xash3d-fwgs/ref_vk/vk_ray_model.c

390 lines
12 KiB
C
Raw Normal View History

#include "vk_ray_internal.h"
#include "vk_rtx.h"
#include "vk_textures.h"
#include "vk_render.h"
2021-07-06 18:41:48 +02:00
#include "vk_light.h"
#include "eiface.h"
2021-07-06 18:41:48 +02:00
#include <string.h>
xvk_ray_model_state_t g_ray_model_state;
static void returnModelToCache(vk_ray_model_t *model) {
ASSERT(model->taken);
model->taken = false;
}
static vk_ray_model_t *getModelFromCache(int num_geoms, int max_prims, const VkAccelerationStructureGeometryKHR *geoms) { //}, int size) {
vk_ray_model_t *model = NULL;
int i;
for (i = 0; i < ARRAYSIZE(g_ray_model_state.models_cache); ++i)
{
int j;
model = g_ray_model_state.models_cache + i;
if (model->taken)
continue;
if (!model->as)
break;
if (model->num_geoms != num_geoms)
continue;
if (model->max_prims != max_prims)
continue;
for (j = 0; j < num_geoms; ++j) {
if (model->geoms[j].geometryType != geoms[j].geometryType)
break;
if (model->geoms[j].flags != geoms[j].flags)
break;
if (geoms[j].geometryType == VK_GEOMETRY_TYPE_TRIANGLES_KHR) {
// TODO what else should we compare?
if (model->geoms[j].geometry.triangles.maxVertex != geoms[j].geometry.triangles.maxVertex)
break;
ASSERT(model->geoms[j].geometry.triangles.vertexStride == geoms[j].geometry.triangles.vertexStride);
ASSERT(model->geoms[j].geometry.triangles.vertexFormat == geoms[j].geometry.triangles.vertexFormat);
ASSERT(model->geoms[j].geometry.triangles.indexType == geoms[j].geometry.triangles.indexType);
} else {
PRINT_NOT_IMPLEMENTED_ARGS("Non-tri geometries are not implemented");
break;
}
}
if (j == num_geoms)
break;
}
if (i == ARRAYSIZE(g_ray_model_state.models_cache))
return NULL;
// if (model->size > 0)
// ASSERT(model->size >= size);
if (!model->geoms) {
const size_t size = sizeof(*geoms) * num_geoms;
model->geoms = Mem_Malloc(vk_core.pool, size);
memcpy(model->geoms, geoms, size);
model->num_geoms = num_geoms;
model->max_prims = max_prims;
}
model->taken = true;
return model;
}
static void assertNoOverlap( uint32_t o1, uint32_t s1, uint32_t o2, uint32_t s2 ) {
uint32_t min_offset, min_size;
uint32_t max_offset;
if (o1 < o2) {
min_offset = o1;
min_size = s1;
max_offset = o2;
} else {
min_offset = o2;
min_size = s2;
max_offset = o1;
}
ASSERT(min_offset + min_size <= max_offset);
}
static void validateModelPair( const vk_ray_model_t *m1, const vk_ray_model_t *m2 ) {
if (m1 == m2) return;
if (!m2->num_geoms) return;
assertNoOverlap(m1->debug.as_offset, m1->size, m2->debug.as_offset, m2->size);
if (m1->taken && m2->taken)
assertNoOverlap(m1->kusochki_offset, m1->num_geoms, m2->kusochki_offset, m2->num_geoms);
}
static void validateModel( const vk_ray_model_t *model ) {
for (int j = 0; j < ARRAYSIZE(g_ray_model_state.models_cache); ++j) {
validateModelPair(model, g_ray_model_state.models_cache + j);
}
}
static void validateModels( void ) {
for (int i = 0; i < ARRAYSIZE(g_ray_model_state.models_cache); ++i) {
validateModel(g_ray_model_state.models_cache + i);
}
}
void XVK_RayModel_Validate( void ) {
const vk_kusok_data_t* kusochki = g_ray_model_state.kusochki_buffer.mapped;
ASSERT(g_ray_model_state.frame.num_models <= ARRAYSIZE(g_ray_model_state.frame.models));
for (int i = 0; i < g_ray_model_state.frame.num_models; ++i) {
const vk_ray_draw_model_t *draw_model = g_ray_model_state.frame.models + i;
const vk_ray_model_t *model = draw_model->model;
int num_geoms = 1; // TODO can't validate non-dynamic models because this info is lost
ASSERT(model);
ASSERT(model->as != VK_NULL_HANDLE);
ASSERT(model->kusochki_offset < MAX_KUSOCHKI);
ASSERT(model->geoms);
ASSERT(model->num_geoms > 0);
ASSERT(model->taken);
num_geoms = model->num_geoms;
for (int j = 0; j < num_geoms; j++) {
const vk_kusok_data_t *kusok = kusochki + j;
const vk_texture_t *tex = findTexture(kusok->texture);
ASSERT(tex);
ASSERT(tex->vk.image_view != VK_NULL_HANDLE);
// uint32_t index_offset;
// uint32_t vertex_offset;
// uint32_t triangles;
}
// Check for as model memory aliasing
for (int j = 0; j < g_ray_model_state.frame.num_models; ++j) {
const vk_ray_model_t *model2 = g_ray_model_state.frame.models[j].model;
validateModelPair(model, model2);
}
}
}
vk_ray_model_t* VK_RayModelCreate( vk_ray_model_init_t args ) {
VkAccelerationStructureGeometryKHR *geoms;
uint32_t *geom_max_prim_counts;
VkAccelerationStructureBuildRangeInfoKHR *geom_build_ranges;
const VkDeviceAddress buffer_addr = getBufferDeviceAddress(args.buffer);
vk_kusok_data_t *kusochki;
const uint32_t kusochki_count_offset = VK_RingBuffer_Alloc(&g_ray_model_state.kusochki_alloc, args.model->num_geometries, 1);
vk_ray_model_t *ray_model;
int max_prims = 0;
ASSERT(vk_core.rtx);
if (g_ray_model_state.freeze_models)
return args.model->ray_model;
if (kusochki_count_offset == AllocFailed) {
gEngine.Con_Printf(S_ERROR "Maximum number of kusochki exceeded on model %s\n", args.model->debug_name);
2021-07-06 21:54:45 +02:00
return NULL;
}
// FIXME don't touch allocator each frame many times pls
geoms = Mem_Calloc(vk_core.pool, args.model->num_geometries * sizeof(*geoms));
geom_max_prim_counts = Mem_Malloc(vk_core.pool, args.model->num_geometries * sizeof(*geom_max_prim_counts));
geom_build_ranges = Mem_Calloc(vk_core.pool, args.model->num_geometries * sizeof(*geom_build_ranges));
kusochki = (vk_kusok_data_t*)(g_ray_model_state.kusochki_buffer.mapped) + kusochki_count_offset;
for (int i = 0; i < args.model->num_geometries; ++i) {
vk_render_geometry_t *mg = args.model->geometries + i;
const uint32_t prim_count = mg->element_count / 3;
max_prims += prim_count;
geom_max_prim_counts[i] = prim_count;
geoms[i] = (VkAccelerationStructureGeometryKHR)
{
.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR,
.flags = VK_GEOMETRY_OPAQUE_BIT_KHR,
.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR,
.geometry.triangles =
(VkAccelerationStructureGeometryTrianglesDataKHR){
.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR,
.indexType = VK_INDEX_TYPE_UINT16,
.maxVertex = mg->max_vertex,
.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT,
.vertexStride = sizeof(vk_vertex_t),
.vertexData.deviceAddress = buffer_addr,
.indexData.deviceAddress = buffer_addr,
},
};
#if 0
gEngine.Con_Reportf(" g%d: v(%#x %d %#x) V%d i(%#x %d %#x) I%d\n", i,
vertex_offset*sizeof(vk_vertex_t), mg->vertex_count * sizeof(vk_vertex_t), (vertex_offset + mg->vertex_count) * sizeof(vk_vertex_t), mg->vertex_count,
index_offset*sizeof(uint16_t), mg->element_count * sizeof(uint16_t), (index_offset + mg->element_count) * sizeof(uint16_t), mg->element_count);
#endif
geom_build_ranges[i] = (VkAccelerationStructureBuildRangeInfoKHR) {
.primitiveCount = prim_count,
.primitiveOffset = mg->index_offset * sizeof(uint16_t),
.firstVertex = mg->vertex_offset,
};
kusochki[i].vertex_offset = mg->vertex_offset;
kusochki[i].index_offset = mg->index_offset;
kusochki[i].triangles = prim_count;
kusochki[i].texture = mg->texture;
kusochki[i].roughness = mg->material == kXVkMaterialWater ? 0. : 1.;
// FIXME this should not be done here, as we generally don't really have
// render_mode information yet. (does this affect BLAS building?)
switch (args.model->render_mode) {
case kRenderNormal:
kusochki[i].flags = 0;
break;
// C = (1 - alpha) * DST + alpha * SRC (TODO is this right?)
case kRenderTransColor:
case kRenderTransTexture:
kusochki[i].flags = 1;
break;
// Additive blending: C = SRC * alpha + DST
case kRenderGlow:
case kRenderTransAdd:
kusochki[i].flags = 2;
break;
// Alpha test (TODO additive? mixing?)
case kRenderTransAlpha:
kusochki[i].flags = 3;
break;
default:
gEngine.Host_Error("Unexpected render mode %d\n", args.model->render_mode);
}
mg->kusok_index = i + kusochki_count_offset;
}
{
as_build_args_t asrgs = {
.geoms = geoms,
.max_prim_counts = geom_max_prim_counts,
.build_ranges = geom_build_ranges,
.n_geoms = args.model->num_geometries,
.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR,
.dynamic = args.model->dynamic,
.debug_name = args.model->debug_name,
};
ray_model = getModelFromCache(args.model->num_geometries, max_prims, geoms); //, build_size.accelerationStructureSize);
if (!ray_model) {
gEngine.Con_Printf(S_ERROR "Ran out of model cache slots\n");
} else {
qboolean result;
asrgs.p_accel = &ray_model->as;
result = createOrUpdateAccelerationStructure(vk_core.cb, &asrgs, ray_model);
if (!result)
{
gEngine.Con_Printf(S_ERROR "Could not build BLAS for %s\n", args.model->debug_name);
returnModelToCache(ray_model);
ray_model = NULL;
} else {
ray_model->kusochki_offset = kusochki_count_offset;
ray_model->dynamic = args.model->dynamic;
if (vk_core.debug)
validateModel(ray_model);
}
}
}
Mem_Free(geom_build_ranges);
Mem_Free(geom_max_prim_counts);
Mem_Free(geoms); // TODO this can be cached within models_cache ??
//gEngine.Con_Reportf("Model %s (%p) created blas %p\n", args.model->debug_name, args.model, args.model->rtx.blas);
return ray_model;
}
void VK_RayModelDestroy( struct vk_ray_model_s *model ) {
ASSERT(!g_ray_model_state.freeze_models);
ASSERT(vk_core.rtx);
if (model->as != VK_NULL_HANDLE) {
//gEngine.Con_Reportf("Model %s destroying AS=%p blas_index=%d\n", model->debug_name, model->rtx.blas, blas_index);
vkDestroyAccelerationStructureKHR(vk_core.device, model->as, NULL);
Mem_Free(model->geoms);
memset(model, 0, sizeof(*model));
}
}
void VK_RayFrameAddModel( vk_ray_model_t *model, const vk_render_model_t *render_model, const matrix3x4 *transform_row ) {
uint32_t material_flags = 0;
ASSERT(vk_core.rtx);
ASSERT(g_ray_model_state.frame.num_models <= ARRAYSIZE(g_ray_model_state.frame.models));
if (g_ray_model_state.freeze_models)
return;
if (g_ray_model_state.frame.num_models == ARRAYSIZE(g_ray_model_state.frame.models)) {
gEngine.Con_Printf(S_ERROR "Ran out of AccelerationStructure slots\n");
return;
}
{
vk_ray_draw_model_t* draw_model = g_ray_model_state.frame.models + g_ray_model_state.frame.num_models;
ASSERT(model->as != VK_NULL_HANDLE);
draw_model->model = model;
2021-07-14 20:54:21 +02:00
draw_model->render_mode = render_model->render_mode;
memcpy(draw_model->transform_row, *transform_row, sizeof(draw_model->transform_row));
g_ray_model_state.frame.num_models++;
}
if (render_model)
VK_LightsAddEmissiveSurfacesFromModel( render_model, transform_row );
switch (render_model->render_mode) {
case kRenderNormal:
material_flags = 0;
break;
// C = (1 - alpha) * DST + alpha * SRC (TODO is this right?)
case kRenderTransColor:
case kRenderTransTexture:
material_flags = 1;
break;
// Additive blending: C = SRC * alpha + DST
case kRenderGlow:
case kRenderTransAdd:
material_flags = 2;
break;
// Alpha test (TODO additive? mixing?)
case kRenderTransAlpha:
material_flags = 3;
break;
default:
gEngine.Host_Error("Unexpected render mode %d\n", render_model->render_mode);
}
for (int i = 0; i < render_model->num_geometries; ++i) {
const vk_render_geometry_t *geom = render_model->geometries + i;
vk_kusok_data_t *kusok = (vk_kusok_data_t*)(g_ray_model_state.kusochki_buffer.mapped) + geom->kusok_index;
kusok->texture = geom->texture;
kusok->flags = material_flags;
}
}
void XVK_RayModel_ClearForNextFrame( void )
{
// FIXME we depend on the fact that only a single frame can be in flight
// currently framectl waits for the queue to complete before returning
// so we can be sure here that previous frame is complete and we're free to
// destroy/reuse dynamic ASes from previous frame
for (int i = 0; i < g_ray_model_state.frame.num_models; ++i) {
vk_ray_draw_model_t *model = g_ray_model_state.frame.models + i;
ASSERT(model->model);
if (!model->model->dynamic)
continue;
returnModelToCache(model->model);
model->model = NULL;
}
g_ray_model_state.frame.num_models = 0;
// TODO N frames in flight
// HACK: blas caching requires persistent memory
// proper fix would need some other memory allocation strategy
// VK_RingBuffer_ClearFrame(&g_rtx.accels_buffer_alloc);
VK_RingBuffer_ClearFrame(&g_ray_model_state.kusochki_alloc);
}