/* gl_rmain.c - renderer main loop Copyright (C) 2010 Uncle Mike This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. */ #include "gl_local.h" #include "xash3d_mathlib.h" #include "library.h" #include "beamdef.h" #include "particledef.h" #include "entity_types.h" #define IsLiquidContents( cnt ) ( cnt == CONTENTS_WATER || cnt == CONTENTS_SLIME || cnt == CONTENTS_LAVA ) float gldepthmin, gldepthmax; ref_instance_t RI; static int R_RankForRenderMode( int rendermode ) { switch( rendermode ) { case kRenderTransTexture: return 1; // draw second case kRenderTransAdd: return 2; // draw third case kRenderGlow: return 3; // must be last! } return 0; } void R_AllowFog( qboolean allowed ) { if( allowed ) { if( glState.isFogEnabled ) pglEnable( GL_FOG ); } else { if( glState.isFogEnabled ) pglDisable( GL_FOG ); } } /* =============== R_OpaqueEntity Opaque entity can be brush or studio model but sprite =============== */ qboolean R_OpaqueEntity( cl_entity_t *ent ) { if( R_GetEntityRenderMode( ent ) == kRenderNormal ) { switch( ent->curstate.renderfx ) { case kRenderFxNone: case kRenderFxDeadPlayer: case kRenderFxLightMultiplier: case kRenderFxExplode: return true; } } return false; } /* =============== R_TransEntityCompare Sorting translucent entities by rendermode then by distance =============== */ static int R_TransEntityCompare( const void *a, const void *b ) { cl_entity_t *ent1, *ent2; vec3_t vecLen, org; float dist1, dist2; int rendermode1; int rendermode2; ent1 = *(cl_entity_t **)a; ent2 = *(cl_entity_t **)b; rendermode1 = R_GetEntityRenderMode( ent1 ); rendermode2 = R_GetEntityRenderMode( ent2 ); // sort by distance if( ent1->model->type != mod_brush || rendermode1 != kRenderTransAlpha ) { VectorAverage( ent1->model->mins, ent1->model->maxs, org ); VectorAdd( ent1->origin, org, org ); VectorSubtract( RI.vieworg, org, vecLen ); dist1 = DotProduct( vecLen, vecLen ); } else dist1 = 1000000000; if( ent2->model->type != mod_brush || rendermode2 != kRenderTransAlpha ) { VectorAverage( ent2->model->mins, ent2->model->maxs, org ); VectorAdd( ent2->origin, org, org ); VectorSubtract( RI.vieworg, org, vecLen ); dist2 = DotProduct( vecLen, vecLen ); } else dist2 = 1000000000; if( dist1 > dist2 ) return -1; if( dist1 < dist2 ) return 1; // then sort by rendermode if( R_RankForRenderMode( rendermode1 ) > R_RankForRenderMode( rendermode2 )) return 1; if( R_RankForRenderMode( rendermode1 ) < R_RankForRenderMode( rendermode2 )) return -1; return 0; } /* =============== R_WorldToScreen Convert a given point from world into screen space Returns true if we behind to screen =============== */ int R_WorldToScreen( const vec3_t point, vec3_t screen ) { matrix4x4 worldToScreen; qboolean behind; float w; if( !point || !screen ) return true; Matrix4x4_Copy( worldToScreen, RI.worldviewProjectionMatrix ); screen[0] = worldToScreen[0][0] * point[0] + worldToScreen[0][1] * point[1] + worldToScreen[0][2] * point[2] + worldToScreen[0][3]; screen[1] = worldToScreen[1][0] * point[0] + worldToScreen[1][1] * point[1] + worldToScreen[1][2] * point[2] + worldToScreen[1][3]; w = worldToScreen[3][0] * point[0] + worldToScreen[3][1] * point[1] + worldToScreen[3][2] * point[2] + worldToScreen[3][3]; screen[2] = 0.0f; // just so we have something valid here if( w < 0.001f ) { behind = true; } else { float invw = 1.0f / w; screen[0] *= invw; screen[1] *= invw; behind = false; } return behind; } /* =============== R_ScreenToWorld Convert a given point from screen into world space =============== */ void R_ScreenToWorld( const vec3_t screen, vec3_t point ) { matrix4x4 screenToWorld; float w; if( !point || !screen ) return; Matrix4x4_Invert_Full( screenToWorld, RI.worldviewProjectionMatrix ); point[0] = screen[0] * screenToWorld[0][0] + screen[1] * screenToWorld[0][1] + screen[2] * screenToWorld[0][2] + screenToWorld[0][3]; point[1] = screen[0] * screenToWorld[1][0] + screen[1] * screenToWorld[1][1] + screen[2] * screenToWorld[1][2] + screenToWorld[1][3]; point[2] = screen[0] * screenToWorld[2][0] + screen[1] * screenToWorld[2][1] + screen[2] * screenToWorld[2][2] + screenToWorld[2][3]; w = screen[0] * screenToWorld[3][0] + screen[1] * screenToWorld[3][1] + screen[2] * screenToWorld[3][2] + screenToWorld[3][3]; if( w != 0.0f ) VectorScale( point, ( 1.0f / w ), point ); } /* =============== R_PushScene =============== */ void R_PushScene( void ) { if( ++tr.draw_stack_pos >= MAX_DRAW_STACK ) gEngfuncs.Host_Error( "draw stack overflow\n" ); tr.draw_list = &tr.draw_stack[tr.draw_stack_pos]; } /* =============== R_PopScene =============== */ void R_PopScene( void ) { if( --tr.draw_stack_pos < 0 ) gEngfuncs.Host_Error( "draw stack underflow\n" ); tr.draw_list = &tr.draw_stack[tr.draw_stack_pos]; } /* =============== R_ClearScene =============== */ void R_ClearScene( void ) { tr.draw_list->num_solid_entities = 0; tr.draw_list->num_trans_entities = 0; tr.draw_list->num_beam_entities = 0; // clear the scene befor start new frame if( gEngfuncs.drawFuncs->R_ClearScene != NULL ) gEngfuncs.drawFuncs->R_ClearScene(); } /* =============== R_AddEntity =============== */ qboolean R_AddEntity( struct cl_entity_s *clent, int type ) { if( !r_drawentities->value ) return false; // not allow to drawing if( !clent || !clent->model ) return false; // if set to invisible, skip if( FBitSet( clent->curstate.effects, EF_NODRAW )) return false; // done if( !R_ModelOpaque( clent->curstate.rendermode ) && CL_FxBlend( clent ) <= 0 ) return true; // invisible switch( type ) { case ET_FRAGMENTED: r_stats.c_client_ents++; break; case ET_TEMPENTITY: r_stats.c_active_tents_count++; break; default: break; } if( R_OpaqueEntity( clent )) { // opaque if( tr.draw_list->num_solid_entities >= MAX_VISIBLE_PACKET ) return false; tr.draw_list->solid_entities[tr.draw_list->num_solid_entities] = clent; tr.draw_list->num_solid_entities++; } else { // translucent if( tr.draw_list->num_trans_entities >= MAX_VISIBLE_PACKET ) return false; tr.draw_list->trans_entities[tr.draw_list->num_trans_entities] = clent; tr.draw_list->num_trans_entities++; } return true; } /* ============= R_Clear ============= */ static void R_Clear( int bitMask ) { int bits; if( ENGINE_GET_PARM( PARM_DEV_OVERVIEW )) pglClearColor( 0.0f, 1.0f, 0.0f, 1.0f ); // green background (Valve rules) else pglClearColor( 0.5f, 0.5f, 0.5f, 1.0f ); bits = GL_DEPTH_BUFFER_BIT; if( glState.stencilEnabled ) bits |= GL_STENCIL_BUFFER_BIT; bits &= bitMask; pglClear( bits ); // change ordering for overview if( RI.drawOrtho ) { gldepthmin = 1.0f; gldepthmax = 0.0f; } else { gldepthmin = 0.0f; gldepthmax = 1.0f; } pglDepthFunc( GL_LEQUAL ); pglDepthRange( gldepthmin, gldepthmax ); } //============================================================================= /* =============== R_GetFarClip =============== */ static float R_GetFarClip( void ) { if( WORLDMODEL && RI.drawWorld ) return tr.movevars->zmax * 1.73f; return 2048.0f; } /* =============== R_SetupFrustum =============== */ void R_SetupFrustum( void ) { const ref_overview_t *ov = gEngfuncs.GetOverviewParms(); if( RP_NORMALPASS() && ( ENGINE_GET_PARM( PARM_WATER_LEVEL ) >= 3 ) && ENGINE_GET_PARM( PARM_QUAKE_COMPATIBLE )) { RI.fov_x = atan( tan( DEG2RAD( RI.fov_x ) / 2 ) * ( 0.97f + sin( gp_cl->time * 1.5f ) * 0.03f )) * 2 / (M_PI_F / 180.0f); RI.fov_y = atan( tan( DEG2RAD( RI.fov_y ) / 2 ) * ( 1.03f - sin( gp_cl->time * 1.5f ) * 0.03f )) * 2 / (M_PI_F / 180.0f); } // build the transformation matrix for the given view angles AngleVectors( RI.viewangles, RI.vforward, RI.vright, RI.vup ); if( !r_lockfrustum.value ) { VectorCopy( RI.vieworg, RI.cullorigin ); VectorCopy( RI.vforward, RI.cull_vforward ); VectorCopy( RI.vright, RI.cull_vright ); VectorCopy( RI.vup, RI.cull_vup ); } if( RI.drawOrtho ) GL_FrustumInitOrtho( &RI.frustum, ov->xLeft, ov->xRight, ov->yTop, ov->yBottom, ov->zNear, ov->zFar ); else GL_FrustumInitProj( &RI.frustum, 0.0f, R_GetFarClip(), RI.fov_x, RI.fov_y ); // NOTE: we ignore nearplane here (mirrors only) } /* ============= R_SetupProjectionMatrix ============= */ static void R_SetupProjectionMatrix( matrix4x4 m ) { GLfloat xMin, xMax, yMin, yMax, zNear, zFar; if( RI.drawOrtho ) { const ref_overview_t *ov = gEngfuncs.GetOverviewParms(); Matrix4x4_CreateOrtho( m, ov->xLeft, ov->xRight, ov->yTop, ov->yBottom, ov->zNear, ov->zFar ); return; } RI.farClip = R_GetFarClip(); zNear = 4.0f; zFar = Q_max( 256.0f, RI.farClip ); yMax = zNear * tan( RI.fov_y * M_PI_F / 360.0f ); yMin = -yMax; xMax = zNear * tan( RI.fov_x * M_PI_F / 360.0f ); xMin = -xMax; Matrix4x4_CreateProjection( m, xMax, xMin, yMax, yMin, zNear, zFar ); } /* ============= R_SetupModelviewMatrix ============= */ static void R_SetupModelviewMatrix( matrix4x4 m ) { Matrix4x4_CreateModelview( m ); Matrix4x4_ConcatRotate( m, -RI.viewangles[2], 1, 0, 0 ); Matrix4x4_ConcatRotate( m, -RI.viewangles[0], 0, 1, 0 ); Matrix4x4_ConcatRotate( m, -RI.viewangles[1], 0, 0, 1 ); Matrix4x4_ConcatTranslate( m, -RI.vieworg[0], -RI.vieworg[1], -RI.vieworg[2] ); } /* ============= R_LoadIdentity ============= */ void R_LoadIdentity( void ) { if( tr.modelviewIdentity ) return; Matrix4x4_LoadIdentity( RI.objectMatrix ); Matrix4x4_Copy( RI.modelviewMatrix, RI.worldviewMatrix ); pglMatrixMode( GL_MODELVIEW ); GL_LoadMatrix( RI.modelviewMatrix ); tr.modelviewIdentity = true; } /* ============= R_RotateForEntity ============= */ void R_RotateForEntity( cl_entity_t *e ) { float scale = 1.0f; if( e == CL_GetEntityByIndex( 0 )) { R_LoadIdentity(); return; } if( e->model->type != mod_brush && e->curstate.scale > 0.0f ) scale = e->curstate.scale; Matrix4x4_CreateFromEntity( RI.objectMatrix, e->angles, e->origin, scale ); Matrix4x4_ConcatTransforms( RI.modelviewMatrix, RI.worldviewMatrix, RI.objectMatrix ); pglMatrixMode( GL_MODELVIEW ); GL_LoadMatrix( RI.modelviewMatrix ); tr.modelviewIdentity = false; } /* ============= R_TranslateForEntity ============= */ void R_TranslateForEntity( cl_entity_t *e ) { float scale = 1.0f; if( e == CL_GetEntityByIndex( 0 )) { R_LoadIdentity(); return; } if( e->model->type != mod_brush && e->curstate.scale > 0.0f ) scale = e->curstate.scale; Matrix4x4_CreateFromEntity( RI.objectMatrix, vec3_origin, e->origin, scale ); Matrix4x4_ConcatTransforms( RI.modelviewMatrix, RI.worldviewMatrix, RI.objectMatrix ); pglMatrixMode( GL_MODELVIEW ); GL_LoadMatrix( RI.modelviewMatrix ); tr.modelviewIdentity = false; } /* =============== R_FindViewLeaf =============== */ void R_FindViewLeaf( void ) { RI.oldviewleaf = RI.viewleaf; RI.viewleaf = gEngfuncs.Mod_PointInLeaf( RI.pvsorigin, WORLDMODEL->nodes ); } /* =============== R_SetupFrame =============== */ static void R_SetupFrame( void ) { // setup viewplane dist RI.viewplanedist = DotProduct( RI.vieworg, RI.vforward ); // NOTE: this request is the fps-killer on some NVidia drivers glState.isFogEnabled = pglIsEnabled( GL_FOG ); if( !gl_nosort.value ) { // sort translucents entities by rendermode and distance qsort( tr.draw_list->trans_entities, tr.draw_list->num_trans_entities, sizeof( cl_entity_t* ), R_TransEntityCompare ); } // current viewleaf if( RI.drawWorld ) { RI.isSkyVisible = false; // unknown at this moment R_FindViewLeaf(); } } /* ============= R_SetupGL ============= */ void R_SetupGL( qboolean set_gl_state ) { R_SetupModelviewMatrix( RI.worldviewMatrix ); R_SetupProjectionMatrix( RI.projectionMatrix ); Matrix4x4_Concat( RI.worldviewProjectionMatrix, RI.projectionMatrix, RI.worldviewMatrix ); if( !set_gl_state ) return; if( RP_NORMALPASS( )) { int x, x2, y, y2; // set up viewport (main, playersetup) x = floor( RI.viewport[0] * gpGlobals->width / gpGlobals->width ); x2 = ceil(( RI.viewport[0] + RI.viewport[2] ) * gpGlobals->width / gpGlobals->width ); y = floor( gpGlobals->height - RI.viewport[1] * gpGlobals->height / gpGlobals->height ); y2 = ceil( gpGlobals->height - ( RI.viewport[1] + RI.viewport[3] ) * gpGlobals->height / gpGlobals->height ); pglViewport( x, y2, x2 - x, y - y2 ); } else { // envpass, mirrorpass pglViewport( RI.viewport[0], RI.viewport[1], RI.viewport[2], RI.viewport[3] ); } pglMatrixMode( GL_PROJECTION ); GL_LoadMatrix( RI.projectionMatrix ); pglMatrixMode( GL_MODELVIEW ); GL_LoadMatrix( RI.worldviewMatrix ); if( FBitSet( RI.params, RP_CLIPPLANE )) { GLdouble clip[4]; mplane_t *p = &RI.clipPlane; clip[0] = p->normal[0]; clip[1] = p->normal[1]; clip[2] = p->normal[2]; clip[3] = -p->dist; pglClipPlane( GL_CLIP_PLANE0, clip ); pglEnable( GL_CLIP_PLANE0 ); } GL_Cull( GL_FRONT ); pglDisable( GL_BLEND ); pglDisable( GL_ALPHA_TEST ); pglColor4f( 1.0f, 1.0f, 1.0f, 1.0f ); } /* ============= R_EndGL ============= */ static void R_EndGL( void ) { if( RI.params & RP_CLIPPLANE ) pglDisable( GL_CLIP_PLANE0 ); } /* ============= R_RecursiveFindWaterTexture using to find source waterleaf with watertexture to grab fog values from it ============= */ static gl_texture_t *R_RecursiveFindWaterTexture( const mnode_t *node, const mnode_t *ignore, qboolean down ) { gl_texture_t *tex = NULL; // assure the initial node is not null // we could check it here, but we would rather check it // outside the call to get rid of one additional recursion level Assert( node != NULL ); // ignore solid nodes if( node->contents == CONTENTS_SOLID ) return NULL; if( node->contents < 0 ) { mleaf_t *pleaf; msurface_t **mark; int i, c; // ignore non-liquid leaves if( node->contents != CONTENTS_WATER && node->contents != CONTENTS_LAVA && node->contents != CONTENTS_SLIME ) return NULL; // find texture pleaf = (mleaf_t *)node; mark = pleaf->firstmarksurface; c = pleaf->nummarksurfaces; for( i = 0; i < c; i++, mark++ ) { if( (*mark)->flags & SURF_DRAWTURB && (*mark)->texinfo && (*mark)->texinfo->texture ) return R_GetTexture( (*mark)->texinfo->texture->gl_texturenum ); } // texture not found return NULL; } // this is a regular node // traverse children if( node->children[0] && ( node->children[0] != ignore )) { tex = R_RecursiveFindWaterTexture( node->children[0], node, true ); if( tex ) return tex; } if( node->children[1] && ( node->children[1] != ignore )) { tex = R_RecursiveFindWaterTexture( node->children[1], node, true ); if( tex ) return tex; } // for down recursion, return immediately if( down ) return NULL; // texture not found, step up if any if( node->parent ) return R_RecursiveFindWaterTexture( node->parent, node, false ); // top-level node, bail out return NULL; } /* ============= R_CheckFog check for underwater fog Using backward recursion to find waterline leaf from underwater leaf (idea: XaeroX) ============= */ static void R_CheckFog( void ) { cl_entity_t *ent; gl_texture_t *tex; int i, cnt, count; // quake global fog if( ENGINE_GET_PARM( PARM_QUAKE_COMPATIBLE )) { if( !tr.movevars->fog_settings ) { if( pglIsEnabled( GL_FOG )) pglDisable( GL_FOG ); RI.fogEnabled = false; return; } // quake-style global fog RI.fogColor[0] = ((tr.movevars->fog_settings & 0xFF000000) >> 24) / 255.0f; RI.fogColor[1] = ((tr.movevars->fog_settings & 0xFF0000) >> 16) / 255.0f; RI.fogColor[2] = ((tr.movevars->fog_settings & 0xFF00) >> 8) / 255.0f; RI.fogDensity = ((tr.movevars->fog_settings & 0xFF) / 255.0f) * 0.01f; RI.fogStart = RI.fogEnd = 0.0f; RI.fogColor[3] = 1.0f; RI.fogCustom = false; RI.fogEnabled = true; RI.fogSkybox = true; return; } RI.fogEnabled = false; if( RI.onlyClientDraw || ENGINE_GET_PARM( PARM_WATER_LEVEL ) < 3 || !RI.drawWorld || !RI.viewleaf ) { if( RI.cached_waterlevel == 3 ) { // in some cases waterlevel jumps from 3 to 1. Catch it RI.cached_waterlevel = ENGINE_GET_PARM( PARM_WATER_LEVEL ); RI.cached_contents = CONTENTS_EMPTY; if( !RI.fogCustom ) { glState.isFogEnabled = false; pglDisable( GL_FOG ); } } return; } ent = gEngfuncs.CL_GetWaterEntity( RI.vieworg ); if( ent && ent->model && ent->model->type == mod_brush && ent->curstate.skin < 0 ) cnt = ent->curstate.skin; else cnt = RI.viewleaf->contents; RI.cached_waterlevel = ENGINE_GET_PARM( PARM_WATER_LEVEL ); if( !IsLiquidContents( RI.cached_contents ) && IsLiquidContents( cnt )) { tex = NULL; // check for water texture if( ent && ent->model && ent->model->type == mod_brush ) { msurface_t *surf; count = ent->model->nummodelsurfaces; for( i = 0, surf = &ent->model->surfaces[ent->model->firstmodelsurface]; i < count; i++, surf++ ) { if( surf->flags & SURF_DRAWTURB && surf->texinfo && surf->texinfo->texture ) { tex = R_GetTexture( surf->texinfo->texture->gl_texturenum ); RI.cached_contents = ent->curstate.skin; break; } } } else { tex = R_RecursiveFindWaterTexture( RI.viewleaf->parent, NULL, false ); if( tex ) RI.cached_contents = RI.viewleaf->contents; } if( !tex ) return; // no valid fogs // copy fog params RI.fogColor[0] = tex->fogParams[0] / 255.0f; RI.fogColor[1] = tex->fogParams[1] / 255.0f; RI.fogColor[2] = tex->fogParams[2] / 255.0f; RI.fogDensity = tex->fogParams[3] * 0.000025f; RI.fogStart = RI.fogEnd = 0.0f; RI.fogColor[3] = 1.0f; RI.fogCustom = false; RI.fogEnabled = true; RI.fogSkybox = true; } else { RI.fogCustom = false; RI.fogEnabled = true; RI.fogSkybox = true; } } /* ============= R_CheckGLFog special condition for Spirit 1.9 that used direct calls of glFog-functions ============= */ static void R_CheckGLFog( void ) { #ifdef HACKS_RELATED_HLMODS if(( !RI.fogEnabled && !RI.fogCustom ) && pglIsEnabled( GL_FOG ) && VectorIsNull( RI.fogColor )) { // fill the fog color from GL-state machine pglGetFloatv( GL_FOG_COLOR, RI.fogColor ); RI.fogSkybox = true; } #endif } /* ============= R_DrawFog ============= */ void R_DrawFog( void ) { if( !RI.fogEnabled ) return; pglEnable( GL_FOG ); if( ENGINE_GET_PARM( PARM_QUAKE_COMPATIBLE )) pglFogi( GL_FOG_MODE, GL_EXP2 ); else pglFogi( GL_FOG_MODE, GL_EXP ); pglFogf( GL_FOG_DENSITY, RI.fogDensity ); pglFogfv( GL_FOG_COLOR, RI.fogColor ); pglHint( GL_FOG_HINT, GL_NICEST ); } /* ============= R_DrawEntitiesOnList ============= */ static void R_DrawEntitiesOnList( void ) { int i; tr.blend = 1.0f; GL_CheckForErrors(); // first draw solid entities for( i = 0; i < tr.draw_list->num_solid_entities && !RI.onlyClientDraw; i++ ) { RI.currententity = tr.draw_list->solid_entities[i]; RI.currentmodel = RI.currententity->model; Assert( RI.currententity != NULL ); Assert( RI.currentmodel != NULL ); switch( RI.currentmodel->type ) { case mod_brush: R_DrawBrushModel( RI.currententity ); break; case mod_alias: R_DrawAliasModel( RI.currententity ); break; case mod_studio: R_DrawStudioModel( RI.currententity ); break; default: break; } } GL_CheckForErrors(); // quake-specific feature R_DrawAlphaTextureChains(); GL_CheckForErrors(); // draw sprites seperately, because of alpha blending for( i = 0; i < tr.draw_list->num_solid_entities && !RI.onlyClientDraw; i++ ) { RI.currententity = tr.draw_list->solid_entities[i]; RI.currentmodel = RI.currententity->model; Assert( RI.currententity != NULL ); Assert( RI.currentmodel != NULL ); switch( RI.currentmodel->type ) { case mod_sprite: R_DrawSpriteModel( RI.currententity ); break; } } GL_CheckForErrors(); if( !RI.onlyClientDraw ) { gEngfuncs.CL_DrawEFX( tr.frametime, false ); } GL_CheckForErrors(); if( RI.drawWorld ) gEngfuncs.pfnDrawNormalTriangles(); GL_CheckForErrors(); // then draw translucent entities for( i = 0; i < tr.draw_list->num_trans_entities && !RI.onlyClientDraw; i++ ) { RI.currententity = tr.draw_list->trans_entities[i]; RI.currentmodel = RI.currententity->model; // handle studiomodels with custom rendermodes on texture if( RI.currententity->curstate.rendermode != kRenderNormal ) tr.blend = CL_FxBlend( RI.currententity ) / 255.0f; else tr.blend = 1.0f; // draw as solid but sorted by distance if( tr.blend <= 0.0f ) continue; Assert( RI.currententity != NULL ); Assert( RI.currentmodel != NULL ); switch( RI.currentmodel->type ) { case mod_brush: R_DrawBrushModel( RI.currententity ); break; case mod_alias: R_DrawAliasModel( RI.currententity ); break; case mod_studio: R_DrawStudioModel( RI.currententity ); break; case mod_sprite: R_DrawSpriteModel( RI.currententity ); break; default: break; } } GL_CheckForErrors(); if( RI.drawWorld ) { pglTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE ); gEngfuncs.pfnDrawTransparentTriangles (); } GL_CheckForErrors(); if( !RI.onlyClientDraw ) { R_AllowFog( false ); gEngfuncs.CL_DrawEFX( tr.frametime, true ); R_AllowFog( true ); } GL_CheckForErrors(); pglDisable( GL_BLEND ); // Trinity Render issues if( !RI.onlyClientDraw ) R_DrawViewModel(); gEngfuncs.CL_ExtraUpdate(); GL_CheckForErrors(); } /* ================ R_RenderScene R_SetupRefParams must be called right before ================ */ void R_RenderScene( void ) { if( !WORLDMODEL && RI.drawWorld ) gEngfuncs.Host_Error( "%s: NULL worldmodel\n", __func__ ); // frametime is valid only for normal pass if( RP_NORMALPASS( )) tr.frametime = gp_cl->time - gp_cl->oldtime; else tr.frametime = 0.0; // begin a new frame tr.framecount++; R_PushDlights(); R_SetupFrustum(); R_SetupFrame(); R_SetupGL( true ); R_Clear( ~0 ); R_MarkLeaves(); R_DrawFog (); if( RI.drawWorld ) R_AnimateRipples(); R_CheckGLFog(); R_DrawWorld(); R_CheckFog(); gEngfuncs.CL_ExtraUpdate (); // don't let sound get messed up if going slow R_DrawEntitiesOnList(); R_DrawWaterSurfaces(); R_EndGL(); } void R_GammaChanged( qboolean do_reset_gamma ) { if( do_reset_gamma ) { // paranoia cubemap rendering if( gEngfuncs.drawFuncs->GL_BuildLightmaps ) gEngfuncs.drawFuncs->GL_BuildLightmaps( ); } else { glConfig.softwareGammaUpdate = true; GL_RebuildLightmaps(); glConfig.softwareGammaUpdate = false; } } static void R_CheckGamma( void ) { qboolean rebuild = false; if( FBitSet( gl_overbright.flags, FCVAR_CHANGED )) { rebuild = true; ClearBits( gl_overbright.flags, FCVAR_CHANGED ); } if( gl_overbright.value && ( FBitSet( r_vbo.flags, FCVAR_CHANGED ) || FBitSet( r_vbo_overbrightmode.flags, FCVAR_CHANGED ) ) ) { rebuild = true; ClearBits( r_vbo.flags, FCVAR_CHANGED ); ClearBits( r_vbo_overbrightmode.flags, FCVAR_CHANGED ); } if( rebuild ) R_GammaChanged( false ); } /* =============== R_BeginFrame =============== */ void R_BeginFrame( qboolean clearScene ) { glConfig.softwareGammaUpdate = false; // in case of possible fails if(( gl_clear->value || ENGINE_GET_PARM( PARM_DEV_OVERVIEW )) && clearScene && ENGINE_GET_PARM( PARM_CONNSTATE ) != ca_cinematic ) { pglClear( GL_COLOR_BUFFER_BIT ); } R_CheckGamma(); R_Set2DMode( true ); // draw buffer stuff pglDrawBuffer( GL_BACK ); // update texture parameters if( FBitSet( gl_texture_nearest.flags|gl_lightmap_nearest.flags|gl_texture_anisotropy.flags|gl_texture_lodbias.flags, FCVAR_CHANGED )) R_SetTextureParameters(); gEngfuncs.CL_ExtraUpdate (); } /* =============== R_SetupRefParams set initial params for renderer =============== */ void R_SetupRefParams( const ref_viewpass_t *rvp ) { RI.params = RP_NONE; RI.drawWorld = FBitSet( rvp->flags, RF_DRAW_WORLD ); RI.onlyClientDraw = FBitSet( rvp->flags, RF_ONLY_CLIENTDRAW ); RI.farClip = 0; if( !FBitSet( rvp->flags, RF_DRAW_CUBEMAP )) RI.drawOrtho = FBitSet( rvp->flags, RF_DRAW_OVERVIEW ); else RI.drawOrtho = false; // setup viewport RI.viewport[0] = rvp->viewport[0]; RI.viewport[1] = rvp->viewport[1]; RI.viewport[2] = rvp->viewport[2]; RI.viewport[3] = rvp->viewport[3]; // calc FOV RI.fov_x = rvp->fov_x; RI.fov_y = rvp->fov_y; VectorCopy( rvp->vieworigin, RI.vieworg ); VectorCopy( rvp->viewangles, RI.viewangles ); VectorCopy( rvp->vieworigin, RI.pvsorigin ); } /* =============== R_RenderFrame =============== */ void R_RenderFrame( const ref_viewpass_t *rvp ) { if( r_norefresh->value ) return; // setup the initial render params R_SetupRefParams( rvp ); if( gl_finish.value && RI.drawWorld ) pglFinish(); if( glConfig.max_multisamples > 1 && FBitSet( gl_msaa.flags, FCVAR_CHANGED )) { if( gl_msaa.value ) pglEnable( GL_MULTISAMPLE_ARB ); else pglDisable( GL_MULTISAMPLE_ARB ); ClearBits( gl_msaa.flags, FCVAR_CHANGED ); } // completely override rendering if( gEngfuncs.drawFuncs->GL_RenderFrame != NULL ) { tr.fCustomRendering = true; if( gEngfuncs.drawFuncs->GL_RenderFrame( rvp )) { R_GatherPlayerLight(); tr.realframecount++; tr.fResetVis = true; return; } } tr.fCustomRendering = false; if( !RI.onlyClientDraw ) R_RunViewmodelEvents(); tr.realframecount++; // right called after viewmodel events R_RenderScene(); return; } /* =============== R_EndFrame =============== */ void R_EndFrame( void ) { #if XASH_PSVITA VGL_ShimEndFrame(); #endif #if !defined( XASH_GL_STATIC ) GL2_ShimEndFrame(); #endif // flush any remaining 2D bits R_Set2DMode( false ); gEngfuncs.GL_SwapBuffers(); } /* =============== R_DrawCubemapView =============== */ void R_DrawCubemapView( const vec3_t origin, const vec3_t angles, int size ) { ref_viewpass_t rvp; // basic params rvp.flags = rvp.viewentity = 0; SetBits( rvp.flags, RF_DRAW_WORLD ); SetBits( rvp.flags, RF_DRAW_CUBEMAP ); rvp.viewport[0] = rvp.viewport[1] = 0; rvp.viewport[2] = rvp.viewport[3] = size; rvp.fov_x = rvp.fov_y = 90.0f; // this is a final fov value // setup origin & angles VectorCopy( origin, rvp.vieworigin ); VectorCopy( angles, rvp.viewangles ); R_RenderFrame( &rvp ); RI.viewleaf = NULL; // force markleafs next frame } /* =============== CL_FxBlend =============== */ int CL_FxBlend( cl_entity_t *e ) { int blend = 0; float offset, dist; vec3_t tmp; offset = ((int)e->index ) * 363.0f; // Use ent index to de-sync these fx switch( e->curstate.renderfx ) { case kRenderFxPulseSlowWide: blend = e->curstate.renderamt + 0x40 * sin( gp_cl->time * 2 + offset ); break; case kRenderFxPulseFastWide: blend = e->curstate.renderamt + 0x40 * sin( gp_cl->time * 8 + offset ); break; case kRenderFxPulseSlow: blend = e->curstate.renderamt + 0x10 * sin( gp_cl->time * 2 + offset ); break; case kRenderFxPulseFast: blend = e->curstate.renderamt + 0x10 * sin( gp_cl->time * 8 + offset ); break; case kRenderFxFadeSlow: if( RP_NORMALPASS( )) { if( e->curstate.renderamt > 0 ) e->curstate.renderamt -= 1; else e->curstate.renderamt = 0; } blend = e->curstate.renderamt; break; case kRenderFxFadeFast: if( RP_NORMALPASS( )) { if( e->curstate.renderamt > 3 ) e->curstate.renderamt -= 4; else e->curstate.renderamt = 0; } blend = e->curstate.renderamt; break; case kRenderFxSolidSlow: if( RP_NORMALPASS( )) { if( e->curstate.renderamt < 255 ) e->curstate.renderamt += 1; else e->curstate.renderamt = 255; } blend = e->curstate.renderamt; break; case kRenderFxSolidFast: if( RP_NORMALPASS( )) { if( e->curstate.renderamt < 252 ) e->curstate.renderamt += 4; else e->curstate.renderamt = 255; } blend = e->curstate.renderamt; break; case kRenderFxStrobeSlow: blend = 20 * sin( gp_cl->time * 4 + offset ); if( blend < 0 ) blend = 0; else blend = e->curstate.renderamt; break; case kRenderFxStrobeFast: blend = 20 * sin( gp_cl->time * 16 + offset ); if( blend < 0 ) blend = 0; else blend = e->curstate.renderamt; break; case kRenderFxStrobeFaster: blend = 20 * sin( gp_cl->time * 36 + offset ); if( blend < 0 ) blend = 0; else blend = e->curstate.renderamt; break; case kRenderFxFlickerSlow: blend = 20 * (sin( gp_cl->time * 2 ) + sin( gp_cl->time * 17 + offset )); if( blend < 0 ) blend = 0; else blend = e->curstate.renderamt; break; case kRenderFxFlickerFast: blend = 20 * (sin( gp_cl->time * 16 ) + sin( gp_cl->time * 23 + offset )); if( blend < 0 ) blend = 0; else blend = e->curstate.renderamt; break; case kRenderFxHologram: case kRenderFxDistort: VectorCopy( e->origin, tmp ); VectorSubtract( tmp, RI.vieworg, tmp ); dist = DotProduct( tmp, RI.vforward ); // turn off distance fade if( e->curstate.renderfx == kRenderFxDistort ) dist = 1; if( dist <= 0 ) { blend = 0; } else { e->curstate.renderamt = 180; if( dist <= 100 ) blend = e->curstate.renderamt; else blend = (int) ((1.0f - ( dist - 100 ) * ( 1.0f / 400.0f )) * e->curstate.renderamt ); blend += gEngfuncs.COM_RandomLong( -32, 31 ); } break; default: blend = e->curstate.renderamt; break; } blend = bound( 0, blend, 255 ); return blend; }