/* net_buffer.c - network bitbuffer io functions Copyright (C) 2010 Uncle Mike This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. */ #include "common.h" #include "protocol.h" #include "net_buffer.h" #include "xash3d_mathlib.h" //#define DEBUG_NET_MESSAGES_SEND //#define DEBUG_NET_MESSAGES_READ // precalculated bit masks for WriteUBitLong. // Using these tables instead of doing the calculations // gives a 33% speedup in WriteUBitLong. static dword BitWriteMasks[32][33]; static dword ExtraMasks[32]; short MSG_BigShort( short swap ) { return (swap >> 8)|(swap << 8); } void MSG_InitMasks( void ) { uint startbit, endbit; uint maskBit, nBitsLeft; for( startbit = 0; startbit < 32; startbit++ ) { for( nBitsLeft = 0; nBitsLeft < 33; nBitsLeft++ ) { endbit = startbit + nBitsLeft; BitWriteMasks[startbit][nBitsLeft] = (uint)BIT( startbit ) - 1; if( endbit < 32 ) BitWriteMasks[startbit][nBitsLeft] |= ~((uint)BIT( endbit ) - 1 ); } } for( maskBit = 0; maskBit < 32; maskBit++ ) ExtraMasks[maskBit] = (uint)BIT( maskBit ) - 1; } void MSG_InitExt( sizebuf_t *sb, const char *pDebugName, void *pData, int nBytes, int nMaxBits ) { MSG_StartWriting( sb, pData, nBytes, 0, nMaxBits ); sb->pDebugName = pDebugName; } void MSG_StartWriting( sizebuf_t *sb, void *pData, int nBytes, int iStartBit, int nBits ) { // make sure it's dword aligned and padded. Assert(((dword)pData & 3 ) == 0 ); sb->pDebugName = "Unnamed"; sb->pData = (byte *)pData; if( nBits == -1 ) { sb->nDataBits = nBytes << 3; } else { Assert( nBits <= nBytes * 8 ); sb->nDataBits = nBits; } sb->iCurBit = iStartBit; sb->bOverflow = false; } /* ======================= MSG_Clear for clearing overflowed buffer ======================= */ void MSG_Clear( sizebuf_t *sb ) { sb->iCurBit = 0; sb->bOverflow = false; } static qboolean MSG_Overflow( sizebuf_t *sb, int nBits ) { if( sb->iCurBit + nBits > sb->nDataBits ) sb->bOverflow = true; return sb->bOverflow; } qboolean MSG_CheckOverflow( sizebuf_t *sb ) { return MSG_Overflow( sb, 0 ); } int MSG_SeekToBit( sizebuf_t *sb, int bitPos, int whence ) { // compute the file offset switch( whence ) { case SEEK_CUR: bitPos += sb->iCurBit; break; case SEEK_SET: break; case SEEK_END: bitPos += sb->nDataBits; break; default: return -1; } if( bitPos < 0 || bitPos > sb->nDataBits ) return -1; sb->iCurBit = bitPos; return 0; } void MSG_SeekToByte( sizebuf_t *sb, int bytePos ) { sb->iCurBit = bytePos << 3; } void MSG_WriteOneBit( sizebuf_t *sb, int nValue ) { if( !MSG_Overflow( sb, 1 )) { if( nValue ) sb->pData[sb->iCurBit>>3] |= BIT( sb->iCurBit & 7 ); else sb->pData[sb->iCurBit>>3] &= ~BIT( sb->iCurBit & 7 ); sb->iCurBit++; } } void MSG_WriteUBitLong( sizebuf_t *sb, uint curData, int numbits ) { Assert( numbits >= 0 && numbits <= 32 ); // bounds checking.. if(( sb->iCurBit + numbits ) > sb->nDataBits ) { sb->bOverflow = true; sb->iCurBit = sb->nDataBits; } else { int nBitsLeft = numbits; int iCurBit = sb->iCurBit; uint iDWord = iCurBit >> 5; // Mask in a dword. dword iCurBitMasked; int nBitsWritten; Assert(( iDWord * 4 + sizeof( int )) <= (uint)MSG_GetMaxBytes( sb )); iCurBitMasked = iCurBit & 31; ((dword *)sb->pData)[iDWord] &= BitWriteMasks[iCurBitMasked][nBitsLeft]; ((dword *)sb->pData)[iDWord] |= curData << iCurBitMasked; // did it span a dword? nBitsWritten = 32 - iCurBitMasked; if( nBitsWritten < nBitsLeft ) { nBitsLeft -= nBitsWritten; iCurBit += nBitsWritten; curData >>= nBitsWritten; iCurBitMasked = iCurBit & 31; ((dword *)sb->pData)[iDWord+1] &= BitWriteMasks[iCurBitMasked][nBitsLeft]; ((dword *)sb->pData)[iDWord+1] |= curData << iCurBitMasked; } sb->iCurBit += numbits; } } /* ======================= MSG_WriteSBitLong sign bit comes first ======================= */ void MSG_WriteSBitLong( sizebuf_t *sb, int data, int numbits ) { // do we have a valid # of bits to encode with? Assert( numbits >= 1 && numbits <= 32 ); // NOTE: it does this wierdness here so it's bit-compatible with regular integer data in the buffer. // (Some old code writes direct integers right into the buffer). if( data < 0 ) { MSG_WriteUBitLong( sb, (uint)( 0x80000000 + data ), numbits - 1 ); MSG_WriteOneBit( sb, 1 ); } else { MSG_WriteUBitLong( sb, (uint)data, numbits - 1 ); MSG_WriteOneBit( sb, 0 ); } } void MSG_WriteBitLong( sizebuf_t *sb, int data, int numbits, qboolean bSigned ) { if( bSigned ) MSG_WriteSBitLong( sb, data, numbits ); else MSG_WriteUBitLong( sb, (uint)data, numbits ); } qboolean MSG_WriteBits( sizebuf_t *sb, const void *pData, int nBits ) { byte *pOut = (byte *)pData; int nBitsLeft = nBits; // get output dword-aligned. while((( dword )pOut & 3 ) != 0 && nBitsLeft >= 8 ) { MSG_WriteUBitLong( sb, *pOut, 8 ); nBitsLeft -= 8; ++pOut; } // read dwords. while( nBitsLeft >= 32 ) { MSG_WriteUBitLong( sb, *(( dword *)pOut ), 32 ); pOut += sizeof( dword ); nBitsLeft -= 32; } // read the remaining bytes. while( nBitsLeft >= 8 ) { MSG_WriteUBitLong( sb, *pOut, 8 ); nBitsLeft -= 8; ++pOut; } // Read the remaining bits. if( nBitsLeft ) { MSG_WriteUBitLong( sb, *pOut, nBitsLeft ); } return !sb->bOverflow; } void MSG_WriteBitAngle( sizebuf_t *sb, float fAngle, int numbits ) { uint mask, shift; int d; // clamp the angle before receiving fAngle = fmod( fAngle, 360.0f ); if( fAngle < 0 ) fAngle += 360.0f; shift = ( 1 << numbits ); mask = shift - 1; d = (int)(( fAngle * shift ) / 360.0f ); d &= mask; MSG_WriteUBitLong( sb, (uint)d, numbits ); } void MSG_WriteCoord( sizebuf_t *sb, float val ) { // g-cont. we loose precision here but keep old size of coord variable! if( FBitSet( host.features, ENGINE_WRITE_LARGE_COORD )) MSG_WriteShort( sb, Q_rint( val )); else MSG_WriteShort( sb, (int)( val * 8.0f )); } void MSG_WriteVec3Coord( sizebuf_t *sb, const float *fa ) { MSG_WriteCoord( sb, fa[0] ); MSG_WriteCoord( sb, fa[1] ); MSG_WriteCoord( sb, fa[2] ); } void MSG_WriteVec3Angles( sizebuf_t *sb, const float *fa ) { MSG_WriteBitAngle( sb, fa[0], 16 ); MSG_WriteBitAngle( sb, fa[1], 16 ); MSG_WriteBitAngle( sb, fa[2], 16 ); } void MSG_WriteBitFloat( sizebuf_t *sb, float val ) { int intVal; Assert( sizeof( int ) == sizeof( float )); Assert( sizeof( float ) == 4 ); intVal = *((int *)&val ); MSG_WriteUBitLong( sb, intVal, 32 ); } void MSG_WriteCmdExt( sizebuf_t *sb, int cmd, netsrc_t type, const char *name ) { #ifdef DEBUG_NET_MESSAGES_SEND if( name != NULL ) { // get custom name Con_Printf( "^1sv^7 write: %s\n", name ); } else if( type == NS_SERVER ) { if( cmd >= 0 && cmd <= svc_lastmsg ) { // get engine message name Con_Printf( "^1sv^7 write: %s\n", svc_strings[cmd] ); } } else if( type == NS_CLIENT ) { if( cmd >= 0 && cmd <= clc_lastmsg ) { Con_Printf( "^1cl^7 write: %s\n", clc_strings[cmd] ); } } #endif MSG_WriteUBitLong( sb, cmd, sizeof( byte ) << 3 ); } void MSG_WriteChar( sizebuf_t *sb, int val ) { MSG_WriteSBitLong( sb, val, sizeof( char ) << 3 ); } void MSG_WriteByte( sizebuf_t *sb, int val ) { MSG_WriteUBitLong( sb, val, sizeof( byte ) << 3 ); } void MSG_WriteShort( sizebuf_t *sb, int val ) { MSG_WriteSBitLong( sb, val, sizeof(short ) << 3 ); } void MSG_WriteWord( sizebuf_t *sb, int val ) { MSG_WriteUBitLong( sb, val, sizeof( word ) << 3 ); } void MSG_WriteLong( sizebuf_t *sb, int val ) { MSG_WriteSBitLong( sb, val, sizeof( int ) << 3 ); } void MSG_WriteDword( sizebuf_t *sb, dword val ) { MSG_WriteUBitLong( sb, val, sizeof( dword ) << 3 ); } void MSG_WriteFloat( sizebuf_t *sb, float val ) { MSG_WriteBits( sb, &val, sizeof( val ) << 3 ); } qboolean MSG_WriteBytes( sizebuf_t *sb, const void *pBuf, int nBytes ) { return MSG_WriteBits( sb, pBuf, nBytes << 3 ); } qboolean MSG_WriteString( sizebuf_t *sb, const char *pStr ) { if( pStr ) { do { MSG_WriteChar( sb, *pStr ); pStr++; } while( *( pStr - 1 )); } else MSG_WriteChar( sb, 0 ); return !sb->bOverflow; } int MSG_ReadOneBit( sizebuf_t *sb ) { if( !MSG_Overflow( sb, 1 )) { int value = sb->pData[sb->iCurBit >> 3] & (1 << ( sb->iCurBit & 7 )); sb->iCurBit++; return !!value; } return 0; } uint MSG_ReadUBitLong( sizebuf_t *sb, int numbits ) { int idword1; uint dword1, ret; if( numbits == 8 ) { int leftBits = MSG_GetNumBitsLeft( sb ); if( leftBits >= 0 && leftBits < 8 ) return 0; // end of message } if(( sb->iCurBit + numbits ) > sb->nDataBits ) { sb->bOverflow = true; sb->iCurBit = sb->nDataBits; return 0; } Assert( numbits > 0 && numbits <= 32 ); // Read the current dword. idword1 = sb->iCurBit >> 5; dword1 = ((uint *)sb->pData)[idword1]; dword1 >>= ( sb->iCurBit & 31 ); // get the bits we're interested in. sb->iCurBit += numbits; ret = dword1; // Does it span this dword? if(( sb->iCurBit - 1 ) >> 5 == idword1 ) { if( numbits != 32 ) ret &= ExtraMasks[numbits]; } else { int nExtraBits = sb->iCurBit & 31; uint dword2 = ((uint *)sb->pData)[idword1+1] & ExtraMasks[nExtraBits]; // no need to mask since we hit the end of the dword. // shift the second dword's part into the high bits. ret |= (dword2 << ( numbits - nExtraBits )); } return ret; } float MSG_ReadBitFloat( sizebuf_t *sb ) { int val; int bit, byte; Assert( sizeof( float ) == sizeof( int )); Assert( sizeof( float ) == 4 ); if( MSG_Overflow( sb, 32 )) return 0.0f; bit = sb->iCurBit & 0x7; byte = sb->iCurBit >> 3; val = sb->pData[byte] >> bit; val |= ((int)sb->pData[byte + 1]) << ( 8 - bit ); val |= ((int)sb->pData[byte + 2]) << ( 16 - bit ); val |= ((int)sb->pData[byte + 3]) << ( 24 - bit ); if( bit != 0 ) val |= ((int)sb->pData[byte + 4]) << ( 32 - bit ); sb->iCurBit += 32; return *((float *)&val); } qboolean MSG_ReadBits( sizebuf_t *sb, void *pOutData, int nBits ) { byte *pOut = (byte *)pOutData; int nBitsLeft = nBits; // get output dword-aligned. while((( dword )pOut & 3) != 0 && nBitsLeft >= 8 ) { *pOut = (byte)MSG_ReadUBitLong( sb, 8 ); ++pOut; nBitsLeft -= 8; } // read dwords. while( nBitsLeft >= 32 ) { *((dword *)pOut) = MSG_ReadUBitLong( sb, 32 ); pOut += sizeof( dword ); nBitsLeft -= 32; } // read the remaining bytes. while( nBitsLeft >= 8 ) { *pOut = MSG_ReadUBitLong( sb, 8 ); ++pOut; nBitsLeft -= 8; } // read the remaining bits. if( nBitsLeft ) { *pOut = MSG_ReadUBitLong( sb, nBitsLeft ); } return !sb->bOverflow; } float MSG_ReadBitAngle( sizebuf_t *sb, int numbits ) { float fReturn, shift; int i; shift = (float)( 1 << numbits ); i = MSG_ReadUBitLong( sb, numbits ); fReturn = (float)i * ( 360.0f / shift ); // clamp the finale angle if( fReturn < -180.0f ) fReturn += 360.0f; else if( fReturn > 180.0f ) fReturn -= 360.0f; return fReturn; } // Append numbits least significant bits from data to the current bit stream int MSG_ReadSBitLong( sizebuf_t *sb, int numbits ) { int r, sign; r = MSG_ReadUBitLong( sb, numbits - 1 ); // NOTE: it does this wierdness here so it's bit-compatible with regular integer data in the buffer. // (Some old code writes direct integers right into the buffer). sign = MSG_ReadOneBit( sb ); if( sign ) r = -( BIT( numbits - 1 ) - r ); return r; } uint MSG_ReadBitLong( sizebuf_t *sb, int numbits, qboolean bSigned ) { if( bSigned ) return (uint)MSG_ReadSBitLong( sb, numbits ); return MSG_ReadUBitLong( sb, numbits ); } int MSG_ReadCmd( sizebuf_t *sb, netsrc_t type ) { int cmd = MSG_ReadUBitLong( sb, sizeof( byte ) << 3 ); #ifdef DEBUG_NET_MESSAGES_READ if( type == NS_SERVER ) { Con_Printf( "^1cl^7 read: %s\n", CL_MsgInfo( cmd )); } else if( cmd >= 0 && cmd <= clc_lastmsg ) { Con_Printf( "^1sv^7 read: %s\n", clc_strings[cmd] ); } #endif return cmd; } int MSG_ReadChar( sizebuf_t *sb ) { return MSG_ReadSBitLong( sb, sizeof( char ) << 3 ); } int MSG_ReadByte( sizebuf_t *sb ) { return MSG_ReadUBitLong( sb, sizeof( byte ) << 3 ); } int MSG_ReadShort( sizebuf_t *sb ) { return MSG_ReadSBitLong( sb, sizeof( short ) << 3 ); } int MSG_ReadWord( sizebuf_t *sb ) { return MSG_ReadUBitLong( sb, sizeof( word ) << 3 ); } float MSG_ReadCoord( sizebuf_t *sb ) { // g-cont. we loose precision here but keep old size of coord variable! if( FBitSet( host.features, ENGINE_WRITE_LARGE_COORD )) return (float)(MSG_ReadShort( sb )); return (float)(MSG_ReadShort( sb ) * ( 1.0f / 8.0f )); } void MSG_ReadVec3Coord( sizebuf_t *sb, vec3_t fa ) { fa[0] = MSG_ReadCoord( sb ); fa[1] = MSG_ReadCoord( sb ); fa[2] = MSG_ReadCoord( sb ); } void MSG_ReadVec3Angles( sizebuf_t *sb, vec3_t fa ) { fa[0] = MSG_ReadBitAngle( sb, 16 ); fa[1] = MSG_ReadBitAngle( sb, 16 ); fa[2] = MSG_ReadBitAngle( sb, 16 ); } int MSG_ReadLong( sizebuf_t *sb ) { return MSG_ReadSBitLong( sb, sizeof( int ) << 3 ); } dword MSG_ReadDword( sizebuf_t *sb ) { return MSG_ReadUBitLong( sb, sizeof( dword ) << 3 ); } float MSG_ReadFloat( sizebuf_t *sb ) { float ret; Assert( sizeof( ret ) == 4 ); MSG_ReadBits( sb, &ret, 32 ); return ret; } qboolean MSG_ReadBytes( sizebuf_t *sb, void *pOut, int nBytes ) { return MSG_ReadBits( sb, pOut, nBytes << 3 ); } char *MSG_ReadStringExt( sizebuf_t *sb, qboolean bLine ) { static char string[4096]; int l = 0, c; do { // use MSG_ReadByte so -1 is out of bounds c = MSG_ReadByte( sb ); if( c == 0 ) break; else if( bLine && c == '\n' ) break; // translate all fmt spec to avoid crash bugs // NOTE: but game strings leave unchanged. see pfnWriteString for details if( c == '%' ) c = '.'; string[l] = c; l++; } while( l < sizeof( string ) - 1 ); string[l] = 0; // terminator return string; } void MSG_ExciseBits( sizebuf_t *sb, int startbit, int bitstoremove ) { int i, endbit = startbit + bitstoremove; int remaining_to_end = sb->nDataBits - endbit; sizebuf_t temp; MSG_StartWriting( &temp, sb->pData, MSG_GetMaxBytes( sb ), startbit, -1 ); MSG_SeekToBit( sb, endbit, SEEK_SET ); for( i = 0; i < remaining_to_end; i++ ) { MSG_WriteOneBit( &temp, MSG_ReadOneBit( sb )); } MSG_SeekToBit( sb, startbit, SEEK_SET ); sb->nDataBits -= bitstoremove; }