GL_SetTextureFormat =============== */ static void GL_SetTextureFormat( image_t *tex, pixformat_t format, int channelMask ) { qboolean haveColor = ( channelMask & IMAGE_HAS_COLOR ); qboolean haveAlpha = ( channelMask & IMAGE_HAS_ALPHA ); Assert( tex != NULL ); //tex->transparent = !!( channelMask & IMAGE_HAS_ALPHA ); } /* ================= GL_ResampleTexture Assume input buffer is RGBA ================= */ byte *GL_ResampleTexture( const byte *source, int inWidth, int inHeight, int outWidth, int outHeight, qboolean isNormalMap ) { uint frac, fracStep; uint *in = (uint *)source; uint p1[0x1000], p2[0x1000]; byte *pix1, *pix2, *pix3, *pix4; uint *out, *inRow1, *inRow2; static byte *scaledImage = NULL; // pointer to a scaled image vec3_t normal; int i, x, y; if( !source ) return NULL; scaledImage = Mem_Realloc( r_temppool, scaledImage, outWidth * outHeight * 4 ); fracStep = inWidth * 0x10000 / outWidth; out = (uint *)scaledImage; frac = fracStep >> 2; for( i = 0; i < outWidth; i++ ) { p1[i] = 4 * (frac >> 16); frac += fracStep; } frac = (fracStep >> 2) * 3; for( i = 0; i < outWidth; i++ ) { p2[i] = 4 * (frac >> 16); frac += fracStep; } if( isNormalMap ) { for( y = 0; y < outHeight; y++, out += outWidth ) { inRow1 = in + inWidth * (int)(((float)y + 0.25f) * inHeight / outHeight); inRow2 = in + inWidth * (int)(((float)y + 0.75f) * inHeight / outHeight); for( x = 0; x < outWidth; x++ ) { pix1 = (byte *)inRow1 + p1[x]; pix2 = (byte *)inRow1 + p2[x]; pix3 = (byte *)inRow2 + p1[x]; pix4 = (byte *)inRow2 + p2[x]; normal[0] = MAKE_SIGNED( pix1[0] ) + MAKE_SIGNED( pix2[0] ) + MAKE_SIGNED( pix3[0] ) + MAKE_SIGNED( pix4[0] ); normal[1] = MAKE_SIGNED( pix1[1] ) + MAKE_SIGNED( pix2[1] ) + MAKE_SIGNED( pix3[1] ) + MAKE_SIGNED( pix4[1] ); normal[2] = MAKE_SIGNED( pix1[2] ) + MAKE_SIGNED( pix2[2] ) + MAKE_SIGNED( pix3[2] ) + MAKE_SIGNED( pix4[2] ); if( !VectorNormalizeLength( normal )) VectorSet( normal, 0.5f, 0.5f, 1.0f ); ((byte *)(out+x))[0] = 128 + (byte)(127.0f * normal[0]); ((byte *)(out+x))[1] = 128 + (byte)(127.0f * normal[1]); ((byte *)(out+x))[2] = 128 + (byte)(127.0f * normal[2]); ((byte *)(out+x))[3] = 255; } } } else { for( y = 0; y < outHeight; y++, out += outWidth ) { inRow1 = in + inWidth * (int)(((float)y + 0.25f) * inHeight / outHeight); inRow2 = in + inWidth * (int)(((float)y + 0.75f) * inHeight / outHeight); for( x = 0; x < outWidth; x++ ) { pix1 = (byte *)inRow1 + p1[x]; pix2 = (byte *)inRow1 + p2[x]; pix3 = (byte *)inRow2 + p1[x]; pix4 = (byte *)inRow2 + p2[x]; ((byte *)(out+x))[0] = (pix1[0] + pix2[0] + pix3[0] + pix4[0]) >> 2; ((byte *)(out+x))[1] = (pix1[1] + pix2[1] + pix3[1] + pix4[1]) >> 2; ((byte *)(out+x))[2] = (pix1[2] + pix2[2] + pix3[2] + pix4[2]) >> 2; ((byte *)(out+x))[3] = (pix1[3] + pix2[3] + pix3[3] + pix4[3]) >> 2; } } } return scaledImage; } /* ================= GL_BoxFilter3x3 box filter 3x3 ================= */ void GL_BoxFilter3x3( byte *out, const byte *in, int w, int h, int x, int y ) { int r = 0, g = 0, b = 0, a = 0; int count = 0, acount = 0; int i, j, u, v; const byte *pixel; for( i = 0; i < 3; i++ ) { u = ( i - 1 ) + x; for( j = 0; j < 3; j++ ) { v = ( j - 1 ) + y; if( u >= 0 && u < w && v >= 0 && v < h ) { pixel = &in[( u + v * w ) * 4]; if( pixel[3] != 0 ) { r += pixel[0]; g += pixel[1]; b += pixel[2]; a += pixel[3]; acount++; } } } } if( acount == 0 ) acount = 1; out[0] = r / acount; out[1] = g / acount; out[2] = b / acount; // out[3] = (int)( SimpleSpline( ( a / 12.0f ) / 255.0f ) * 255 ); } /* ================= GL_ApplyFilter Apply box-filter to 1-bit alpha ================= */ byte *GL_ApplyFilter( const byte *source, int width, int height ) { byte *in = (byte *)source; byte *out = (byte *)source; int i; if( ENGINE_GET_PARM( PARM_QUAKE_COMPATIBLE ) ) return in; for( i = 0; source && i < width * height; i++, in += 4 ) { if( in[0] == 0 && in[1] == 0 && in[2] == 0 && in[3] == 0 ) GL_BoxFilter3x3( in, source, width, height, i % width, i / width ); } return out; } /* ================= GL_BuildMipMap Operates in place, quartering the size of the texture ================= */ static void GL_BuildMipMap( byte *in, int srcWidth, int srcHeight, int srcDepth, int flags ) { byte *out = in; int instride = ALIGN( srcWidth * 4, 1 ); int mipWidth, mipHeight, outpadding; int row, x, y, z; vec3_t normal; if( !in ) return; mipWidth = Q_max( 1, ( srcWidth >> 1 )); mipHeight = Q_max( 1, ( srcHeight >> 1 )); outpadding = ALIGN( mipWidth * 4, 1 ) - mipWidth * 4; row = srcWidth << 2; if( FBitSet( flags, TF_ALPHACONTRAST )) { memset( in, mipWidth, mipWidth * mipHeight * 4 ); return; } // move through all layers for( z = 0; z < srcDepth; z++ ) { if( FBitSet( flags, TF_NORMALMAP )) { for( y = 0; y < mipHeight; y++, in += instride * 2, out += outpadding ) { byte *next = ((( y << 1 ) + 1 ) < srcHeight ) ? ( in + instride ) : in; for( x = 0, row = 0; x < mipWidth; x++, row += 8, out += 4 ) { if((( x << 1 ) + 1 ) < srcWidth ) { normal[0] = MAKE_SIGNED( in[row+0] ) + MAKE_SIGNED( in[row+4] ) + MAKE_SIGNED( next[row+0] ) + MAKE_SIGNED( next[row+4] ); normal[1] = MAKE_SIGNED( in[row+1] ) + MAKE_SIGNED( in[row+5] ) + MAKE_SIGNED( next[row+1] ) + MAKE_SIGNED( next[row+5] ); normal[2] = MAKE_SIGNED( in[row+2] ) + MAKE_SIGNED( in[row+6] ) + MAKE_SIGNED( next[row+2] ) + MAKE_SIGNED( next[row+6] ); } else { normal[0] = MAKE_SIGNED( in[row+0] ) + MAKE_SIGNED( next[row+0] ); normal[1] = MAKE_SIGNED( in[row+1] ) + MAKE_SIGNED( next[row+1] ); normal[2] = MAKE_SIGNED( in[row+2] ) + MAKE_SIGNED( next[row+2] ); } if( !VectorNormalizeLength( normal )) VectorSet( normal, 0.5f, 0.5f, 1.0f ); out[0] = 128 + (byte)(127.0f * normal[0]); out[1] = 128 + (byte)(127.0f * normal[1]); out[2] = 128 + (byte)(127.0f * normal[2]); out[3] = 255; } } } else { for( y = 0; y < mipHeight; y++, in += instride * 2, out += outpadding ) { byte *next = ((( y << 1 ) + 1 ) < srcHeight ) ? ( in + instride ) : in; for( x = 0, row = 0; x < mipWidth; x++, row += 8, out += 4 ) { if((( x << 1 ) + 1 ) < srcWidth ) { out[0] = (in[row+0] + in[row+4] + next[row+0] + next[row+4]) >> 2; out[1] = (in[row+1] + in[row+5] + next[row+1] + next[row+5]) >> 2; out[2] = (in[row+2] + in[row+6] + next[row+2] + next[row+6]) >> 2; out[3] = (in[row+3] + in[row+7] + next[row+3] + next[row+7]) >> 2; } else { out[0] = (in[row+0] + next[row+0]) >> 1; out[1] = (in[row+1] + next[row+1]) >> 1; out[2] = (in[row+2] + next[row+2]) >> 1; out[3] = (in[row+3] + next[row+3]) >> 1; } } } } } } /* =============== GL_UploadTexture upload texture into video memory =============== */ static qboolean GL_UploadTexture( image_t *tex, rgbdata_t *pic ) { byte *buf, *data; size_t texsize, size; uint width, height; uint i, j, numSides; uint offset = 0; qboolean normalMap = false; const byte *bufend; int mipCount; tex->fogParams[0] = pic->fogParams[0]; tex->fogParams[1] = pic->fogParams[1]; tex->fogParams[2] = pic->fogParams[2]; tex->fogParams[3] = pic->fogParams[3]; GL_SetTextureDimensions( tex, pic->width, pic->height, pic->depth ); GL_SetTextureFormat( tex, pic->type, pic->flags ); //gEngfuncs.Con_Printf("%s %d %d\n", tex->name, tex->width, tex->height ); Assert( pic != NULL ); Assert( tex != NULL ); if( !pic->buffer ) return true; buf = pic->buffer; mipCount = 4;//GL_CalcMipmapCount( tex, ( buf != NULL )); // NOTE: only single uncompressed textures can be resamples, no mips, no layers, no sides if((( pic->width != tex->width ) || ( pic->height != tex->height ))) data = GL_ResampleTexture( buf, pic->width, pic->height, tex->width, tex->height, normalMap ); else data = buf; //if( !ImageDXT( pic->type ) && !FBitSet( tex->flags, TF_NOMIPMAP ) && FBitSet( pic->flags, IMAGE_ONEBIT_ALPHA )) // data = GL_ApplyFilter( data, tex->width, tex->height ); // mips will be auto-generated if desired for( j = 0; j < mipCount; j++ ) { int x, y; width = Q_max( 1, ( tex->width >> j )); height = Q_max( 1, ( tex->height >> j )); texsize = GL_CalcTextureSize( width, height, tex->depth ); size = GL_CalcImageSize( pic->type, width, height, tex->depth ); //GL_TextureImageRAW( tex, i, j, width, height, tex->depth, pic->type, data ); // increase size to workaround triangle renderer bugs // it seems to assume memory readable. maybe it was pointed to WAD? //tex->pixels[j] = (byte*)Mem_Calloc( r_temppool, width * height * sizeof(pixel_t) + 1024 ) + 512; tex->pixels[j] = (pixel_t*)Mem_Calloc( r_temppool, width * height * sizeof(pixel_t) ); //memset( (byte*)tex->pixels[j] - 512, 0xFF, 512 ); //memset( (byte*)tex->pixels[j] + width * height * sizeof(pixel_t), 0xFF, 512 ); if( j == 0 && tex->flags & TF_HAS_ALPHA ) tex->alpha_pixels = (pixel_t*)Mem_Calloc( r_temppool, width * height * sizeof(pixel_t) ); for(i = 0; i < height * width; i++ ) { unsigned int r, g, b, major, minor; #if 0 r = data[i * 4 + 0] * MASK(5-1) / 255; g = data[i * 4 + 1] * MASK(6-1) / 255; b = data[i * 4 + 2] * MASK(5-1) / 255; #else // seems to look better r = data[i * 4 + 0] * BIT(5) / 256; g = data[i * 4 + 1] * BIT(6) / 256; b = data[i * 4 + 2] * BIT(5) / 256; #endif // 565 to 332 major = (((r >> 2) & MASK(3)) << 5) |( (( (g >> 3) & MASK(3)) << 2 ) )| (((b >> 3) & MASK(2))); // save minor GBRGBRGB minor = MOVE_BIT(r,1,5) | MOVE_BIT(r,0,2) | MOVE_BIT(g,2,7) | MOVE_BIT(g,1,4) | MOVE_BIT(g,0,1) | MOVE_BIT(b,2,6)| MOVE_BIT(b,1,3)|MOVE_BIT(b,0,0); tex->pixels[j][i] = major << 8 | (minor & 0xFF); if( j == 0 && tex->alpha_pixels ) { unsigned int alpha = (data[i * 4 + 3] * 8 / 256) << (16 - 3); tex->alpha_pixels[i] = (tex->pixels[j][i] >> 3) | alpha; if( !sw_noalphabrushes->value && data[i * 4 + 3] < 128 && FBitSet( pic->flags, IMAGE_ONEBIT_ALPHA ) ) tex->pixels[j][i] = TRANSPARENT_COLOR; //0000 0011 0100 1001; } } if( mipCount > 1 ) GL_BuildMipMap( data, width, height, tex->depth, tex->flags ); tex->size += texsize; tex->numMips++; //GL_CheckTexImageError( tex ); } #if 0 GL_SetTextureTarget( tex, pic ); // must be first // make sure what target is correct if( tex->target == GL_NONE ) { gEngfuncs.Con_DPrintf( S_ERROR "GL_UploadTexture: %s is not supported by your hardware\n", tex->name ); return false; } GL_SetTextureDimensions( tex, pic->width, pic->height, pic->depth ); GL_SetTextureFormat( tex, pic->type, pic->flags ); tex->fogParams[0] = pic->fogParams[0]; tex->fogParams[1] = pic->fogParams[1]; tex->fogParams[2] = pic->fogParams[2]; tex->fogParams[3] = pic->fogParams[3]; if(( pic->width * pic->height ) & 3 ) { // will be resampled, just tell me for debug targets gEngfuncs.Con_Reportf( "GL_UploadTexture: %s s&3 [%d x %d]\n", tex->name, pic->width, pic->height ); } buf = pic->buffer; bufend = pic->buffer + pic->size; // total image size include all the layers, cube sides, mipmaps offset = GL_CalcImageSize( pic->type, pic->width, pic->height, pic->depth ); texsize = GL_CalcTextureSize( tex->format, tex->width, tex->height, tex->depth ); normalMap = FBitSet( tex->flags, TF_NORMALMAP ) ? true : false; numSides = FBitSet( pic->flags, IMAGE_CUBEMAP ) ? 6 : 1; // uploading texture into video memory, change the binding glState.currentTextures[glState.activeTMU] = tex->texnum; pglBindTexture( tex->target, tex->texnum ); for( i = 0; i < numSides; i++ ) { // track the buffer bounds if( buf != NULL && buf >= bufend ) gEngfuncs.Host_Error( "GL_UploadTexture: %s image buffer overflow\n", tex->name ); if( ImageDXT( pic->type )) { for( j = 0; j < Q_max( 1, pic->numMips ); j++ ) { width = Q_max( 1, ( tex->width >> j )); height = Q_max( 1, ( tex->height >> j )); texsize = GL_CalcTextureSize( tex->format, width, height, tex->depth ); size = GL_CalcImageSize( pic->type, width, height, tex->depth ); GL_TextureImageDXT( tex, i, j, width, height, tex->depth, size, buf ); tex->size += texsize; buf += size; // move pointer tex->numMips++; GL_CheckTexImageError( tex ); } } else if( Q_max( 1, pic->numMips ) > 1 ) // not-compressed DDS { for( j = 0; j < Q_max( 1, pic->numMips ); j++ ) { width = Q_max( 1, ( tex->width >> j )); height = Q_max( 1, ( tex->height >> j )); texsize = GL_CalcTextureSize( tex->format, width, height, tex->depth ); size = GL_CalcImageSize( pic->type, width, height, tex->depth ); GL_TextureImageRAW( tex, i, j, width, height, tex->depth, pic->type, buf ); tex->size += texsize; buf += size; // move pointer tex->numMips++; GL_CheckTexImageError( tex ); } } else // RGBA32 { int mipCount = GL_CalcMipmapCount( tex, ( buf != NULL )); // NOTE: only single uncompressed textures can be resamples, no mips, no layers, no sides if(( tex->depth == 1 ) && ( pic->width != tex->width ) || ( pic->height != tex->height )) data = GL_ResampleTexture( buf, pic->width, pic->height, tex->width, tex->height, normalMap ); else data = buf; if( !ImageDXT( pic->type ) && !FBitSet( tex->flags, TF_NOMIPMAP ) && FBitSet( pic->flags, IMAGE_ONEBIT_ALPHA )) data = GL_ApplyFilter( data, tex->width, tex->height ); // mips will be auto-generated if desired for( j = 0; j < mipCount; j++ ) { width = Q_max( 1, ( tex->width >> j )); height = Q_max( 1, ( tex->height >> j )); texsize = GL_CalcTextureSize( tex->format, width, height, tex->depth ); size = GL_CalcImageSize( pic->type, width, height, tex->depth ); GL_TextureImageRAW( tex, i, j, width, height, tex->depth, pic->type, data ); if( mipCount > 1 ) GL_BuildMipMap( data, width, height, tex->depth, tex->flags ); tex->size += texsize; tex->numMips++; GL_CheckTexImageError( tex ); } // move to next side if( numSides > 1 && ( buf != NULL )) buf += GL_CalcImageSize( pic->type, pic->width, pic->height, 1 ); } } SetBits( tex->flags, TF_IMG_UPLOADED ); // done tex->numMips /= numSides; return true; #endif return true; } /* =============== GL_ProcessImage do specified actions on pixels =============== */ static void GL_ProcessImage( image_t *tex, rgbdata_t *pic ) { uint img_flags = 0; // force upload texture as RGB or RGBA (detail textures requires this) if( tex->flags & TF_FORCE_COLOR ) pic->flags |= IMAGE_HAS_COLOR; if( pic->flags & IMAGE_HAS_ALPHA ) tex->flags |= TF_HAS_ALPHA; if( ImageDXT( pic->type )) { if( !pic->numMips ) tex->flags |= TF_NOMIPMAP; // disable mipmapping by user request // clear all the unsupported flags tex->flags &= ~TF_KEEP_SOURCE; } else { // copy flag about luma pixels if( pic->flags & IMAGE_HAS_LUMA ) tex->flags |= TF_HAS_LUMA; if( pic->flags & IMAGE_QUAKEPAL ) tex->flags |= TF_QUAKEPAL; // create luma texture from quake texture if( tex->flags & TF_MAKELUMA ) { img_flags |= IMAGE_MAKE_LUMA; tex->flags &= ~TF_MAKELUMA; } if( !FBitSet( tex->flags, TF_IMG_UPLOADED ) && FBitSet( tex->flags, TF_KEEP_SOURCE )) tex->original = gEngfuncs.FS_CopyImage( pic ); // because current pic will be expanded to rgba // we need to expand image into RGBA buffer if( pic->type == PF_INDEXED_24 || pic->type == PF_INDEXED_32 ) img_flags |= IMAGE_FORCE_RGBA; if( FBitSet( tex->flags, TF_LUMINANCE )) ClearBits( pic->flags, IMAGE_HAS_COLOR ); } } /* ================ GL_CheckTexName ================ */ qboolean GL_CheckTexName( const char *name ) { int len; if( !COM_CheckString( name ) ) return false; len = Q_strlen( name ); // because multi-layered textures can exceed name string if( len >= sizeof( r_images->name )) { gEngfuncs.Con_Printf( S_ERROR "LoadTexture: too long name %s (%d)\n", name, len); return false; } return true; } /* ================ GL_TextureForName ================ */ static image_t *GL_TextureForName( const char *name ) { image_t *tex; uint hash; // find the texture in array hash = COM_HashKey( name, TEXTURES_HASH_SIZE ); for( tex = r_imagesHashTable[hash]; tex != NULL; tex = tex->nextHash ) { if( !Q_stricmp( tex->name, name )) return tex; } return NULL; } /* ================ GL_AllocTexture ================ */ static image_t *GL_AllocTexture( const char *name, texFlags_t flags ) { image_t *tex; uint i; // find a free texture_t slot for( i = 0, tex = r_images; i < r_numImages; i++, tex++ ) if( !tex->name[0] ) break; if( i == r_numImages ) { if( r_numImages == MAX_TEXTURES ) gEngfuncs.Host_Error( "GL_AllocTexture: MAX_TEXTURES limit exceeds\n" ); r_numImages++; } tex = &r_images[i]; // copy initial params Q_strncpy( tex->name, name, sizeof( tex->name )); //tex->texnum = i; // texnum is used for fast acess into gl_textures array too tex->flags = flags; // add to hash table tex->hashValue = COM_HashKey( name, TEXTURES_HASH_SIZE ); tex->nextHash = r_imagesHashTable[tex->hashValue]; r_imagesHashTable[tex->hashValue] = tex; return tex; } /* ================ GL_DeleteTexture ================ */ static void GL_DeleteTexture( image_t *tex ) { image_t **prev; image_t *cur; int i; ASSERT( tex != NULL ); // already freed? if( !tex->pixels[0]) return; // debug if( !tex->name[0] ) { gEngfuncs.Con_Printf( S_ERROR "GL_DeleteTexture: trying to free unnamed texture\n"); return; } // remove from hash table prev = &r_imagesHashTable[tex->hashValue]; while( 1 ) { cur = *prev; if( !cur ) break; if( cur == tex ) { *prev = cur->nextHash; break; } prev = &cur->nextHash; } // release source if( tex->original ) gEngfuncs.FS_FreeImage( tex->original ); for( i = 0; i < 4; i++ ) if( tex->pixels[i]) Mem_Free(tex->pixels[i]); if( tex->alpha_pixels ) Mem_Free(tex->alpha_pixels); memset( tex, 0, sizeof( *tex )); } /* ================ GL_UpdateTexSize recalc image room ================ */ void GAME_EXPORT GL_UpdateTexSize( int texnum, int width, int height, int depth ) { int i, j, texsize; int numSides; image_t *tex; if( texnum <= 0 || texnum >= MAX_TEXTURES ) return; tex = &r_images[texnum]; numSides = FBitSet( tex->flags, TF_CUBEMAP ) ? 6 : 1; GL_SetTextureDimensions( tex, width, height, depth ); tex->size = 0; // recompute now for( i = 0; i < numSides; i++ ) { for( j = 0; j < Q_max( 1, tex->numMips ); j++ ) { width = Q_max( 1, ( tex->width >> j )); height = Q_max( 1, ( tex->height >> j )); texsize = GL_CalcTextureSize( width, height, tex->depth ); tex->size += texsize; } } } /* ================ GL_LoadTexture ================ */ int GAME_EXPORT GL_LoadTexture( const char *name, const byte *buf, size_t size, int flags ) { image_t *tex; rgbdata_t *pic; uint picFlags = 0; if( !GL_CheckTexName( name )) return 0; // see if already loaded if(( tex = GL_TextureForName( name ))) return (tex - r_images); if( FBitSet( flags, TF_NOFLIP_TGA )) SetBits( picFlags, IL_DONTFLIP_TGA ); if( FBitSet( flags, TF_KEEP_SOURCE ) && !FBitSet( flags, TF_EXPAND_SOURCE )) SetBits( picFlags, IL_KEEP_8BIT ); // set some image flags gEngfuncs.Image_SetForceFlags( picFlags ); pic = gEngfuncs.FS_LoadImage( name, buf, size ); if( !pic ) return 0; // couldn't loading image // allocate the new one tex = GL_AllocTexture( name, flags ); GL_ProcessImage( tex, pic ); if( !GL_UploadTexture( tex, pic )) { memset( tex, 0, sizeof( image_t )); gEngfuncs.FS_FreeImage( pic ); // release source texture return 0; } GL_ApplyTextureParams( tex ); // update texture filter, wrap etc gEngfuncs.FS_FreeImage( pic ); // release source texture // NOTE: always return texnum as index in array or engine will stop work !!! return tex - r_images; } /* ================ GL_LoadTextureArray ================ */ int GAME_EXPORT GL_LoadTextureArray( const char **names, int flags ) { return 0; } /* ================ GL_LoadTextureFromBuffer ================ */ int GAME_EXPORT GL_LoadTextureFromBuffer( const char *name, rgbdata_t *pic, texFlags_t flags, qboolean update ) { image_t *tex; if( !GL_CheckTexName( name )) return 0; // see if already loaded if(( tex = GL_TextureForName( name )) && !update ) return (tex - r_images); // couldn't loading image if( !pic ) return 0; if( update ) { if( tex == NULL ) gEngfuncs.Host_Error( "GL_LoadTextureFromBuffer: couldn't find texture %s for update\n", name ); SetBits( tex->flags, flags ); } else { // allocate the new one tex = GL_AllocTexture( name, flags ); } GL_ProcessImage( tex, pic ); if( !GL_UploadTexture( tex, pic )) { memset( tex, 0, sizeof( image_t )); return 0; } GL_ApplyTextureParams( tex ); // update texture filter, wrap etc return (tex - r_images); } /* ================ GL_CreateTexture creates texture from buffer ================ */ int GAME_EXPORT GL_CreateTexture( const char *name, int width, int height, const void *buffer, texFlags_t flags ) { int datasize = 1; rgbdata_t r_empty; if( FBitSet( flags, TF_ARB_16BIT )) datasize = 2; else if( FBitSet( flags, TF_ARB_FLOAT )) datasize = 4; memset( &r_empty, 0, sizeof( r_empty )); r_empty.width = width; r_empty.height = height; r_empty.type = PF_RGBA_32; r_empty.size = r_empty.width * r_empty.height * datasize * 4; r_empty.buffer = (byte *)buffer; // clear invalid combinations ClearBits( flags, TF_TEXTURE_3D ); // if image not luminance and not alphacontrast it will have color if( !FBitSet( flags, TF_LUMINANCE ) && !FBitSet( flags, TF_ALPHACONTRAST )) SetBits( r_empty.flags, IMAGE_HAS_COLOR ); if( FBitSet( flags, TF_HAS_ALPHA )) SetBits( r_empty.flags, IMAGE_HAS_ALPHA ); if( FBitSet( flags, TF_CUBEMAP )) { return 0; } return GL_LoadTextureInternal( name, &r_empty, flags ); } /* ================ GL_CreateTextureArray creates texture array from buffer ================ */ int GAME_EXPORT GL_CreateTextureArray( const char *name, int width, int height, int depth, const void *buffer, texFlags_t flags ) { return 0; } /* ================ GL_FindTexture ================ */ int GAME_EXPORT GL_FindTexture( const char *name ) { image_t *tex; if( !GL_CheckTexName( name )) return 0; // see if already loaded if(( tex = GL_TextureForName( name ))) return (tex - r_images); return 0; } /* ================ GL_FreeTexture ================ */ void GAME_EXPORT GL_FreeTexture( unsigned int texnum ) { // number 0 it's already freed if( texnum <= 0 ) return; GL_DeleteTexture( &r_images[texnum] ); } /* ================ GL_ProcessTexture ================ */ void GAME_EXPORT GL_ProcessTexture( int texnum, float gamma, int topColor, int bottomColor ) { image_t *image; rgbdata_t *pic; int flags = 0; if( texnum <= 0 || texnum >= MAX_TEXTURES ) return; // missed image image = &r_images[texnum]; // select mode if( gamma != -1.0f ) { flags = IMAGE_LIGHTGAMMA; } else if( topColor != -1 && bottomColor != -1 ) { flags = IMAGE_REMAP; } else { gEngfuncs.Con_Printf( S_ERROR "GL_ProcessTexture: bad operation for %s\n", image->name ); return; } if( !image->original ) { gEngfuncs.Con_Printf( S_ERROR "GL_ProcessTexture: no input data for %s\n", image->name ); return; } if( ImageDXT( image->original->type )) { gEngfuncs.Con_Printf( S_ERROR "GL_ProcessTexture: can't process compressed texture %s\n", image->name ); return; } // all the operations makes over the image copy not an original pic = gEngfuncs.FS_CopyImage( image->original ); // we need to expand image into RGBA buffer if( pic->type == PF_INDEXED_24 || pic->type == PF_INDEXED_32 ) flags |= IMAGE_FORCE_RGBA; gEngfuncs.Image_Process( &pic, topColor, bottomColor, flags, 0.0f ); GL_UploadTexture( image, pic ); GL_ApplyTextureParams( image ); // update texture filter, wrap etc gEngfuncs.FS_FreeImage( pic ); } /* ============================================================================== INTERNAL TEXTURES ============================================================================== */ /* ================== GL_FakeImage ================== */ static rgbdata_t *GL_FakeImage( int width, int height, int depth, int flags ) { static byte data2D[1024]; // 16x16x4 static rgbdata_t r_image; // also use this for bad textures, but without alpha r_image.width = Q_max( 1, width ); r_image.height = Q_max( 1, height ); r_image.depth = Q_max( 1, depth ); r_image.flags = flags; r_image.type = PF_RGBA_32; r_image.size = r_image.width * r_image.height * r_image.depth * 4; r_image.buffer = (r_image.size > sizeof( data2D )) ? NULL : data2D; r_image.palette = NULL; r_image.numMips = 1; r_image.encode = 0; if( FBitSet( r_image.flags, IMAGE_CUBEMAP )) r_image.size *= 6; memset( data2D, 0xFF, sizeof( data2D )); return &r_image; } /* ================== R_InitDlightTexture ================== */ void R_InitDlightTexture( void ) { rgbdata_t r_image; if( tr.dlightTexture != 0 ) return; // already initialized memset( &r_image, 0, sizeof( r_image )); r_image.width = BLOCK_SIZE; r_image.height = BLOCK_SIZE; r_image.flags = IMAGE_HAS_COLOR; r_image.type = PF_RGBA_32; r_image.size = r_image.width * r_image.height * 4; tr.dlightTexture = GL_LoadTextureInternal( "*dlight", &r_image, TF_NOMIPMAP|TF_CLAMP|TF_ATLAS_PAGE ); } /* ================== GL_CreateInternalTextures ================== */ static void GL_CreateInternalTextures( void ) { int dx2, dy, d; int x, y; rgbdata_t *pic; // emo-texture from quake1 pic = GL_FakeImage( 16, 16, 1, IMAGE_HAS_COLOR ); for( y = 0; y < 16; y++ ) { for( x = 0; x < 16; x++ ) { if(( y < 8 ) ^ ( x < 8 )) ((uint *)pic->buffer)[y*16+x] = 0xFFFF00FF; else ((uint *)pic->buffer)[y*16+x] = 0xFF000000; } } tr.defaultTexture = GL_LoadTextureInternal( REF_DEFAULT_TEXTURE, pic, TF_COLORMAP ); // particle texture from quake1 pic = GL_FakeImage( 16, 16, 1, IMAGE_HAS_COLOR|IMAGE_HAS_ALPHA ); for( x = 0; x < 16; x++ ) { dx2 = x - 8; dx2 = dx2 * dx2; for( y = 0; y < 16; y++ ) { dy = y - 8; d = 255 - 35 * sqrt( dx2 + dy * dy ); pic->buffer[( y * 16 + x ) * 4 + 3] = bound( 0, d, 255 ); } } tr.particleTexture = GL_LoadTextureInternal( "*particle", pic, TF_CLAMP ); // white texture pic = GL_FakeImage( 4, 4, 1, IMAGE_HAS_COLOR ); for( x = 0; x < 16; x++ ) ((uint *)pic->buffer)[x] = 0xFFFFFFFF; tr.whiteTexture = GL_LoadTextureInternal( REF_WHITE_TEXTURE, pic, TF_COLORMAP ); // gray texture pic = GL_FakeImage( 4, 4, 1, IMAGE_HAS_COLOR ); for( x = 0; x < 16; x++ ) ((uint *)pic->buffer)[x] = 0xFF7F7F7F; tr.grayTexture = GL_LoadTextureInternal( REF_GRAY_TEXTURE, pic, TF_COLORMAP ); // black texture pic = GL_FakeImage( 4, 4, 1, IMAGE_HAS_COLOR ); for( x = 0; x < 16; x++ ) ((uint *)pic->buffer)[x] = 0xFF000000; tr.blackTexture = GL_LoadTextureInternal( REF_BLACK_TEXTURE, pic, TF_COLORMAP ); // cinematic dummy pic = GL_FakeImage( 640, 100, 1, IMAGE_HAS_COLOR ); tr.cinTexture = GL_LoadTextureInternal( "*cintexture", pic, TF_NOMIPMAP|TF_CLAMP ); } /* =============== R_TextureList_f =============== */ void R_TextureList_f( void ) { image_t *image; int i, texCount, bytes = 0; gEngfuncs.Con_Printf( "\n" ); gEngfuncs.Con_Printf( " -id- -w- -h- -size- -fmt- -type- -data- -encode- -wrap- -depth- -name--------\n" ); for( i = texCount = 0, image = r_images; i < r_numImages; i++, image++ ) { if( !image->pixels ) continue; bytes += image->size; texCount++; gEngfuncs.Con_Printf( "%4i: ", i ); gEngfuncs.Con_Printf( "%4i %4i ", image->width, image->height ); gEngfuncs.Con_Printf( "%12s ", Q_memprint( image->size )); if( image->flags & TF_NORMALMAP ) gEngfuncs.Con_Printf( "normal " ); else gEngfuncs.Con_Printf( "diffuse " ); if( image->flags & TF_CLAMP ) gEngfuncs.Con_Printf( "clamp " ); else if( image->flags & TF_BORDER ) gEngfuncs.Con_Printf( "border " ); else gEngfuncs.Con_Printf( "repeat " ); gEngfuncs.Con_Printf( " %d ", image->depth ); gEngfuncs.Con_Printf( " %s\n", image->name ); } gEngfuncs.Con_Printf( "---------------------------------------------------------\n" ); gEngfuncs.Con_Printf( "%i total textures\n", texCount ); gEngfuncs.Con_Printf( "%s total memory used\n", Q_memprint( bytes )); gEngfuncs.Con_Printf( "\n" ); } /* =============== R_InitImages =============== */ void R_InitImages( void ) { memset( r_images, 0, sizeof( r_images )); memset( r_imagesHashTable, 0, sizeof( r_imagesHashTable )); r_numImages = 0; // create unused 0-entry Q_strncpy( r_images->name, "*unused*", sizeof( r_images->name )); r_images->hashValue = COM_HashKey( r_images->name, TEXTURES_HASH_SIZE ); r_images->nextHash = r_imagesHashTable[r_images->hashValue]; r_imagesHashTable[r_images->hashValue] = r_images; r_numImages = 1; // validate cvars R_SetTextureParameters(); GL_CreateInternalTextures(); gEngfuncs.Cmd_AddCommand( "texturelist", R_TextureList_f, "display loaded textures list" ); } /* =============== R_ShutdownImages =============== */ void R_ShutdownImages( void ) { image_t *tex; int i; gEngfuncs.Cmd_RemoveCommand( "texturelist" ); for( i = 0, tex = r_images; i < r_numImages; i++, tex++ ) GL_DeleteTexture( tex ); memset( tr.lightmapTextures, 0, sizeof( tr.lightmapTextures )); memset( r_imagesHashTable, 0, sizeof( r_imagesHashTable )); memset( r_images, 0, sizeof( r_images )); r_numImages = 0; }