/* gl_image.c - texture uploading and processing Copyright (C) 2010 Uncle Mike This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. */ #include "gl_local.h" #include "crclib.h" #define TEXTURES_HASH_SIZE (MAX_TEXTURES >> 2) static gl_texture_t gl_textures[MAX_TEXTURES]; static gl_texture_t* gl_texturesHashTable[TEXTURES_HASH_SIZE]; static uint gl_numTextures; static byte dottexture[8][8] = { {0,1,1,0,0,0,0,0}, {1,1,1,1,0,0,0,0}, {1,1,1,1,0,0,0,0}, {0,1,1,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0,0}, }; #define IsLightMap( tex ) ( FBitSet(( tex )->flags, TF_ATLAS_PAGE )) /* ================= R_GetTexture acess to array elem ================= */ gl_texture_t *R_GetTexture( GLenum texnum ) { ASSERT( texnum >= 0 && texnum < MAX_TEXTURES ); return &gl_textures[texnum]; } /* ================= GL_TargetToString ================= */ static const char *GL_TargetToString( GLenum target ) { switch( target ) { case GL_TEXTURE_1D: return "1D"; case GL_TEXTURE_2D: return "2D"; case GL_TEXTURE_2D_MULTISAMPLE: return "2D Multisample"; case GL_TEXTURE_3D: return "3D"; case GL_TEXTURE_CUBE_MAP_ARB: return "Cube"; case GL_TEXTURE_2D_ARRAY_EXT: return "Array"; case GL_TEXTURE_RECTANGLE_EXT: return "Rect"; } return "??"; } /* ================= GL_Bind ================= */ void GL_Bind( GLint tmu, GLenum texnum ) { gl_texture_t *texture; GLuint glTarget; // missed or invalid texture? if( texnum <= 0 || texnum >= MAX_TEXTURES ) { if( texnum != 0 ) gEngfuncs.Con_DPrintf( S_ERROR "GL_Bind: invalid texturenum %d\n", texnum ); texnum = tr.defaultTexture; } if( tmu != GL_KEEP_UNIT ) GL_SelectTexture( tmu ); else tmu = glState.activeTMU; texture = &gl_textures[texnum]; glTarget = texture->target; if( glTarget == GL_TEXTURE_2D_ARRAY_EXT ) glTarget = GL_TEXTURE_2D; if( glState.currentTextureTargets[tmu] != glTarget ) { if( glState.currentTextureTargets[tmu] != GL_NONE ) pglDisable( glState.currentTextureTargets[tmu] ); glState.currentTextureTargets[tmu] = glTarget; pglEnable( glState.currentTextureTargets[tmu] ); } if( glState.currentTextures[tmu] == texture->texnum ) return; pglBindTexture( texture->target, texture->texnum ); glState.currentTextures[tmu] = texture->texnum; } /* ================= GL_ApplyTextureParams ================= */ void GL_ApplyTextureParams( gl_texture_t *tex ) { vec4_t border = { 0.0f, 0.0f, 0.0f, 1.0f }; if( !glw_state.initialized ) return; Assert( tex != NULL ); // multisample textures does not support any sampling state changing if( FBitSet( tex->flags, TF_MULTISAMPLE )) return; // set texture filter if( FBitSet( tex->flags, TF_DEPTHMAP )) { if( !FBitSet( tex->flags, TF_NOCOMPARE )) { pglTexParameteri( tex->target, GL_TEXTURE_COMPARE_MODE_ARB, GL_COMPARE_R_TO_TEXTURE_ARB ); pglTexParameteri( tex->target, GL_TEXTURE_COMPARE_FUNC_ARB, GL_LEQUAL ); } if( FBitSet( tex->flags, TF_LUMINANCE )) pglTexParameteri( tex->target, GL_DEPTH_TEXTURE_MODE_ARB, GL_LUMINANCE ); else pglTexParameteri( tex->target, GL_DEPTH_TEXTURE_MODE_ARB, GL_INTENSITY ); if( FBitSet( tex->flags, TF_NEAREST )) { pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST ); pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST ); } else { pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); } // allow max anisotropy as 1.0f on depth textures if( GL_Support( GL_ANISOTROPY_EXT )) pglTexParameterf( tex->target, GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.0f ); } else if( FBitSet( tex->flags, TF_NOMIPMAP ) || tex->numMips <= 1 ) { if( FBitSet( tex->flags, TF_NEAREST ) || ( IsLightMap( tex ) && gl_lightmap_nearest->value )) { pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST ); pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST ); } else { pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); } } else { if( FBitSet( tex->flags, TF_NEAREST ) || gl_texture_nearest->value ) { pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_NEAREST ); pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST ); } else { pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR ); pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); } // set texture anisotropy if available if( GL_Support( GL_ANISOTROPY_EXT ) && ( tex->numMips > 1 ) && !FBitSet( tex->flags, TF_ALPHACONTRAST )) pglTexParameterf( tex->target, GL_TEXTURE_MAX_ANISOTROPY_EXT, gl_texture_anisotropy->value ); // set texture LOD bias if available if( GL_Support( GL_TEXTURE_LOD_BIAS ) && ( tex->numMips > 1 )) pglTexParameterf( tex->target, GL_TEXTURE_LOD_BIAS_EXT, gl_texture_lodbias->value ); } // check if border is not supported if( FBitSet( tex->flags, TF_BORDER ) && !GL_Support( GL_CLAMP_TEXBORDER_EXT )) { ClearBits( tex->flags, TF_BORDER ); SetBits( tex->flags, TF_CLAMP ); } // only seamless cubemaps allows wrap 'clamp_to_border" if( tex->target == GL_TEXTURE_CUBE_MAP_ARB && !GL_Support( GL_ARB_SEAMLESS_CUBEMAP ) && FBitSet( tex->flags, TF_BORDER )) ClearBits( tex->flags, TF_BORDER ); // set texture wrap if( FBitSet( tex->flags, TF_BORDER )) { pglTexParameteri( tex->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER ); if( tex->target != GL_TEXTURE_1D ) pglTexParameteri( tex->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER ); if( tex->target == GL_TEXTURE_3D || tex->target == GL_TEXTURE_CUBE_MAP_ARB ) pglTexParameteri( tex->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_BORDER ); pglTexParameterfv( tex->target, GL_TEXTURE_BORDER_COLOR, border ); } else if( FBitSet( tex->flags, TF_CLAMP )) { if( GL_Support( GL_CLAMPTOEDGE_EXT )) { pglTexParameteri( tex->target, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE ); if( tex->target != GL_TEXTURE_1D ) pglTexParameteri( tex->target, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE ); if( tex->target == GL_TEXTURE_3D || tex->target == GL_TEXTURE_CUBE_MAP_ARB ) pglTexParameteri( tex->target, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE ); } else { pglTexParameteri( tex->target, GL_TEXTURE_WRAP_S, GL_CLAMP ); if( tex->target != GL_TEXTURE_1D ) pglTexParameteri( tex->target, GL_TEXTURE_WRAP_T, GL_CLAMP ); if( tex->target == GL_TEXTURE_3D || tex->target == GL_TEXTURE_CUBE_MAP_ARB ) pglTexParameteri( tex->target, GL_TEXTURE_WRAP_R, GL_CLAMP ); } } else { pglTexParameteri( tex->target, GL_TEXTURE_WRAP_S, GL_REPEAT ); if( tex->target != GL_TEXTURE_1D ) pglTexParameteri( tex->target, GL_TEXTURE_WRAP_T, GL_REPEAT ); if( tex->target == GL_TEXTURE_3D || tex->target == GL_TEXTURE_CUBE_MAP_ARB ) pglTexParameteri( tex->target, GL_TEXTURE_WRAP_R, GL_REPEAT ); } } /* ================= GL_UpdateTextureParams ================= */ static void GL_UpdateTextureParams( int iTexture ) { gl_texture_t *tex = &gl_textures[iTexture]; Assert( tex != NULL ); if( !tex->texnum ) return; // free slot GL_Bind( XASH_TEXTURE0, iTexture ); // set texture anisotropy if available if( GL_Support( GL_ANISOTROPY_EXT ) && ( tex->numMips > 1 ) && !FBitSet( tex->flags, TF_DEPTHMAP|TF_ALPHACONTRAST )) pglTexParameterf( tex->target, GL_TEXTURE_MAX_ANISOTROPY_EXT, gl_texture_anisotropy->value ); // set texture LOD bias if available if( GL_Support( GL_TEXTURE_LOD_BIAS ) && ( tex->numMips > 1 ) && !FBitSet( tex->flags, TF_DEPTHMAP )) pglTexParameterf( tex->target, GL_TEXTURE_LOD_BIAS_EXT, gl_texture_lodbias->value ); if( IsLightMap( tex )) { if( gl_lightmap_nearest->value ) { pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST ); pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST ); } else { pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR ); pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); } } if( tex->numMips <= 1 ) return; if( FBitSet( tex->flags, TF_NEAREST ) || gl_texture_nearest->value ) { pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_NEAREST ); pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_NEAREST ); } else { pglTexParameteri( tex->target, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR ); pglTexParameteri( tex->target, GL_TEXTURE_MAG_FILTER, GL_LINEAR ); } } /* ================= R_SetTextureParameters ================= */ void R_SetTextureParameters( void ) { int i; if( GL_Support( GL_ANISOTROPY_EXT )) { if( gl_texture_anisotropy->value > glConfig.max_texture_anisotropy ) gEngfuncs.Cvar_SetValue( "gl_anisotropy", glConfig.max_texture_anisotropy ); else if( gl_texture_anisotropy->value < 1.0f ) gEngfuncs.Cvar_SetValue( "gl_anisotropy", 1.0f ); } if( GL_Support( GL_TEXTURE_LOD_BIAS )) { if( gl_texture_lodbias->value < -glConfig.max_texture_lod_bias ) gEngfuncs.Cvar_SetValue( "gl_texture_lodbias", -glConfig.max_texture_lod_bias ); else if( gl_texture_lodbias->value > glConfig.max_texture_lod_bias ) gEngfuncs.Cvar_SetValue( "gl_texture_lodbias", glConfig.max_texture_lod_bias ); } ClearBits( gl_texture_anisotropy->flags, FCVAR_CHANGED ); ClearBits( gl_texture_lodbias->flags, FCVAR_CHANGED ); ClearBits( gl_texture_nearest->flags, FCVAR_CHANGED ); ClearBits( gl_lightmap_nearest->flags, FCVAR_CHANGED ); // change all the existing mipmapped texture objects for( i = 0; i < gl_numTextures; i++ ) GL_UpdateTextureParams( i ); } /* ================ GL_CalcTextureSamples ================ */ static int GL_CalcTextureSamples( int flags ) { if( FBitSet( flags, IMAGE_HAS_COLOR )) return FBitSet( flags, IMAGE_HAS_ALPHA ) ? 4 : 3; return FBitSet( flags, IMAGE_HAS_ALPHA ) ? 2 : 1; } /* ================== GL_CalcImageSize ================== */ static size_t GL_CalcImageSize( pixformat_t format, int width, int height, int depth ) { size_t size = 0; // check the depth error depth = Q_max( 1, depth ); switch( format ) { case PF_LUMINANCE: size = width * height * depth; break; case PF_RGB_24: case PF_BGR_24: size = width * height * depth * 3; break; case PF_BGRA_32: case PF_RGBA_32: size = width * height * depth * 4; break; case PF_DXT1: size = (((width + 3) >> 2) * ((height + 3) >> 2) * 8) * depth; break; case PF_DXT3: case PF_DXT5: case PF_ATI2: size = (((width + 3) >> 2) * ((height + 3) >> 2) * 16) * depth; break; } return size; } /* ================== GL_CalcTextureSize ================== */ static size_t GL_CalcTextureSize( GLenum format, int width, int height, int depth ) { size_t size = 0; // check the depth error depth = Q_max( 1, depth ); switch( format ) { case GL_COMPRESSED_RGB_S3TC_DXT1_EXT: case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT: size = (((width + 3) >> 2) * ((height + 3) >> 2) * 8) * depth; break; case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT: case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT: case GL_COMPRESSED_RED_GREEN_RGTC2_EXT: case GL_COMPRESSED_LUMINANCE_ALPHA_ARB: case GL_COMPRESSED_LUMINANCE_ALPHA_3DC_ATI: size = (((width + 3) >> 2) * ((height + 3) >> 2) * 16) * depth; break; case GL_RGBA8: case GL_RGBA: size = width * height * depth * 4; break; case GL_RGB8: case GL_RGB: size = width * height * depth * 3; break; case GL_RGB5: size = (width * height * depth * 3) / 2; break; case GL_RGBA4: size = (width * height * depth * 4) / 2; break; case GL_INTENSITY: case GL_LUMINANCE: case GL_INTENSITY8: case GL_LUMINANCE8: size = (width * height * depth); break; case GL_LUMINANCE_ALPHA: case GL_LUMINANCE8_ALPHA8: size = width * height * depth * 2; break; case GL_R8: size = width * height * depth; break; case GL_RG8: size = width * height * depth * 2; break; case GL_R16: size = width * height * depth * 2; break; case GL_RG16: size = width * height * depth * 4; break; case GL_R16F: case GL_LUMINANCE16F_ARB: size = width * height * depth * 2; // half-floats break; case GL_R32F: case GL_LUMINANCE32F_ARB: size = width * height * depth * 4; break; case GL_RG16F: case GL_LUMINANCE_ALPHA16F_ARB: size = width * height * depth * 4; break; case GL_RG32F: case GL_LUMINANCE_ALPHA32F_ARB: size = width * height * depth * 8; break; case GL_RGB16F_ARB: size = width * height * depth * 6; break; case GL_RGBA16F_ARB: size = width * height * depth * 8; break; case GL_RGB32F_ARB: size = width * height * depth * 12; break; case GL_RGBA32F_ARB: size = width * height * depth * 16; break; case GL_DEPTH_COMPONENT16: size = width * height * depth * 2; break; case GL_DEPTH_COMPONENT24: size = width * height * depth * 3; break; case GL_DEPTH_COMPONENT32F: size = width * height * depth * 4; break; default: gEngfuncs.Host_Error( "GL_CalcTextureSize: bad texture internal format (%u)\n", format ); break; } return size; } static int GL_CalcMipmapCount( gl_texture_t *tex, qboolean haveBuffer ) { int width, height; int mipcount; Assert( tex != NULL ); if( !haveBuffer || tex->target == GL_TEXTURE_3D ) return 1; // generate mip-levels by user request if( FBitSet( tex->flags, TF_NOMIPMAP )) return 1; // mip-maps can't exceeds 16 for( mipcount = 0; mipcount < 16; mipcount++ ) { width = Q_max( 1, ( tex->width >> mipcount )); height = Q_max( 1, ( tex->height >> mipcount )); if( width == 1 && height == 1 ) break; } return mipcount + 1; } /* ================ GL_SetTextureDimensions ================ */ static void GL_SetTextureDimensions( gl_texture_t *tex, int width, int height, int depth ) { int maxTextureSize = 0; int maxDepthSize = 1; Assert( tex != NULL ); switch( tex->target ) { case GL_TEXTURE_1D: case GL_TEXTURE_2D: case GL_TEXTURE_2D_MULTISAMPLE: maxTextureSize = glConfig.max_2d_texture_size; break; case GL_TEXTURE_2D_ARRAY_EXT: maxDepthSize = glConfig.max_2d_texture_layers; maxTextureSize = glConfig.max_2d_texture_size; break; case GL_TEXTURE_RECTANGLE_EXT: maxTextureSize = glConfig.max_2d_rectangle_size; break; case GL_TEXTURE_CUBE_MAP_ARB: maxTextureSize = glConfig.max_cubemap_size; break; case GL_TEXTURE_3D: maxDepthSize = glConfig.max_3d_texture_size; maxTextureSize = glConfig.max_3d_texture_size; break; default: Assert( false ); } // store original sizes tex->srcWidth = width; tex->srcHeight = height; if( !GL_Support( GL_ARB_TEXTURE_NPOT_EXT )) { int step = (int)gl_round_down->value; int scaled_width, scaled_height; for( scaled_width = 1; scaled_width < width; scaled_width <<= 1 ); if( step > 0 && width < scaled_width && ( step == 1 || ( scaled_width - width ) > ( scaled_width >> step ))) scaled_width >>= 1; for( scaled_height = 1; scaled_height < height; scaled_height <<= 1 ); if( step > 0 && height < scaled_height && ( step == 1 || ( scaled_height - height ) > ( scaled_height >> step ))) scaled_height >>= 1; width = scaled_width; height = scaled_height; } if( width > maxTextureSize || height > maxTextureSize || depth > maxDepthSize ) { if( tex->target == GL_TEXTURE_1D ) { while( width > maxTextureSize ) width >>= 1; } else if( tex->target == GL_TEXTURE_3D || tex->target == GL_TEXTURE_2D_ARRAY_EXT ) { while( width > maxTextureSize || height > maxTextureSize || depth > maxDepthSize ) { width >>= 1; height >>= 1; depth >>= 1; } } else // all remaining cases { while( width > maxTextureSize || height > maxTextureSize ) { width >>= 1; height >>= 1; } } } // set the texture dimensions tex->width = Q_max( 1, width ); tex->height = Q_max( 1, height ); tex->depth = Q_max( 1, depth ); } /* =============== GL_SetTextureTarget =============== */ static void GL_SetTextureTarget( gl_texture_t *tex, rgbdata_t *pic ) { Assert( pic != NULL ); Assert( tex != NULL ); // correct depth size pic->depth = Q_max( 1, pic->depth ); tex->numMips = 0; // begin counting // correct mip count pic->numMips = Q_max( 1, pic->numMips ); // trying to determine texture type if( pic->width > 1 && pic->height <= 1 ) tex->target = GL_TEXTURE_1D; else if( FBitSet( pic->flags, IMAGE_CUBEMAP )) tex->target = GL_TEXTURE_CUBE_MAP_ARB; else if( FBitSet( pic->flags, IMAGE_MULTILAYER ) && pic->depth >= 1 ) tex->target = GL_TEXTURE_2D_ARRAY_EXT; else if( pic->width > 1 && pic->height > 1 && pic->depth > 1 ) tex->target = GL_TEXTURE_3D; else if( FBitSet( tex->flags, TF_RECTANGLE )) tex->target = GL_TEXTURE_RECTANGLE_EXT; else if( FBitSet(tex->flags, TF_MULTISAMPLE )) tex->target = GL_TEXTURE_2D_MULTISAMPLE; else tex->target = GL_TEXTURE_2D; // default case // check for hardware support if(( tex->target == GL_TEXTURE_CUBE_MAP_ARB ) && !GL_Support( GL_TEXTURE_CUBEMAP_EXT )) tex->target = GL_NONE; if(( tex->target == GL_TEXTURE_RECTANGLE_EXT ) && !GL_Support( GL_TEXTURE_2D_RECT_EXT )) tex->target = GL_TEXTURE_2D; // fallback if(( tex->target == GL_TEXTURE_2D_ARRAY_EXT ) && !GL_Support( GL_TEXTURE_ARRAY_EXT )) tex->target = GL_NONE; if(( tex->target == GL_TEXTURE_3D ) && !GL_Support( GL_TEXTURE_3D_EXT )) tex->target = GL_NONE; // check if depth textures are not supported if( FBitSet( tex->flags, TF_DEPTHMAP ) && !GL_Support( GL_DEPTH_TEXTURE )) tex->target = GL_NONE; // depth cubemaps only allowed when GL_EXT_gpu_shader4 is supported if( tex->target == GL_TEXTURE_CUBE_MAP_ARB && !GL_Support( GL_EXT_GPU_SHADER4 ) && FBitSet( tex->flags, TF_DEPTHMAP )) tex->target = GL_NONE; if(( tex->target == GL_TEXTURE_2D_MULTISAMPLE ) && !GL_Support( GL_TEXTURE_MULTISAMPLE )) tex->target = GL_NONE; } /* =============== GL_SetTextureFormat =============== */ static void GL_SetTextureFormat( gl_texture_t *tex, pixformat_t format, int channelMask ) { qboolean haveColor = ( channelMask & IMAGE_HAS_COLOR ); qboolean haveAlpha = ( channelMask & IMAGE_HAS_ALPHA ); Assert( tex != NULL ); if( ImageDXT( format )) { switch( format ) { case PF_DXT1: tex->format = GL_COMPRESSED_RGB_S3TC_DXT1_EXT; break; // never use DXT1 with 1-bit alpha case PF_DXT3: tex->format = GL_COMPRESSED_RGBA_S3TC_DXT3_EXT; break; case PF_DXT5: tex->format = GL_COMPRESSED_RGBA_S3TC_DXT5_EXT; break; case PF_ATI2: if( glConfig.hardware_type == GLHW_RADEON ) tex->format = GL_COMPRESSED_LUMINANCE_ALPHA_3DC_ATI; else tex->format = GL_COMPRESSED_RED_GREEN_RGTC2_EXT; break; } return; } else if( FBitSet( tex->flags, TF_DEPTHMAP )) { if( FBitSet( tex->flags, TF_ARB_16BIT )) tex->format = GL_DEPTH_COMPONENT16; else if( FBitSet( tex->flags, TF_ARB_FLOAT ) && GL_Support( GL_ARB_DEPTH_FLOAT_EXT )) tex->format = GL_DEPTH_COMPONENT32F; else tex->format = GL_DEPTH_COMPONENT24; } else if( FBitSet( tex->flags, TF_ARB_FLOAT|TF_ARB_16BIT ) && GL_Support( GL_ARB_TEXTURE_FLOAT_EXT )) { if( haveColor && haveAlpha ) { if( FBitSet( tex->flags, TF_ARB_16BIT ) || gpGlobals->desktopBitsPixel == 16 ) tex->format = GL_RGBA16F_ARB; else tex->format = GL_RGBA32F_ARB; } else if( haveColor ) { if( FBitSet( tex->flags, TF_ARB_16BIT ) || gpGlobals->desktopBitsPixel == 16 ) tex->format = GL_RGB16F_ARB; else tex->format = GL_RGB32F_ARB; } else if( haveAlpha ) { if( FBitSet( tex->flags, TF_ARB_16BIT ) || gpGlobals->desktopBitsPixel == 16 ) tex->format = GL_RG16F; else tex->format = GL_RG32F; } else { if( FBitSet( tex->flags, TF_ARB_16BIT ) || gpGlobals->desktopBitsPixel == 16 ) tex->format = GL_LUMINANCE16F_ARB; else tex->format = GL_LUMINANCE32F_ARB; } } else { // NOTE: not all the types will be compressed int bits = gpGlobals->desktopBitsPixel; switch( GL_CalcTextureSamples( channelMask )) { case 1: if( FBitSet( tex->flags, TF_ALPHACONTRAST )) tex->format = GL_INTENSITY8; else tex->format = GL_LUMINANCE8; break; case 2: tex->format = GL_LUMINANCE8_ALPHA8; break; case 3: switch( bits ) { case 16: tex->format = GL_RGB5; break; case 32: tex->format = GL_RGB8; break; default: tex->format = GL_RGB; break; } break; case 4: default: switch( bits ) { case 16: tex->format = GL_RGBA4; break; case 32: tex->format = GL_RGBA8; break; default: tex->format = GL_RGBA; break; } break; } } } /* ================= GL_ResampleTexture Assume input buffer is RGBA ================= */ byte *GL_ResampleTexture( const byte *source, int inWidth, int inHeight, int outWidth, int outHeight, qboolean isNormalMap ) { uint frac, fracStep; uint *in = (uint *)source; uint p1[0x1000], p2[0x1000]; byte *pix1, *pix2, *pix3, *pix4; uint *out, *inRow1, *inRow2; static byte *scaledImage = NULL; // pointer to a scaled image vec3_t normal; int i, x, y; if( !source ) return NULL; scaledImage = Mem_Realloc( r_temppool, scaledImage, outWidth * outHeight * 4 ); fracStep = inWidth * 0x10000 / outWidth; out = (uint *)scaledImage; frac = fracStep >> 2; for( i = 0; i < outWidth; i++ ) { p1[i] = 4 * (frac >> 16); frac += fracStep; } frac = (fracStep >> 2) * 3; for( i = 0; i < outWidth; i++ ) { p2[i] = 4 * (frac >> 16); frac += fracStep; } if( isNormalMap ) { for( y = 0; y < outHeight; y++, out += outWidth ) { inRow1 = in + inWidth * (int)(((float)y + 0.25f) * inHeight / outHeight); inRow2 = in + inWidth * (int)(((float)y + 0.75f) * inHeight / outHeight); for( x = 0; x < outWidth; x++ ) { pix1 = (byte *)inRow1 + p1[x]; pix2 = (byte *)inRow1 + p2[x]; pix3 = (byte *)inRow2 + p1[x]; pix4 = (byte *)inRow2 + p2[x]; normal[0] = MAKE_SIGNED( pix1[0] ) + MAKE_SIGNED( pix2[0] ) + MAKE_SIGNED( pix3[0] ) + MAKE_SIGNED( pix4[0] ); normal[1] = MAKE_SIGNED( pix1[1] ) + MAKE_SIGNED( pix2[1] ) + MAKE_SIGNED( pix3[1] ) + MAKE_SIGNED( pix4[1] ); normal[2] = MAKE_SIGNED( pix1[2] ) + MAKE_SIGNED( pix2[2] ) + MAKE_SIGNED( pix3[2] ) + MAKE_SIGNED( pix4[2] ); if( !VectorNormalizeLength( normal )) VectorSet( normal, 0.5f, 0.5f, 1.0f ); ((byte *)(out+x))[0] = 128 + (byte)(127.0f * normal[0]); ((byte *)(out+x))[1] = 128 + (byte)(127.0f * normal[1]); ((byte *)(out+x))[2] = 128 + (byte)(127.0f * normal[2]); ((byte *)(out+x))[3] = 255; } } } else { for( y = 0; y < outHeight; y++, out += outWidth ) { inRow1 = in + inWidth * (int)(((float)y + 0.25f) * inHeight / outHeight); inRow2 = in + inWidth * (int)(((float)y + 0.75f) * inHeight / outHeight); for( x = 0; x < outWidth; x++ ) { pix1 = (byte *)inRow1 + p1[x]; pix2 = (byte *)inRow1 + p2[x]; pix3 = (byte *)inRow2 + p1[x]; pix4 = (byte *)inRow2 + p2[x]; ((byte *)(out+x))[0] = (pix1[0] + pix2[0] + pix3[0] + pix4[0]) >> 2; ((byte *)(out+x))[1] = (pix1[1] + pix2[1] + pix3[1] + pix4[1]) >> 2; ((byte *)(out+x))[2] = (pix1[2] + pix2[2] + pix3[2] + pix4[2]) >> 2; ((byte *)(out+x))[3] = (pix1[3] + pix2[3] + pix3[3] + pix4[3]) >> 2; } } } return scaledImage; } /* ================= GL_BoxFilter3x3 box filter 3x3 ================= */ void GL_BoxFilter3x3( byte *out, const byte *in, int w, int h, int x, int y ) { int r = 0, g = 0, b = 0, a = 0; int count = 0, acount = 0; int i, j, u, v; const byte *pixel; for( i = 0; i < 3; i++ ) { u = ( i - 1 ) + x; for( j = 0; j < 3; j++ ) { v = ( j - 1 ) + y; if( u >= 0 && u < w && v >= 0 && v < h ) { pixel = &in[( u + v * w ) * 4]; if( pixel[3] != 0 ) { r += pixel[0]; g += pixel[1]; b += pixel[2]; a += pixel[3]; acount++; } } } } if( acount == 0 ) acount = 1; out[0] = r / acount; out[1] = g / acount; out[2] = b / acount; // out[3] = (int)( SimpleSpline( ( a / 12.0f ) / 255.0f ) * 255 ); } /* ================= GL_ApplyFilter Apply box-filter to 1-bit alpha ================= */ byte *GL_ApplyFilter( const byte *source, int width, int height ) { byte *in = (byte *)source; byte *out = (byte *)source; int i; if( ENGINE_GET_PARM( PARM_QUAKE_COMPATIBLE ) || glConfig.max_multisamples > 1 ) return in; for( i = 0; source && i < width * height; i++, in += 4 ) { if( in[0] == 0 && in[1] == 0 && in[2] == 0 && in[3] == 0 ) GL_BoxFilter3x3( in, source, width, height, i % width, i / width ); } return out; } /* ================= GL_BuildMipMap Operates in place, quartering the size of the texture ================= */ static void GL_BuildMipMap( byte *in, int srcWidth, int srcHeight, int srcDepth, int flags ) { byte *out = in; int instride = ALIGN( srcWidth * 4, 1 ); int mipWidth, mipHeight, outpadding; int row, x, y, z; vec3_t normal; if( !in ) return; mipWidth = Q_max( 1, ( srcWidth >> 1 )); mipHeight = Q_max( 1, ( srcHeight >> 1 )); outpadding = ALIGN( mipWidth * 4, 1 ) - mipWidth * 4; row = srcWidth << 2; if( FBitSet( flags, TF_ALPHACONTRAST )) { memset( in, mipWidth, mipWidth * mipHeight * 4 ); return; } // move through all layers for( z = 0; z < srcDepth; z++ ) { if( FBitSet( flags, TF_NORMALMAP )) { for( y = 0; y < mipHeight; y++, in += instride * 2, out += outpadding ) { byte *next = ((( y << 1 ) + 1 ) < srcHeight ) ? ( in + instride ) : in; for( x = 0, row = 0; x < mipWidth; x++, row += 8, out += 4 ) { if((( x << 1 ) + 1 ) < srcWidth ) { normal[0] = MAKE_SIGNED( in[row+0] ) + MAKE_SIGNED( in[row+4] ) + MAKE_SIGNED( next[row+0] ) + MAKE_SIGNED( next[row+4] ); normal[1] = MAKE_SIGNED( in[row+1] ) + MAKE_SIGNED( in[row+5] ) + MAKE_SIGNED( next[row+1] ) + MAKE_SIGNED( next[row+5] ); normal[2] = MAKE_SIGNED( in[row+2] ) + MAKE_SIGNED( in[row+6] ) + MAKE_SIGNED( next[row+2] ) + MAKE_SIGNED( next[row+6] ); } else { normal[0] = MAKE_SIGNED( in[row+0] ) + MAKE_SIGNED( next[row+0] ); normal[1] = MAKE_SIGNED( in[row+1] ) + MAKE_SIGNED( next[row+1] ); normal[2] = MAKE_SIGNED( in[row+2] ) + MAKE_SIGNED( next[row+2] ); } if( !VectorNormalizeLength( normal )) VectorSet( normal, 0.5f, 0.5f, 1.0f ); out[0] = 128 + (byte)(127.0f * normal[0]); out[1] = 128 + (byte)(127.0f * normal[1]); out[2] = 128 + (byte)(127.0f * normal[2]); out[3] = 255; } } } else { for( y = 0; y < mipHeight; y++, in += instride * 2, out += outpadding ) { byte *next = ((( y << 1 ) + 1 ) < srcHeight ) ? ( in + instride ) : in; for( x = 0, row = 0; x < mipWidth; x++, row += 8, out += 4 ) { if((( x << 1 ) + 1 ) < srcWidth ) { out[0] = (in[row+0] + in[row+4] + next[row+0] + next[row+4]) >> 2; out[1] = (in[row+1] + in[row+5] + next[row+1] + next[row+5]) >> 2; out[2] = (in[row+2] + in[row+6] + next[row+2] + next[row+6]) >> 2; out[3] = (in[row+3] + in[row+7] + next[row+3] + next[row+7]) >> 2; } else { out[0] = (in[row+0] + next[row+0]) >> 1; out[1] = (in[row+1] + next[row+1]) >> 1; out[2] = (in[row+2] + next[row+2]) >> 1; out[3] = (in[row+3] + next[row+3]) >> 1; } } } } } } static void GL_TextureImageRAW( gl_texture_t *tex, GLint side, GLint level, GLint width, GLint height, GLint depth, GLint type, const void *data ) { GLuint cubeTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB; qboolean subImage = FBitSet( tex->flags, TF_IMG_UPLOADED ); GLenum inFormat = gEngfuncs.Image_GetPFDesc(type)->glFormat; GLint dataType = GL_UNSIGNED_BYTE; GLsizei samplesCount = 0; Assert( tex != NULL ); if( FBitSet( tex->flags, TF_DEPTHMAP )) inFormat = GL_DEPTH_COMPONENT; if( FBitSet( tex->flags, TF_ARB_16BIT )) dataType = GL_HALF_FLOAT_ARB; else if( FBitSet( tex->flags, TF_ARB_FLOAT )) dataType = GL_FLOAT; if( tex->target == GL_TEXTURE_1D ) { if( subImage ) pglTexSubImage1D( tex->target, level, 0, width, inFormat, dataType, data ); else pglTexImage1D( tex->target, level, tex->format, width, 0, inFormat, dataType, data ); } else if( tex->target == GL_TEXTURE_CUBE_MAP_ARB ) { if( subImage ) pglTexSubImage2D( cubeTarget + side, level, 0, 0, width, height, inFormat, dataType, data ); else pglTexImage2D( cubeTarget + side, level, tex->format, width, height, 0, inFormat, dataType, data ); } else if( tex->target == GL_TEXTURE_3D || tex->target == GL_TEXTURE_2D_ARRAY_EXT ) { if( subImage ) pglTexSubImage3D( tex->target, level, 0, 0, 0, width, height, depth, inFormat, dataType, data ); else pglTexImage3D( tex->target, level, tex->format, width, height, depth, 0, inFormat, dataType, data ); } else if( tex->target == GL_TEXTURE_2D_MULTISAMPLE ) { #if !defined( XASH_GLES ) && !defined( XASH_GL4ES ) samplesCount = (GLsizei)gEngfuncs.pfnGetCvarFloat("gl_msaa_samples"); switch (samplesCount) { case 2: case 4: case 8: case 16: break; default: samplesCount = 1; } pglTexImage2DMultisample( tex->target, samplesCount, tex->format, width, height, GL_TRUE ); #else /* !XASH_GLES && !XASH_GL4ES */ gEngfuncs.Con_Printf( S_ERROR "GLES renderer don't support GL_TEXTURE_2D_MULTISAMPLE!\n" ); #endif /* !XASH_GLES && !XASH_GL4ES */ } else // 2D or RECT { if( subImage ) pglTexSubImage2D( tex->target, level, 0, 0, width, height, inFormat, dataType, data ); else pglTexImage2D( tex->target, level, tex->format, width, height, 0, inFormat, dataType, data ); } } static void GL_TextureImageDXT( gl_texture_t *tex, GLint side, GLint level, GLint width, GLint height, GLint depth, size_t size, const void *data ) { GLuint cubeTarget = GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB; qboolean subImage = FBitSet( tex->flags, TF_IMG_UPLOADED ); Assert( tex != NULL ); #ifndef XASH_GLES if( tex->target == GL_TEXTURE_1D ) { if( subImage ) pglCompressedTexSubImage1DARB( tex->target, level, 0, width, tex->format, size, data ); else pglCompressedTexImage1DARB( tex->target, level, tex->format, width, 0, size, data ); } else if( tex->target == GL_TEXTURE_CUBE_MAP_ARB ) { if( subImage ) pglCompressedTexSubImage2DARB( cubeTarget + side, level, 0, 0, width, height, tex->format, size, data ); else pglCompressedTexImage2DARB( cubeTarget + side, level, tex->format, width, height, 0, size, data ); } else if( tex->target == GL_TEXTURE_3D || tex->target == GL_TEXTURE_2D_ARRAY_EXT ) { if( subImage ) pglCompressedTexSubImage3DARB( tex->target, level, 0, 0, 0, width, height, depth, tex->format, size, data ); else pglCompressedTexImage3DARB( tex->target, level, tex->format, width, height, depth, 0, size, data ); } else // 2D or RECT { if( subImage ) pglCompressedTexSubImage2DARB( tex->target, level, 0, 0, width, height, tex->format, size, data ); else pglCompressedTexImage2DARB( tex->target, level, tex->format, width, height, 0, size, data ); } #endif } /* =============== GL_CheckTexImageError show GL-errors on load images =============== */ static void GL_CheckTexImageError( gl_texture_t *tex ) { int err; Assert( tex != NULL ); // catch possible errors if( CVAR_TO_BOOL( gl_check_errors ) && ( err = pglGetError()) != GL_NO_ERROR ) gEngfuncs.Con_Printf( S_OPENGL_ERROR "%s while uploading %s [%s]\n", GL_ErrorString( err ), tex->name, GL_TargetToString( tex->target )); } /* =============== GL_UploadTexture upload texture into video memory =============== */ static qboolean GL_UploadTexture( gl_texture_t *tex, rgbdata_t *pic ) { byte *buf, *data; size_t texsize, size; uint width, height; uint i, j, numSides; uint offset = 0; qboolean normalMap; const byte *bufend; // dedicated server if( !glw_state.initialized ) return true; Assert( pic != NULL ); Assert( tex != NULL ); GL_SetTextureTarget( tex, pic ); // must be first // make sure what target is correct if( tex->target == GL_NONE ) { gEngfuncs.Con_DPrintf( S_ERROR "GL_UploadTexture: %s is not supported by your hardware\n", tex->name ); return false; } GL_SetTextureDimensions( tex, pic->width, pic->height, pic->depth ); GL_SetTextureFormat( tex, pic->type, pic->flags ); tex->fogParams[0] = pic->fogParams[0]; tex->fogParams[1] = pic->fogParams[1]; tex->fogParams[2] = pic->fogParams[2]; tex->fogParams[3] = pic->fogParams[3]; if(( pic->width * pic->height ) & 3 ) { // will be resampled, just tell me for debug targets gEngfuncs.Con_Reportf( "GL_UploadTexture: %s s&3 [%d x %d]\n", tex->name, pic->width, pic->height ); } buf = pic->buffer; bufend = pic->buffer + pic->size; // total image size include all the layers, cube sides, mipmaps offset = GL_CalcImageSize( pic->type, pic->width, pic->height, pic->depth ); texsize = GL_CalcTextureSize( tex->format, tex->width, tex->height, tex->depth ); normalMap = FBitSet( tex->flags, TF_NORMALMAP ) ? true : false; numSides = FBitSet( pic->flags, IMAGE_CUBEMAP ) ? 6 : 1; // uploading texture into video memory, change the binding glState.currentTextures[glState.activeTMU] = tex->texnum; pglBindTexture( tex->target, tex->texnum ); for( i = 0; i < numSides; i++ ) { // track the buffer bounds if( buf != NULL && buf >= bufend ) gEngfuncs.Host_Error( "GL_UploadTexture: %s image buffer overflow\n", tex->name ); if( ImageDXT( pic->type )) { for( j = 0; j < Q_max( 1, pic->numMips ); j++ ) { width = Q_max( 1, ( tex->width >> j )); height = Q_max( 1, ( tex->height >> j )); texsize = GL_CalcTextureSize( tex->format, width, height, tex->depth ); size = GL_CalcImageSize( pic->type, width, height, tex->depth ); GL_TextureImageDXT( tex, i, j, width, height, tex->depth, size, buf ); tex->size += texsize; buf += size; // move pointer tex->numMips++; GL_CheckTexImageError( tex ); } } else if( Q_max( 1, pic->numMips ) > 1 ) // not-compressed DDS { for( j = 0; j < Q_max( 1, pic->numMips ); j++ ) { width = Q_max( 1, ( tex->width >> j )); height = Q_max( 1, ( tex->height >> j )); texsize = GL_CalcTextureSize( tex->format, width, height, tex->depth ); size = GL_CalcImageSize( pic->type, width, height, tex->depth ); GL_TextureImageRAW( tex, i, j, width, height, tex->depth, pic->type, buf ); tex->size += texsize; buf += size; // move pointer tex->numMips++; GL_CheckTexImageError( tex ); } } else // RGBA32 { int mipCount = GL_CalcMipmapCount( tex, ( buf != NULL )); // NOTE: only single uncompressed textures can be resamples, no mips, no layers, no sides if(( tex->depth == 1 ) && (( pic->width != tex->width ) || ( pic->height != tex->height ))) data = GL_ResampleTexture( buf, pic->width, pic->height, tex->width, tex->height, normalMap ); else data = buf; if( !ImageDXT( pic->type ) && !FBitSet( tex->flags, TF_NOMIPMAP ) && FBitSet( pic->flags, IMAGE_ONEBIT_ALPHA )) data = GL_ApplyFilter( data, tex->width, tex->height ); // mips will be auto-generated if desired for( j = 0; j < mipCount; j++ ) { width = Q_max( 1, ( tex->width >> j )); height = Q_max( 1, ( tex->height >> j )); texsize = GL_CalcTextureSize( tex->format, width, height, tex->depth ); size = GL_CalcImageSize( pic->type, width, height, tex->depth ); GL_TextureImageRAW( tex, i, j, width, height, tex->depth, pic->type, data ); if( mipCount > 1 ) GL_BuildMipMap( data, width, height, tex->depth, tex->flags ); tex->size += texsize; tex->numMips++; GL_CheckTexImageError( tex ); } // move to next side if( numSides > 1 && ( buf != NULL )) buf += GL_CalcImageSize( pic->type, pic->width, pic->height, 1 ); } } SetBits( tex->flags, TF_IMG_UPLOADED ); // done tex->numMips /= numSides; return true; } /* =============== GL_ProcessImage do specified actions on pixels =============== */ static void GL_ProcessImage( gl_texture_t *tex, rgbdata_t *pic ) { uint img_flags = 0; // force upload texture as RGB or RGBA (detail textures requires this) if( tex->flags & TF_FORCE_COLOR ) pic->flags |= IMAGE_HAS_COLOR; if( pic->flags & IMAGE_HAS_ALPHA ) tex->flags |= TF_HAS_ALPHA; tex->encode = pic->encode; // share encode method if( ImageDXT( pic->type )) { if( !pic->numMips ) tex->flags |= TF_NOMIPMAP; // disable mipmapping by user request // clear all the unsupported flags tex->flags &= ~TF_KEEP_SOURCE; } else { // copy flag about luma pixels if( pic->flags & IMAGE_HAS_LUMA ) tex->flags |= TF_HAS_LUMA; if( pic->flags & IMAGE_QUAKEPAL ) tex->flags |= TF_QUAKEPAL; // create luma texture from quake texture if( tex->flags & TF_MAKELUMA ) { img_flags |= IMAGE_MAKE_LUMA; tex->flags &= ~TF_MAKELUMA; } if( !FBitSet( tex->flags, TF_IMG_UPLOADED ) && FBitSet( tex->flags, TF_KEEP_SOURCE )) tex->original = gEngfuncs.FS_CopyImage( pic ); // because current pic will be expanded to rgba // we need to expand image into RGBA buffer if( pic->type == PF_INDEXED_24 || pic->type == PF_INDEXED_32 ) img_flags |= IMAGE_FORCE_RGBA; // processing image before uploading (force to rgba, make luma etc) if( pic->buffer ) gEngfuncs.Image_Process( &pic, 0, 0, img_flags, 0 ); if( FBitSet( tex->flags, TF_LUMINANCE )) ClearBits( pic->flags, IMAGE_HAS_COLOR ); } } /* ================ GL_CheckTexName ================ */ qboolean GL_CheckTexName( const char *name ) { int len; if( !COM_CheckString( name )) return false; len = Q_strlen( name ); // because multi-layered textures can exceed name string if( len >= sizeof( gl_textures->name )) { gEngfuncs.Con_Printf( S_ERROR "LoadTexture: too long name %s (%d)\n", name, len ); return false; } return true; } /* ================ GL_TextureForName ================ */ static gl_texture_t *GL_TextureForName( const char *name ) { gl_texture_t *tex; uint hash; // find the texture in array hash = COM_HashKey( name, TEXTURES_HASH_SIZE ); for( tex = gl_texturesHashTable[hash]; tex != NULL; tex = tex->nextHash ) { if( !Q_stricmp( tex->name, name )) return tex; } return NULL; } /* ================ GL_AllocTexture ================ */ static gl_texture_t *GL_AllocTexture( const char *name, texFlags_t flags ) { gl_texture_t *tex; uint i; // find a free texture_t slot for( i = 0, tex = gl_textures; i < gl_numTextures; i++, tex++ ) if( !tex->name[0] ) break; if( i == gl_numTextures ) { if( gl_numTextures == MAX_TEXTURES ) gEngfuncs.Host_Error( "GL_AllocTexture: MAX_TEXTURES limit exceeds\n" ); gl_numTextures++; } tex = &gl_textures[i]; // copy initial params Q_strncpy( tex->name, name, sizeof( tex->name )); if( FBitSet( flags, TF_SKYSIDE )) tex->texnum = tr.skyboxbasenum++; else tex->texnum = i; // texnum is used for fast acess into gl_textures array too tex->flags = flags; // add to hash table tex->hashValue = COM_HashKey( name, TEXTURES_HASH_SIZE ); tex->nextHash = gl_texturesHashTable[tex->hashValue]; gl_texturesHashTable[tex->hashValue] = tex; return tex; } /* ================ GL_DeleteTexture ================ */ static void GL_DeleteTexture( gl_texture_t *tex ) { gl_texture_t **prev; gl_texture_t *cur; ASSERT( tex != NULL ); // already freed? if( !tex->texnum ) return; // debug if( !tex->name[0] ) { gEngfuncs.Con_Printf( S_ERROR "GL_DeleteTexture: trying to free unnamed texture with texnum %i\n", tex->texnum ); return; } // remove from hash table prev = &gl_texturesHashTable[tex->hashValue]; while( 1 ) { cur = *prev; if( !cur ) break; if( cur == tex ) { *prev = cur->nextHash; break; } prev = &cur->nextHash; } // release source if( tex->original ) gEngfuncs.FS_FreeImage( tex->original ); if( glw_state.initialized ) pglDeleteTextures( 1, &tex->texnum ); memset( tex, 0, sizeof( *tex )); } /* ================ GL_UpdateTexSize recalc image room ================ */ void GL_UpdateTexSize( int texnum, int width, int height, int depth ) { int i, j, texsize; int numSides; gl_texture_t *tex; if( texnum <= 0 || texnum >= MAX_TEXTURES ) return; tex = &gl_textures[texnum]; numSides = FBitSet( tex->flags, TF_CUBEMAP ) ? 6 : 1; GL_SetTextureDimensions( tex, width, height, depth ); tex->size = 0; // recompute now for( i = 0; i < numSides; i++ ) { for( j = 0; j < Q_max( 1, tex->numMips ); j++ ) { width = Q_max( 1, ( tex->width >> j )); height = Q_max( 1, ( tex->height >> j )); texsize = GL_CalcTextureSize( tex->format, width, height, tex->depth ); tex->size += texsize; } } } /* ================ GL_LoadTexture ================ */ int GL_LoadTexture( const char *name, const byte *buf, size_t size, int flags ) { gl_texture_t *tex; rgbdata_t *pic; uint picFlags = 0; if( !GL_CheckTexName( name )) return 0; // see if already loaded if(( tex = GL_TextureForName( name ))) return (tex - gl_textures); if( FBitSet( flags, TF_NOFLIP_TGA )) SetBits( picFlags, IL_DONTFLIP_TGA ); if( FBitSet( flags, TF_KEEP_SOURCE ) && !FBitSet( flags, TF_EXPAND_SOURCE )) SetBits( picFlags, IL_KEEP_8BIT ); // set some image flags gEngfuncs.Image_SetForceFlags( picFlags ); pic = gEngfuncs.FS_LoadImage( name, buf, size ); if( !pic ) return 0; // couldn't loading image // allocate the new one tex = GL_AllocTexture( name, flags ); GL_ProcessImage( tex, pic ); if( !GL_UploadTexture( tex, pic )) { memset( tex, 0, sizeof( gl_texture_t )); gEngfuncs.FS_FreeImage( pic ); // release source texture return 0; } GL_ApplyTextureParams( tex ); // update texture filter, wrap etc gEngfuncs.FS_FreeImage( pic ); // release source texture // NOTE: always return texnum as index in array or engine will stop work !!! return tex - gl_textures; } /* ================ GL_LoadTextureArray ================ */ int GL_LoadTextureArray( const char **names, int flags ) { rgbdata_t *pic, *src; char basename[256]; uint numLayers = 0; uint picFlags = 0; char name[256]; gl_texture_t *tex; uint i, j; if( !names || !names[0] || !glw_state.initialized ) return 0; // count layers (g-cont. this is pontentially unsafe loop) for( i = 0; i < glConfig.max_2d_texture_layers && ( *names[i] != '\0' ); i++ ) numLayers++; name[0] = '\0'; if( numLayers <= 0 ) return 0; // create complexname from layer names for( i = 0; i < numLayers; i++ ) { COM_FileBase( names[i], basename ); Q_strncat( name, basename, sizeof( name ) ); if( i != ( numLayers - 1 )) Q_strncat( name, "|", sizeof( name )); } Q_strncat( name, va( "[%i]", numLayers ), sizeof( name )); if( !GL_CheckTexName( name )) return 0; // see if already loaded if(( tex = GL_TextureForName( name ))) return (tex - gl_textures); // load all the images and pack it into single image for( i = 0, pic = NULL; i < numLayers; i++ ) { size_t srcsize, dstsize, mipsize; src = gEngfuncs.FS_LoadImage( names[i], NULL, 0 ); if( !src ) break; // coldn't find layer if( pic ) { // mixed mode: DXT + RGB if( pic->type != src->type ) { gEngfuncs.Con_Printf( S_ERROR "GL_LoadTextureArray: mismatch image format for %s and %s\n", names[0], names[i] ); break; } // different mipcount if( pic->numMips != src->numMips ) { gEngfuncs.Con_Printf( S_ERROR "GL_LoadTextureArray: mismatch mip count for %s and %s\n", names[0], names[i] ); break; } if( pic->encode != src->encode ) { gEngfuncs.Con_Printf( S_ERROR "GL_LoadTextureArray: mismatch custom encoding for %s and %s\n", names[0], names[i] ); break; } // but allow to rescale raw images if( ImageRAW( pic->type ) && ImageRAW( src->type ) && ( pic->width != src->width || pic->height != src->height )) gEngfuncs.Image_Process( &src, pic->width, pic->height, IMAGE_RESAMPLE, 0.0f ); if( pic->size != src->size ) { gEngfuncs.Con_Printf( S_ERROR "GL_LoadTextureArray: mismatch image size for %s and %s\n", names[0], names[i] ); break; } } else { // create new image pic = Mem_Malloc( gEngfuncs.Image_GetPool(), sizeof( rgbdata_t )); memcpy( pic, src, sizeof( rgbdata_t )); // expand pic buffer for all layers pic->buffer = Mem_Malloc( gEngfuncs.Image_GetPool(), pic->size * numLayers ); pic->depth = 0; } mipsize = srcsize = dstsize = 0; for( j = 0; j < Q_max( 1, pic->numMips ); j++ ) { int width = Q_max( 1, ( pic->width >> j )); int height = Q_max( 1, ( pic->height >> j )); mipsize = GL_CalcImageSize( pic->type, width, height, 1 ); memcpy( pic->buffer + dstsize + mipsize * i, src->buffer + srcsize, mipsize ); dstsize += mipsize * numLayers; srcsize += mipsize; } gEngfuncs.FS_FreeImage( src ); // increase layers pic->depth++; } // there were errors if( !pic || ( pic->depth != numLayers )) { gEngfuncs.Con_Printf( S_ERROR "GL_LoadTextureArray: not all layers were loaded. Texture array is not created\n" ); if( pic ) gEngfuncs.FS_FreeImage( pic ); return 0; } // it's multilayer image! SetBits( pic->flags, IMAGE_MULTILAYER ); pic->size *= numLayers; // allocate the new one tex = GL_AllocTexture( name, flags ); GL_ProcessImage( tex, pic ); if( !GL_UploadTexture( tex, pic )) { memset( tex, 0, sizeof( gl_texture_t )); gEngfuncs.FS_FreeImage( pic ); // release source texture return 0; } GL_ApplyTextureParams( tex ); // update texture filter, wrap etc gEngfuncs.FS_FreeImage( pic ); // release source texture // NOTE: always return texnum as index in array or engine will stop work !!! return tex - gl_textures; } /* ================ GL_LoadTextureFromBuffer ================ */ int GL_LoadTextureFromBuffer( const char *name, rgbdata_t *pic, texFlags_t flags, qboolean update ) { gl_texture_t *tex; if( !GL_CheckTexName( name )) return 0; // see if already loaded if(( tex = GL_TextureForName( name )) && !update ) return (tex - gl_textures); // couldn't loading image if( !pic ) return 0; if( update ) { if( tex == NULL ) gEngfuncs.Host_Error( "GL_LoadTextureFromBuffer: couldn't find texture %s for update\n", name ); SetBits( tex->flags, flags ); } else { // allocate the new one tex = GL_AllocTexture( name, flags ); } GL_ProcessImage( tex, pic ); if( !GL_UploadTexture( tex, pic )) { memset( tex, 0, sizeof( gl_texture_t )); return 0; } GL_ApplyTextureParams( tex ); // update texture filter, wrap etc return (tex - gl_textures); } /* ================ GL_CreateTexture creates texture from buffer ================ */ int GL_CreateTexture( const char *name, int width, int height, const void *buffer, texFlags_t flags ) { qboolean update = FBitSet( flags, TF_UPDATE ) ? true : false; int datasize = 1; rgbdata_t r_empty; if( FBitSet( flags, TF_ARB_16BIT )) datasize = 2; else if( FBitSet( flags, TF_ARB_FLOAT )) datasize = 4; ClearBits( flags, TF_UPDATE ); memset( &r_empty, 0, sizeof( r_empty )); r_empty.width = width; r_empty.height = height; r_empty.type = PF_RGBA_32; r_empty.size = r_empty.width * r_empty.height * datasize * 4; r_empty.buffer = (byte *)buffer; // clear invalid combinations ClearBits( flags, TF_TEXTURE_3D ); // if image not luminance and not alphacontrast it will have color if( !FBitSet( flags, TF_LUMINANCE ) && !FBitSet( flags, TF_ALPHACONTRAST )) SetBits( r_empty.flags, IMAGE_HAS_COLOR ); if( FBitSet( flags, TF_HAS_ALPHA )) SetBits( r_empty.flags, IMAGE_HAS_ALPHA ); if( FBitSet( flags, TF_CUBEMAP )) { if( !GL_Support( GL_TEXTURE_CUBEMAP_EXT )) return 0; SetBits( r_empty.flags, IMAGE_CUBEMAP ); r_empty.size *= 6; } return GL_LoadTextureFromBuffer( name, &r_empty, flags, update ); } /* ================ GL_CreateTextureArray creates texture array from buffer ================ */ int GL_CreateTextureArray( const char *name, int width, int height, int depth, const void *buffer, texFlags_t flags ) { rgbdata_t r_empty; memset( &r_empty, 0, sizeof( r_empty )); r_empty.width = Q_max( width, 1 ); r_empty.height = Q_max( height, 1 ); r_empty.depth = Q_max( depth, 1 ); r_empty.type = PF_RGBA_32; r_empty.size = r_empty.width * r_empty.height * r_empty.depth * 4; r_empty.buffer = (byte *)buffer; // clear invalid combinations ClearBits( flags, TF_CUBEMAP|TF_SKYSIDE|TF_HAS_LUMA|TF_MAKELUMA|TF_ALPHACONTRAST ); // if image not luminance it will have color if( !FBitSet( flags, TF_LUMINANCE )) SetBits( r_empty.flags, IMAGE_HAS_COLOR ); if( FBitSet( flags, TF_HAS_ALPHA )) SetBits( r_empty.flags, IMAGE_HAS_ALPHA ); if( FBitSet( flags, TF_TEXTURE_3D )) { if( !GL_Support( GL_TEXTURE_3D_EXT )) return 0; } else { if( !GL_Support( GL_TEXTURE_ARRAY_EXT )) return 0; SetBits( r_empty.flags, IMAGE_MULTILAYER ); } return GL_LoadTextureInternal( name, &r_empty, flags ); } /* ================ GL_FindTexture ================ */ int GL_FindTexture( const char *name ) { gl_texture_t *tex; if( !GL_CheckTexName( name )) return 0; // see if already loaded if(( tex = GL_TextureForName( name ))) return (tex - gl_textures); return 0; } /* ================ GL_FreeTexture ================ */ void GL_FreeTexture( GLenum texnum ) { // number 0 it's already freed if( texnum <= 0 ) return; GL_DeleteTexture( &gl_textures[texnum] ); } /* ================ GL_ProcessTexture ================ */ void GL_ProcessTexture( int texnum, float gamma, int topColor, int bottomColor ) { gl_texture_t *image; rgbdata_t *pic; int flags = 0; if( texnum <= 0 || texnum >= MAX_TEXTURES ) return; // missed image image = &gl_textures[texnum]; // select mode if( gamma != -1.0f ) { flags = IMAGE_LIGHTGAMMA; } else if( topColor != -1 && bottomColor != -1 ) { flags = IMAGE_REMAP; } else { gEngfuncs.Con_Printf( S_ERROR "GL_ProcessTexture: bad operation for %s\n", image->name ); return; } if( !image->original ) { gEngfuncs.Con_Printf( S_ERROR "GL_ProcessTexture: no input data for %s\n", image->name ); return; } if( ImageDXT( image->original->type )) { gEngfuncs.Con_Printf( S_ERROR "GL_ProcessTexture: can't process compressed texture %s\n", image->name ); return; } // all the operations makes over the image copy not an original pic = gEngfuncs.FS_CopyImage( image->original ); gEngfuncs.Image_Process( &pic, topColor, bottomColor, flags, 0.0f ); GL_UploadTexture( image, pic ); GL_ApplyTextureParams( image ); // update texture filter, wrap etc gEngfuncs.FS_FreeImage( pic ); } /* ================ GL_TexMemory return size of all uploaded textures ================ */ int GL_TexMemory( void ) { int i, total = 0; for( i = 0; i < gl_numTextures; i++ ) total += gl_textures[i].size; return total; } /* ============================================================================== INTERNAL TEXTURES ============================================================================== */ /* ================== GL_FakeImage ================== */ static rgbdata_t *GL_FakeImage( int width, int height, int depth, int flags ) { static byte data2D[1024]; // 16x16x4 static rgbdata_t r_image; // also use this for bad textures, but without alpha r_image.width = Q_max( 1, width ); r_image.height = Q_max( 1, height ); r_image.depth = Q_max( 1, depth ); r_image.flags = flags; r_image.type = PF_RGBA_32; r_image.size = r_image.width * r_image.height * r_image.depth * 4; r_image.buffer = (r_image.size > sizeof( data2D )) ? NULL : data2D; r_image.palette = NULL; r_image.numMips = 1; r_image.encode = 0; if( FBitSet( r_image.flags, IMAGE_CUBEMAP )) r_image.size *= 6; memset( data2D, 0xFF, sizeof( data2D )); return &r_image; } /* ================== R_InitDlightTexture ================== */ void R_InitDlightTexture( void ) { rgbdata_t r_image; if( tr.dlightTexture != 0 ) return; // already initialized memset( &r_image, 0, sizeof( r_image )); r_image.width = BLOCK_SIZE; r_image.height = BLOCK_SIZE; r_image.flags = IMAGE_HAS_COLOR; r_image.type = PF_RGBA_32; r_image.size = r_image.width * r_image.height * 4; tr.dlightTexture = GL_LoadTextureInternal( "*dlight", &r_image, TF_NOMIPMAP|TF_CLAMP|TF_ATLAS_PAGE ); } /* ================== GL_CreateInternalTextures ================== */ static void GL_CreateInternalTextures( void ) { int dx2, dy, d; int x, y; rgbdata_t *pic; // emo-texture from quake1 pic = GL_FakeImage( 16, 16, 1, IMAGE_HAS_COLOR ); for( y = 0; y < 16; y++ ) { for( x = 0; x < 16; x++ ) { if(( y < 8 ) ^ ( x < 8 )) ((uint *)pic->buffer)[y*16+x] = 0xFFFF00FF; else ((uint *)pic->buffer)[y*16+x] = 0xFF000000; } } tr.defaultTexture = GL_LoadTextureInternal( REF_DEFAULT_TEXTURE, pic, TF_COLORMAP ); // particle texture from quake1 pic = GL_FakeImage( 8, 8, 1, IMAGE_HAS_COLOR|IMAGE_HAS_ALPHA ); for( x = 0; x < 8; x++ ) { for( y = 0; y < 8; y++ ) { if( dottexture[x][y] ) pic->buffer[( y * 8 + x ) * 4 + 3] = 255; else pic->buffer[( y * 8 + x ) * 4 + 3] = 0; } } tr.particleTexture = GL_LoadTextureInternal( REF_PARTICLE_TEXTURE, pic, TF_CLAMP ); // white texture pic = GL_FakeImage( 4, 4, 1, IMAGE_HAS_COLOR ); for( x = 0; x < 16; x++ ) ((uint *)pic->buffer)[x] = 0xFFFFFFFF; tr.whiteTexture = GL_LoadTextureInternal( REF_WHITE_TEXTURE, pic, TF_COLORMAP ); // gray texture pic = GL_FakeImage( 4, 4, 1, IMAGE_HAS_COLOR ); for( x = 0; x < 16; x++ ) ((uint *)pic->buffer)[x] = 0xFF7F7F7F; tr.grayTexture = GL_LoadTextureInternal( REF_GRAY_TEXTURE, pic, TF_COLORMAP ); // black texture pic = GL_FakeImage( 4, 4, 1, IMAGE_HAS_COLOR ); for( x = 0; x < 16; x++ ) ((uint *)pic->buffer)[x] = 0xFF000000; tr.blackTexture = GL_LoadTextureInternal( REF_BLACK_TEXTURE, pic, TF_COLORMAP ); // cinematic dummy pic = GL_FakeImage( 640, 100, 1, IMAGE_HAS_COLOR ); tr.cinTexture = GL_LoadTextureInternal( "*cintexture", pic, TF_NOMIPMAP|TF_CLAMP ); } /* =============== R_TextureList_f =============== */ void R_TextureList_f( void ) { gl_texture_t *image; int i, texCount, bytes = 0; gEngfuncs.Con_Printf( "\n" ); gEngfuncs.Con_Printf( " -id- -w- -h- -size- -fmt- -type- -data- -encode- -wrap- -depth- -name--------\n" ); for( i = texCount = 0, image = gl_textures; i < gl_numTextures; i++, image++ ) { if( !image->texnum ) continue; bytes += image->size; texCount++; gEngfuncs.Con_Printf( "%4i: ", i ); gEngfuncs.Con_Printf( "%4i %4i ", image->width, image->height ); gEngfuncs.Con_Printf( "%12s ", Q_memprint( image->size )); switch( image->format ) { case GL_COMPRESSED_RGBA_ARB: gEngfuncs.Con_Printf( "CRGBA " ); break; case GL_COMPRESSED_RGB_ARB: gEngfuncs.Con_Printf( "CRGB " ); break; case GL_COMPRESSED_LUMINANCE_ALPHA_ARB: gEngfuncs.Con_Printf( "CLA " ); break; case GL_COMPRESSED_LUMINANCE_ARB: gEngfuncs.Con_Printf( "CL " ); break; case GL_COMPRESSED_ALPHA_ARB: gEngfuncs.Con_Printf( "CA " ); break; case GL_COMPRESSED_INTENSITY_ARB: gEngfuncs.Con_Printf( "CI " ); break; case GL_COMPRESSED_RGB_S3TC_DXT1_EXT: gEngfuncs.Con_Printf( "DXT1c " ); break; case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT: gEngfuncs.Con_Printf( "DXT1a " ); break; case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT: gEngfuncs.Con_Printf( "DXT3 " ); break; case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT: gEngfuncs.Con_Printf( "DXT5 " ); break; case GL_COMPRESSED_RED_GREEN_RGTC2_EXT: case GL_COMPRESSED_LUMINANCE_ALPHA_3DC_ATI: gEngfuncs.Con_Printf( "ATI2 " ); break; case GL_RGBA: gEngfuncs.Con_Printf( "RGBA " ); break; case GL_RGBA8: gEngfuncs.Con_Printf( "RGBA8 " ); break; case GL_RGBA4: gEngfuncs.Con_Printf( "RGBA4 " ); break; case GL_RGB: gEngfuncs.Con_Printf( "RGB " ); break; case GL_RGB8: gEngfuncs.Con_Printf( "RGB8 " ); break; case GL_RGB5: gEngfuncs.Con_Printf( "RGB5 " ); break; case GL_LUMINANCE4_ALPHA4: gEngfuncs.Con_Printf( "L4A4 " ); break; case GL_LUMINANCE_ALPHA: case GL_LUMINANCE8_ALPHA8: gEngfuncs.Con_Printf( "L8A8 " ); break; case GL_LUMINANCE4: gEngfuncs.Con_Printf( "L4 " ); break; case GL_LUMINANCE: case GL_LUMINANCE8: gEngfuncs.Con_Printf( "L8 " ); break; case GL_ALPHA8: gEngfuncs.Con_Printf( "A8 " ); break; case GL_INTENSITY8: gEngfuncs.Con_Printf( "I8 " ); break; case GL_DEPTH_COMPONENT: case GL_DEPTH_COMPONENT24: gEngfuncs.Con_Printf( "DPTH24" ); break; case GL_DEPTH_COMPONENT32F: gEngfuncs.Con_Printf( "DPTH32" ); break; case GL_LUMINANCE16F_ARB: gEngfuncs.Con_Printf( "L16F " ); break; case GL_LUMINANCE32F_ARB: gEngfuncs.Con_Printf( "L32F " ); break; case GL_LUMINANCE_ALPHA16F_ARB: gEngfuncs.Con_Printf( "LA16F " ); break; case GL_LUMINANCE_ALPHA32F_ARB: gEngfuncs.Con_Printf( "LA32F " ); break; case GL_RG16F: gEngfuncs.Con_Printf( "RG16F " ); break; case GL_RG32F: gEngfuncs.Con_Printf( "RG32F " ); break; case GL_RGB16F_ARB: gEngfuncs.Con_Printf( "RGB16F" ); break; case GL_RGB32F_ARB: gEngfuncs.Con_Printf( "RGB32F" ); break; case GL_RGBA16F_ARB: gEngfuncs.Con_Printf( "RGBA16F" ); break; case GL_RGBA32F_ARB: gEngfuncs.Con_Printf( "RGBA32F" ); break; default: gEngfuncs.Con_Printf( " ^1ERROR^7 " ); break; } switch( image->target ) { case GL_TEXTURE_1D: gEngfuncs.Con_Printf( " 1D " ); break; case GL_TEXTURE_2D: gEngfuncs.Con_Printf( " 2D " ); break; case GL_TEXTURE_3D: gEngfuncs.Con_Printf( " 3D " ); break; case GL_TEXTURE_CUBE_MAP_ARB: gEngfuncs.Con_Printf( "CUBE " ); break; case GL_TEXTURE_RECTANGLE_EXT: gEngfuncs.Con_Printf( "RECT " ); break; case GL_TEXTURE_2D_ARRAY_EXT: gEngfuncs.Con_Printf( "ARRAY " ); break; case GL_TEXTURE_2D_MULTISAMPLE: gEngfuncs.Con_Printf( "MSAA "); break; default: gEngfuncs.Con_Printf( "???? " ); break; } if( image->flags & TF_NORMALMAP ) gEngfuncs.Con_Printf( "normal " ); else gEngfuncs.Con_Printf( "diffuse " ); switch( image->encode ) { case DXT_ENCODE_COLOR_YCoCg: gEngfuncs.Con_Printf( "YCoCg " ); break; case DXT_ENCODE_NORMAL_AG_ORTHO: gEngfuncs.Con_Printf( "ortho " ); break; case DXT_ENCODE_NORMAL_AG_STEREO: gEngfuncs.Con_Printf( "stereo " ); break; case DXT_ENCODE_NORMAL_AG_PARABOLOID: gEngfuncs.Con_Printf( "parabolic " ); break; case DXT_ENCODE_NORMAL_AG_QUARTIC: gEngfuncs.Con_Printf( "quartic " ); break; case DXT_ENCODE_NORMAL_AG_AZIMUTHAL: gEngfuncs.Con_Printf( "azimuthal " ); break; default: gEngfuncs.Con_Printf( "default " ); break; } if( image->flags & TF_CLAMP ) gEngfuncs.Con_Printf( "clamp " ); else if( image->flags & TF_BORDER ) gEngfuncs.Con_Printf( "border " ); else gEngfuncs.Con_Printf( "repeat " ); gEngfuncs.Con_Printf( " %d ", image->depth ); gEngfuncs.Con_Printf( " %s\n", image->name ); } gEngfuncs.Con_Printf( "---------------------------------------------------------\n" ); gEngfuncs.Con_Printf( "%i total textures\n", texCount ); gEngfuncs.Con_Printf( "%s total memory used\n", Q_memprint( bytes )); gEngfuncs.Con_Printf( "\n" ); } /* =============== R_InitImages =============== */ void R_InitImages( void ) { memset( gl_textures, 0, sizeof( gl_textures )); memset( gl_texturesHashTable, 0, sizeof( gl_texturesHashTable )); gl_numTextures = 0; // create unused 0-entry Q_strncpy( gl_textures->name, "*unused*", sizeof( gl_textures->name )); gl_textures->hashValue = COM_HashKey( gl_textures->name, TEXTURES_HASH_SIZE ); gl_textures->nextHash = gl_texturesHashTable[gl_textures->hashValue]; gl_texturesHashTable[gl_textures->hashValue] = gl_textures; gl_numTextures = 1; // validate cvars R_SetTextureParameters(); GL_CreateInternalTextures(); gEngfuncs.Cmd_AddCommand( "texturelist", R_TextureList_f, "display loaded textures list" ); } /* =============== R_ShutdownImages =============== */ void R_ShutdownImages( void ) { gl_texture_t *tex; int i; gEngfuncs.Cmd_RemoveCommand( "texturelist" ); GL_CleanupAllTextureUnits(); for( i = 0, tex = gl_textures; i < gl_numTextures; i++, tex++ ) GL_DeleteTexture( tex ); memset( tr.lightmapTextures, 0, sizeof( tr.lightmapTextures )); memset( gl_texturesHashTable, 0, sizeof( gl_texturesHashTable )); memset( gl_textures, 0, sizeof( gl_textures )); gl_numTextures = 0; }