#include "vk_rtx.h" #include "vk_core.h" #include "vk_common.h" #include "vk_buffer.h" #include "vk_pipeline.h" #include "vk_cvar.h" #include "vk_textures.h" #include "vk_light.h" #include "vk_descriptor.h" #include "vk_ray_internal.h" #include "eiface.h" #include "xash3d_mathlib.h" #include #define MAX_SCRATCH_BUFFER (16*1024*1024) #define MAX_ACCELS_BUFFER (64*1024*1024) #define MAX_LIGHT_LEAVES 8192 #define SBT_SIZE 4 // TODO settings/realtime modifiable/adaptive #define FRAME_WIDTH 1280 #define FRAME_HEIGHT 720 // TODO sync with shaders // TODO optimal values #define WG_W 16 #define WG_H 8 typedef struct { vec3_t pos; float radius; vec3_t color; float padding_; } vk_light_t; typedef struct { uint32_t random_seed; int bounces; float prev_frame_blend_factor; float pixel_cone_spread_angle; } vk_rtx_push_constants_t; typedef struct { int min_cell[4], size[3]; // 4th element is padding vk_lights_cell_t cells[MAX_LIGHT_CLUSTERS]; } vk_ray_shader_light_grid; enum { RayDescBinding_DestImage = 0, RayDescBinding_TLAS = 1, RayDescBinding_UBOMatrices = 2, RayDescBinding_Kusochki = 3, RayDescBinding_Indices = 4, RayDescBinding_Vertices = 5, RayDescBinding_Textures = 6, RayDescBinding_UBOLights = 7, RayDescBinding_EmissiveKusochki = 8, RayDescBinding_LightClusters = 9, RayDescBinding_PrevFrame = 10, RayDescBinding_COUNT }; static struct { vk_descriptors_t descriptors; VkDescriptorSetLayoutBinding desc_bindings[RayDescBinding_COUNT]; vk_descriptor_value_t desc_values[RayDescBinding_COUNT]; VkDescriptorSet desc_sets[1]; VkPipeline pipeline; // Shader binding table buffer vk_buffer_t sbt_buffer; uint32_t sbt_record_size; // Stores AS built data. Lifetime similar to render buffer: // - some portion lives for entire map lifetime // - some portion lives only for a single frame (may have several frames in flight) // TODO: unify this with render buffer // Needs: AS_STORAGE_BIT, SHADER_DEVICE_ADDRESS_BIT vk_buffer_t accels_buffer; vk_ring_buffer_t accels_buffer_alloc; // Temp: lives only during a single frame (may have many in flight) // Used for building ASes; // Needs: AS_STORAGE_BIT, SHADER_DEVICE_ADDRESS_BIT vk_buffer_t scratch_buffer; VkDeviceAddress accels_buffer_addr, scratch_buffer_addr; // Temp-ish: used for making TLAS, contains addressed to all used BLASes // Lifetime and nature of usage similar to scratch_buffer // TODO: unify them // Needs: SHADER_DEVICE_ADDRESS, STORAGE_BUFFER, AS_BUILD_INPUT_READ_ONLY vk_buffer_t tlas_geom_buffer; // Planned to contain seveal types of data: // - grid structure itself // - lights data: // - dlights (fully dynamic) // - entity lights (can be dynamic with light styles) // - surface lights (map geometry is static, however brush models can have them too and move around (e.g. wagonchik and elevators)) // Therefore, this is also dynamic and lifetime is per-frame // TODO: unify with scratch buffer // Needs: STORAGE_BUFFER // Can be potentially crated using compute shader (would need shader write bit) vk_buffer_t light_grid_buffer; // TODO need several TLASes for N frames in flight VkAccelerationStructureKHR tlas; // Per-frame data that is accumulated between RayFrameBegin and End calls struct { uint32_t scratch_offset; // for building dynamic blases } frame; unsigned frame_number; vk_image_t frames[2]; qboolean reload_pipeline; } g_rtx = {0}; VkDeviceAddress getBufferDeviceAddress(VkBuffer buffer) { const VkBufferDeviceAddressInfo bdai = {.sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO, .buffer = buffer}; return vkGetBufferDeviceAddress(vk_core.device, &bdai); } static VkDeviceAddress getASAddress(VkAccelerationStructureKHR as) { VkAccelerationStructureDeviceAddressInfoKHR asdai = { .sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR, .accelerationStructure = as, }; return vkGetAccelerationStructureDeviceAddressKHR(vk_core.device, &asdai); } // TODO split this into smaller building blocks in a separate module qboolean createOrUpdateAccelerationStructure(VkCommandBuffer cmdbuf, const as_build_args_t *args, vk_ray_model_t *model) { qboolean should_create = *args->p_accel == VK_NULL_HANDLE; #if 1 // update does not work at all on AMD gpus qboolean is_update = false; // FIXME this crashes for some reason !should_create && args->dynamic; #else qboolean is_update = !should_create && args->dynamic; #endif VkAccelerationStructureBuildGeometryInfoKHR build_info = { .sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR, .type = args->type, .flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR | ( args->dynamic ? VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_KHR : 0), .mode = is_update ? VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR : VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR, .geometryCount = args->n_geoms, .pGeometries = args->geoms, .srcAccelerationStructure = is_update ? *args->p_accel : VK_NULL_HANDLE, }; VkAccelerationStructureBuildSizesInfoKHR build_size = { .sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR }; uint32_t scratch_buffer_size = 0; ASSERT(args->geoms); ASSERT(args->n_geoms > 0); ASSERT(args->p_accel); vkGetAccelerationStructureBuildSizesKHR( vk_core.device, VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR, &build_info, args->max_prim_counts, &build_size); scratch_buffer_size = is_update ? build_size.updateScratchSize : build_size.buildScratchSize; #if 0 { uint32_t max_prims = 0; for (int i = 0; i < args->n_geoms; ++i) max_prims += args->max_prim_counts[i]; gEngine.Con_Reportf( "AS max_prims=%u, n_geoms=%u, build size: %d, scratch size: %d\n", max_prims, args->n_geoms, build_size.accelerationStructureSize, build_size.buildScratchSize); } #endif if (MAX_SCRATCH_BUFFER < g_rtx.frame.scratch_offset + scratch_buffer_size) { gEngine.Con_Printf(S_ERROR "Scratch buffer overflow: left %u bytes, but need %u\n", MAX_SCRATCH_BUFFER - g_rtx.frame.scratch_offset, scratch_buffer_size); return false; } if (should_create) { const uint32_t as_size = build_size.accelerationStructureSize; const uint32_t buffer_offset = VK_RingBuffer_Alloc(&g_rtx.accels_buffer_alloc, as_size, 256); const VkAccelerationStructureCreateInfoKHR asci = { .sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR, .buffer = g_rtx.accels_buffer.buffer, .offset = buffer_offset, .type = args->type, .size = as_size, }; if (buffer_offset == AllocFailed) { gEngine.Con_Printf(S_ERROR "Failed to allocated %u bytes for accel buffer\n", asci.size); return false; } XVK_CHECK(vkCreateAccelerationStructureKHR(vk_core.device, &asci, NULL, args->p_accel)); SET_DEBUG_NAME(*args->p_accel, VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_KHR, args->debug_name); if (model) { model->size = asci.size; model->debug.as_offset = buffer_offset; } // gEngine.Con_Reportf("AS=%p, n_geoms=%u, build: %#x %d %#x\n", *args->p_accel, args->n_geoms, buffer_offset, asci.size, buffer_offset + asci.size); } // If not enough data for building, just create if (!cmdbuf || !args->build_ranges) return true; if (model) { ASSERT(model->size >= build_size.accelerationStructureSize); } build_info.dstAccelerationStructure = *args->p_accel; build_info.scratchData.deviceAddress = g_rtx.scratch_buffer_addr + g_rtx.frame.scratch_offset; //uint32_t scratch_offset_initial = g_rtx.frame.scratch_offset; g_rtx.frame.scratch_offset += scratch_buffer_size; g_rtx.frame.scratch_offset = ALIGN_UP(g_rtx.frame.scratch_offset, vk_core.physical_device.properties_accel.minAccelerationStructureScratchOffsetAlignment); //gEngine.Con_Reportf("AS=%p, n_geoms=%u, scratch: %#x %d %#x\n", *args->p_accel, args->n_geoms, scratch_offset_initial, scratch_buffer_size, scratch_offset_initial + scratch_buffer_size); vkCmdBuildAccelerationStructuresKHR(cmdbuf, 1, &build_info, &args->build_ranges); return true; } static void createTlas( VkCommandBuffer cmdbuf ) { const VkAccelerationStructureGeometryKHR tl_geom[] = { { .sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR, //.flags = VK_GEOMETRY_OPAQUE_BIT, .geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR, .geometry.instances = (VkAccelerationStructureGeometryInstancesDataKHR){ .sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR, .data.deviceAddress = getBufferDeviceAddress(g_rtx.tlas_geom_buffer.buffer), .arrayOfPointers = VK_FALSE, }, }, }; const uint32_t tl_max_prim_counts[ARRAYSIZE(tl_geom)] = { MAX_ACCELS }; //cmdbuf == VK_NULL_HANDLE ? MAX_ACCELS : g_ray_model_state.frame.num_models }; const VkAccelerationStructureBuildRangeInfoKHR tl_build_range = { .primitiveCount = g_ray_model_state.frame.num_models, }; const as_build_args_t asrgs = { .geoms = tl_geom, .max_prim_counts = tl_max_prim_counts, .build_ranges = cmdbuf == VK_NULL_HANDLE ? NULL : &tl_build_range, .n_geoms = ARRAYSIZE(tl_geom), .type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR, // we can't really rebuild TLAS because instance count changes are not allowed .dynamic = true, .dynamic = false, .p_accel = &g_rtx.tlas, .debug_name = "TLAS", }; if (!createOrUpdateAccelerationStructure(cmdbuf, &asrgs, NULL)) { gEngine.Host_Error("Could not create/update TLAS\n"); return; } } void VK_RayNewMap( void ) { ASSERT(vk_core.rtx); VK_RingBuffer_Clear(&g_rtx.accels_buffer_alloc); VK_RingBuffer_Clear(&g_ray_model_state.kusochki_alloc); // Clear model cache for (int i = 0; i < ARRAYSIZE(g_ray_model_state.models_cache); ++i) { vk_ray_model_t *model = g_ray_model_state.models_cache + i; VK_RayModelDestroy(model); } // Recreate tlas // Why here and not in init: to make sure that its memory is preserved. Map init will clear all memory regions. { if (g_rtx.tlas != VK_NULL_HANDLE) { vkDestroyAccelerationStructureKHR(vk_core.device, g_rtx.tlas, NULL); g_rtx.tlas = VK_NULL_HANDLE; } createTlas(VK_NULL_HANDLE); } } void VK_RayMapLoadEnd( void ) { VK_RingBuffer_Fix(&g_rtx.accels_buffer_alloc); VK_RingBuffer_Fix(&g_ray_model_state.kusochki_alloc); } void VK_RayFrameBegin( void ) { ASSERT(vk_core.rtx); g_rtx.frame.scratch_offset = 0; if (g_ray_model_state.freeze_models) return; XVK_RayModel_ClearForNextFrame(); // TODO shouldn't we do this in freeze models mode anyway? VK_LightsFrameInit(); } static void createPipeline( void ) { struct RayShaderSpec { int max_dlights; int max_emissive_kusochki; uint32_t max_visible_dlights; uint32_t max_visible_surface_lights; float light_grid_cell_size; int max_light_clusters; } spec_data = { .max_dlights = MAX_DLIGHTS, .max_emissive_kusochki = MAX_EMISSIVE_KUSOCHKI, .max_visible_dlights = MAX_VISIBLE_DLIGHTS, .max_visible_surface_lights = MAX_VISIBLE_SURFACE_LIGHTS, .light_grid_cell_size = LIGHT_GRID_CELL_SIZE, .max_light_clusters = MAX_LIGHT_CLUSTERS, }; const VkSpecializationMapEntry spec_map[] = { {.constantID = 0, .offset = offsetof(struct RayShaderSpec, max_dlights), .size = sizeof(int) }, {.constantID = 1, .offset = offsetof(struct RayShaderSpec, max_emissive_kusochki), .size = sizeof(int) }, {.constantID = 2, .offset = offsetof(struct RayShaderSpec, max_visible_dlights), .size = sizeof(uint32_t) }, {.constantID = 3, .offset = offsetof(struct RayShaderSpec, max_visible_surface_lights), .size = sizeof(uint32_t) }, {.constantID = 4, .offset = offsetof(struct RayShaderSpec, light_grid_cell_size), .size = sizeof(float) }, {.constantID = 5, .offset = offsetof(struct RayShaderSpec, max_light_clusters), .size = sizeof(int) }, }; VkSpecializationInfo spec = { .mapEntryCount = ARRAYSIZE(spec_map), .pMapEntries = spec_map, .dataSize = sizeof(spec_data), .pData = &spec_data, }; const VkPipelineShaderStageCreateInfo shaders[] = { { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_RAYGEN_BIT_KHR, .module = loadShader("ray.rgen.spv"), //.pSpecializationInfo = &spec, .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_MISS_BIT_KHR, .module = loadShader("ray.rmiss.spv"), //.pSpecializationInfo = &spec, .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_MISS_BIT_KHR, .module = loadShader("shadow.rmiss.spv"), //.pSpecializationInfo = &spec, .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, .module = loadShader("ray.rchit.spv"), //.pSpecializationInfo = &spec, .pName = "main", }, { .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO, .stage = VK_SHADER_STAGE_ANY_HIT_BIT_KHR, .module = loadShader("alphamask.rahit.spv"), //.pSpecializationInfo = &spec, .pName = "main", }, }; const VkRayTracingShaderGroupCreateInfoKHR shader_groups[SBT_SIZE] = { { .sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR, .type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR, .anyHitShader = VK_SHADER_UNUSED_KHR, .closestHitShader = VK_SHADER_UNUSED_KHR, .generalShader = 0, // raygen stage index; FIXME enum .intersectionShader = VK_SHADER_UNUSED_KHR, }, { .sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR, .type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR, .anyHitShader = VK_SHADER_UNUSED_KHR, .closestHitShader = VK_SHADER_UNUSED_KHR, .generalShader = 1, // miss stage index; FIXME enum .intersectionShader = VK_SHADER_UNUSED_KHR, }, { .sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR, .type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR, .anyHitShader = VK_SHADER_UNUSED_KHR, .closestHitShader = VK_SHADER_UNUSED_KHR, .generalShader = 2, // shadow miss stage index; FIXME enum .intersectionShader = VK_SHADER_UNUSED_KHR, }, { .sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR, .type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR, .anyHitShader = 4, // FIXME index of alphamask shader .closestHitShader = 3, // FIXME enum index .generalShader = VK_SHADER_UNUSED_KHR, .intersectionShader = VK_SHADER_UNUSED_KHR, }, }; const VkRayTracingPipelineCreateInfoKHR rtpci = { .sType = VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR, //TODO .flags = VK_PIPELINE_CREATE_RAY_TRACING_NO_NULL_ANY_HIT_SHADERS_BIT_KHR .... .stageCount = ARRAYSIZE(shaders), .pStages = shaders, .groupCount = ARRAYSIZE(shader_groups), .pGroups = shader_groups, .maxPipelineRayRecursionDepth = 1, .layout = g_rtx.descriptors.pipeline_layout, }; XVK_CHECK(vkCreateRayTracingPipelinesKHR(vk_core.device, VK_NULL_HANDLE, g_pipeline_cache, 1, &rtpci, NULL, &g_rtx.pipeline)); ASSERT(g_rtx.pipeline != VK_NULL_HANDLE); ASSERT(SBT_SIZE == ARRAYSIZE(shader_groups)); { const uint32_t sbt_handle_size = vk_core.physical_device.properties_ray_tracing_pipeline.shaderGroupHandleSize; const uint32_t sbt_handles_buffer_size = ARRAYSIZE(shader_groups) * sbt_handle_size; uint8_t *sbt_handles = Mem_Malloc(vk_core.pool, sbt_handles_buffer_size); XVK_CHECK(vkGetRayTracingShaderGroupHandlesKHR(vk_core.device, g_rtx.pipeline, 0, ARRAYSIZE(shader_groups), sbt_handles_buffer_size, sbt_handles)); for (int i = 0; i < ARRAYSIZE(shader_groups); ++i) { uint8_t *sbt_dst = g_rtx.sbt_buffer.mapped; memcpy(sbt_dst + g_rtx.sbt_record_size * i, sbt_handles + sbt_handle_size * i, sbt_handle_size); } Mem_Free(sbt_handles); } for (int i = 0; i < ARRAYSIZE(shaders); ++i) vkDestroyShaderModule(vk_core.device, shaders[i].module, NULL); } static void prepareTlas( VkCommandBuffer cmdbuf ) { ASSERT(g_ray_model_state.frame.num_models > 0); // Upload all blas instances references to GPU mem { VkAccelerationStructureInstanceKHR* inst = g_rtx.tlas_geom_buffer.mapped; for (int i = 0; i < g_ray_model_state.frame.num_models; ++i) { const vk_ray_draw_model_t* const model = g_ray_model_state.frame.models + i; ASSERT(model->model); ASSERT(model->model->as != VK_NULL_HANDLE); inst[i] = (VkAccelerationStructureInstanceKHR){ .instanceCustomIndex = model->model->kusochki_offset, .mask = 0xff, .instanceShaderBindingTableRecordOffset = 0, .flags = model->render_mode == kRenderNormal ? VK_GEOMETRY_INSTANCE_FORCE_OPAQUE_BIT_KHR : VK_GEOMETRY_INSTANCE_FORCE_NO_OPAQUE_BIT_KHR, .accelerationStructureReference = getASAddress(model->model->as), // TODO cache this addr }; memcpy(&inst[i].transform, model->transform_row, sizeof(VkTransformMatrixKHR)); } } // Barrier for building all BLASes // BLAS building is now in cmdbuf, need to synchronize with results { VkBufferMemoryBarrier bmb[] = { { .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, .srcAccessMask = VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, // | VK_ACCESS_TRANSFER_WRITE_BIT, .dstAccessMask = VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR, .buffer = g_rtx.accels_buffer.buffer, .offset = 0, .size = VK_WHOLE_SIZE, } }; vkCmdPipelineBarrier(cmdbuf, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, 0, 0, NULL, ARRAYSIZE(bmb), bmb, 0, NULL); } // 2. Build TLAS createTlas(cmdbuf); } static void updateDescriptors( VkCommandBuffer cmdbuf, const vk_ray_frame_render_args_t *args, const vk_image_t *frame_src, const vk_image_t *frame_dst ) { // 3. Update descriptor sets (bind dest image, tlas, projection matrix) VkDescriptorImageInfo dii_all_textures[MAX_TEXTURES]; g_rtx.desc_values[RayDescBinding_DestImage].image = (VkDescriptorImageInfo){ .sampler = VK_NULL_HANDLE, .imageView = frame_dst->view, .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }; g_rtx.desc_values[RayDescBinding_PrevFrame].image = (VkDescriptorImageInfo){ .sampler = VK_NULL_HANDLE, .imageView = frame_src->view, .imageLayout = VK_IMAGE_LAYOUT_GENERAL, }; g_rtx.desc_values[RayDescBinding_TLAS].accel = (VkWriteDescriptorSetAccelerationStructureKHR){ .sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR, .accelerationStructureCount = 1, .pAccelerationStructures = &g_rtx.tlas, }; g_rtx.desc_values[RayDescBinding_UBOMatrices].buffer = (VkDescriptorBufferInfo){ .buffer = args->ubo.buffer, .offset = args->ubo.offset, .range = args->ubo.size, }; g_rtx.desc_values[RayDescBinding_Kusochki].buffer = (VkDescriptorBufferInfo){ .buffer = g_ray_model_state.kusochki_buffer.buffer, .offset = 0, .range = VK_WHOLE_SIZE, // TODO fails validation when empty g_rtx_scene.num_models * sizeof(vk_kusok_data_t), }; g_rtx.desc_values[RayDescBinding_Indices].buffer = (VkDescriptorBufferInfo){ .buffer = args->geometry_data.buffer, .offset = 0, .range = VK_WHOLE_SIZE, // TODO fails validation when empty args->geometry_data.size, }; g_rtx.desc_values[RayDescBinding_Vertices].buffer = (VkDescriptorBufferInfo){ .buffer = args->geometry_data.buffer, .offset = 0, .range = VK_WHOLE_SIZE, // TODO fails validation when empty args->geometry_data.size, }; g_rtx.desc_values[RayDescBinding_Textures].image_array = dii_all_textures; // TODO: move this to vk_texture.c for (int i = 0; i < MAX_TEXTURES; ++i) { const vk_texture_t *texture = findTexture(i); const qboolean exists = texture->vk.image_view != VK_NULL_HANDLE; dii_all_textures[i].sampler = vk_core.default_sampler; // FIXME on AMD using pImmutableSamplers leads to NEAREST filtering ??. VK_NULL_HANDLE; dii_all_textures[i].imageView = exists ? texture->vk.image_view : findTexture(tglob.defaultTexture)->vk.image_view; ASSERT(dii_all_textures[i].imageView != VK_NULL_HANDLE); dii_all_textures[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; } g_rtx.desc_values[RayDescBinding_UBOLights].buffer = (VkDescriptorBufferInfo){ .buffer = args->dlights.buffer, .offset = args->dlights.offset, .range = args->dlights.size, }; g_rtx.desc_values[RayDescBinding_EmissiveKusochki].buffer = (VkDescriptorBufferInfo){ .buffer = g_ray_model_state.emissive_kusochki_buffer.buffer, .offset = 0, .range = VK_WHOLE_SIZE, }; g_rtx.desc_values[RayDescBinding_LightClusters].buffer = (VkDescriptorBufferInfo){ .buffer = g_rtx.light_grid_buffer.buffer, .offset = 0, .range = VK_WHOLE_SIZE, }; VK_DescriptorsWrite(&g_rtx.descriptors); } static qboolean rayTrace( VkCommandBuffer cmdbuf, VkImage frame_dst, float fov_angle_y ) { // 4. Barrier for TLAS build and dest image layout transfer { VkBufferMemoryBarrier bmb[] = { { .sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER, .srcAccessMask = VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, .dstAccessMask = VK_ACCESS_SHADER_READ_BIT, .buffer = g_rtx.accels_buffer.buffer, .offset = 0, .size = VK_WHOLE_SIZE, } }; VkImageMemoryBarrier image_barrier[] = { { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .image = frame_dst, .srcAccessMask = 0, .dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT, .oldLayout = VK_IMAGE_LAYOUT_UNDEFINED, .newLayout = VK_IMAGE_LAYOUT_GENERAL, .subresourceRange = (VkImageSubresourceRange) { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }} }; vkCmdPipelineBarrier(cmdbuf, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR | VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, ARRAYSIZE(bmb), bmb, ARRAYSIZE(image_barrier), image_barrier); } // 4. dispatch ray tracing vkCmdBindPipeline(cmdbuf, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, g_rtx.pipeline); { vk_rtx_push_constants_t push_constants = { //.t = gpGlobals->realtime, .random_seed = (uint32_t)gEngine.COM_RandomLong(0, INT32_MAX), .bounces = vk_rtx_bounces->value, .prev_frame_blend_factor = vk_rtx_prev_frame_blend_factor->value, .pixel_cone_spread_angle = atanf((2.0f*tanf(fov_angle_y * 0.5f)) / (float)FRAME_HEIGHT), }; vkCmdPushConstants(cmdbuf, g_rtx.descriptors.pipeline_layout, VK_SHADER_STAGE_RAYGEN_BIT_KHR, 0, sizeof(push_constants), &push_constants); } vkCmdBindDescriptorSets(cmdbuf, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, g_rtx.descriptors.pipeline_layout, 0, 1, g_rtx.descriptors.desc_sets + 0, 0, NULL); { const uint32_t sbt_record_size = g_rtx.sbt_record_size; //const uint32_t sbt_record_size = vk_core.physical_device.properties_ray_tracing_pipeline.shaderGroupHandleSize; #define SBT_INDEX(index, count) { \ .deviceAddress = getBufferDeviceAddress(g_rtx.sbt_buffer.buffer) + g_rtx.sbt_record_size * index, \ .size = sbt_record_size * count, \ .stride = sbt_record_size, \ } const VkStridedDeviceAddressRegionKHR sbt_raygen = SBT_INDEX(0, 1); const VkStridedDeviceAddressRegionKHR sbt_miss = SBT_INDEX(1, 2); const VkStridedDeviceAddressRegionKHR sbt_hit = SBT_INDEX(3, 1); const VkStridedDeviceAddressRegionKHR sbt_callable = { 0 }; vkCmdTraceRaysKHR(cmdbuf, &sbt_raygen, &sbt_miss, &sbt_hit, &sbt_callable, FRAME_WIDTH, FRAME_HEIGHT, 1 ); } return true; } // Finalize and update dynamic lights static void updateLights( void ) { VK_LightsFrameFinalize(); // Upload light grid { vk_ray_shader_light_grid *grid = g_rtx.light_grid_buffer.mapped; ASSERT(g_lights.map.grid_cells <= MAX_LIGHT_CLUSTERS); VectorCopy(g_lights.map.grid_min_cell, grid->min_cell); VectorCopy(g_lights.map.grid_size, grid->size); memcpy(grid->cells, g_lights.cells, g_lights.map.grid_cells * sizeof(vk_lights_cell_t)); } // Upload dynamic emissive kusochki { vk_emissive_kusochki_t *ek = g_ray_model_state.emissive_kusochki_buffer.mapped; ASSERT(g_lights.num_emissive_surfaces <= MAX_EMISSIVE_KUSOCHKI); ek->num_kusochki = g_lights.num_emissive_surfaces; for (int i = 0; i < g_lights.num_emissive_surfaces; ++i) { ek->kusochki[i].kusok_index = g_lights.emissive_surfaces[i].kusok_index; VectorCopy(g_lights.emissive_surfaces[i].emissive, ek->kusochki[i].emissive_color); Matrix3x4_Copy(ek->kusochki[i].transform, g_lights.emissive_surfaces[i].transform); } } } static void blitImage( VkCommandBuffer cmdbuf, VkImage src, VkImage dst, int src_width, int src_height, int dst_width, int dst_height ) { // Blit raytraced image to frame buffer { VkImageBlit region = {0}; region.srcOffsets[1].x = src_width; region.srcOffsets[1].y = src_height; region.srcOffsets[1].z = 1; region.dstOffsets[1].x = dst_width; region.dstOffsets[1].y = dst_height; region.dstOffsets[1].z = 1; region.srcSubresource.aspectMask = region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.srcSubresource.layerCount = region.dstSubresource.layerCount = 1; vkCmdBlitImage(cmdbuf, src, VK_IMAGE_LAYOUT_GENERAL, dst, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion, VK_FILTER_NEAREST); } { VkImageMemoryBarrier image_barriers[] = { { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .image = dst, .srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT, .dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, .oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, .newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, .subresourceRange = (VkImageSubresourceRange){ .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }, }}; vkCmdPipelineBarrier(cmdbuf, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0, 0, NULL, 0, NULL, ARRAYSIZE(image_barriers), image_barriers); } } static void clearVkImage( VkCommandBuffer cmdbuf, VkImage image ) { const VkImageMemoryBarrier image_barriers[] = { { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .image = image, .srcAccessMask = 0, .dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT, .oldLayout = VK_IMAGE_LAYOUT_UNDEFINED, .newLayout = VK_IMAGE_LAYOUT_GENERAL, .subresourceRange = (VkImageSubresourceRange) { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }} }; const VkClearColorValue clear_value = {0}; vkCmdPipelineBarrier(cmdbuf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, ARRAYSIZE(image_barriers), image_barriers); vkCmdClearColorImage(cmdbuf, image, VK_IMAGE_LAYOUT_GENERAL, &clear_value, 1, &image_barriers->subresourceRange); } void VK_RayFrameEnd(const vk_ray_frame_render_args_t* args) { const VkCommandBuffer cmdbuf = args->cmdbuf; const vk_image_t* frame_src = g_rtx.frames + ((g_rtx.frame_number + 1) % 2); const vk_image_t* frame_dst = g_rtx.frames + (g_rtx.frame_number % 2); ASSERT(vk_core.rtx); // ubo should contain two matrices // FIXME pass these matrices explicitly to let RTX module handle ubo itself ASSERT(args->ubo.size == sizeof(float) * 16 * 2); g_rtx.frame_number++; if (vk_core.debug) XVK_RayModel_Validate(); if (g_rtx.reload_pipeline) { gEngine.Con_Printf(S_WARN "Reloading RTX shaders/pipelines\n"); // TODO gracefully handle reload errors: need to change createPipeline, loadShader, VK_PipelineCreate... vkDestroyPipeline(vk_core.device, g_rtx.pipeline, NULL); createPipeline(); g_rtx.reload_pipeline = false; } updateLights(); if (g_ray_model_state.frame.num_models == 0) { clearVkImage( cmdbuf, frame_dst->image ); { // Prepare destination image for writing const VkImageMemoryBarrier image_barriers[] = {{ .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .image = args->dst.image, .srcAccessMask = 0, .dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT, .oldLayout = VK_IMAGE_LAYOUT_UNDEFINED, .newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, .subresourceRange = (VkImageSubresourceRange){ .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }, }}; vkCmdPipelineBarrier(args->cmdbuf, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, ARRAYSIZE(image_barriers), image_barriers); } } else { prepareTlas(cmdbuf); updateDescriptors(cmdbuf, args, frame_src, frame_dst); rayTrace(cmdbuf, frame_dst->image, args->fov_angle_y); // Barrier for frame_dst image { const VkImageMemoryBarrier image_barriers[] = { { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .image = frame_dst->image, .srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT, .dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT, .oldLayout = VK_IMAGE_LAYOUT_GENERAL, .newLayout = VK_IMAGE_LAYOUT_GENERAL, .subresourceRange = (VkImageSubresourceRange){ .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }, }, { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .image = args->dst.image, .srcAccessMask = 0, .dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT, .oldLayout = VK_IMAGE_LAYOUT_UNDEFINED, .newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, .subresourceRange = (VkImageSubresourceRange){ .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }, }}; vkCmdPipelineBarrier(args->cmdbuf, VK_PIPELINE_STAGE_RAY_TRACING_SHADER_BIT_KHR, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, NULL, 0, NULL, ARRAYSIZE(image_barriers), image_barriers); } } // Blit RTX frame onto swapchain image blitImage(cmdbuf, frame_src->image, args->dst.image, FRAME_WIDTH, FRAME_HEIGHT, args->dst.width, args->dst.height); } static void createLayouts( void ) { //VkSampler samplers[MAX_TEXTURES]; g_rtx.descriptors.bindings = g_rtx.desc_bindings; g_rtx.descriptors.num_bindings = ARRAYSIZE(g_rtx.desc_bindings); g_rtx.descriptors.values = g_rtx.desc_values; g_rtx.descriptors.num_sets = 1; g_rtx.descriptors.desc_sets = g_rtx.desc_sets; g_rtx.descriptors.push_constants = (VkPushConstantRange){ .offset = 0, .size = sizeof(vk_rtx_push_constants_t), .stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR, }; g_rtx.desc_bindings[RayDescBinding_DestImage] = (VkDescriptorSetLayoutBinding){ .binding = RayDescBinding_DestImage, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR, }; g_rtx.desc_bindings[RayDescBinding_TLAS] = (VkDescriptorSetLayoutBinding){ .binding = RayDescBinding_TLAS, .descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR, }; g_rtx.desc_bindings[RayDescBinding_UBOMatrices] = (VkDescriptorSetLayoutBinding){ .binding = RayDescBinding_UBOMatrices, .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR, }; g_rtx.desc_bindings[RayDescBinding_Kusochki] = (VkDescriptorSetLayoutBinding){ .binding = RayDescBinding_Kusochki, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR, }; g_rtx.desc_bindings[RayDescBinding_Indices] = (VkDescriptorSetLayoutBinding){ .binding = RayDescBinding_Indices, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR, }; g_rtx.desc_bindings[RayDescBinding_Vertices] = (VkDescriptorSetLayoutBinding){ .binding = RayDescBinding_Vertices, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR | VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR, }; g_rtx.desc_bindings[RayDescBinding_Textures] = (VkDescriptorSetLayoutBinding){ .binding = RayDescBinding_Textures, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .descriptorCount = MAX_TEXTURES, .stageFlags = VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR | VK_SHADER_STAGE_ANY_HIT_BIT_KHR, // FIXME on AMD using immutable samplers leads to nearest filtering ???! .pImmutableSamplers = NULL, //samplers, }; // for (int i = 0; i < ARRAYSIZE(samplers); ++i) // samplers[i] = vk_core.default_sampler; g_rtx.desc_bindings[RayDescBinding_UBOLights] = (VkDescriptorSetLayoutBinding){ .binding = RayDescBinding_UBOLights, .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR, }; g_rtx.desc_bindings[RayDescBinding_EmissiveKusochki] = (VkDescriptorSetLayoutBinding){ .binding = RayDescBinding_EmissiveKusochki, .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR, }; g_rtx.desc_bindings[RayDescBinding_LightClusters] = (VkDescriptorSetLayoutBinding){ .binding = RayDescBinding_LightClusters, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR, }; g_rtx.desc_bindings[RayDescBinding_PrevFrame] = (VkDescriptorSetLayoutBinding){ .binding = RayDescBinding_PrevFrame, .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_RAYGEN_BIT_KHR, }; VK_DescriptorsCreate(&g_rtx.descriptors); } static void reloadPipeline( void ) { g_rtx.reload_pipeline = true; } static void freezeModels( void ) { g_ray_model_state.freeze_models = !g_ray_model_state.freeze_models; } qboolean VK_RayInit( void ) { ASSERT(vk_core.rtx); // TODO complain and cleanup on failure //g_rtx.sbt_record_size = ALIGN_UP(vk_core.physical_device.properties_ray_tracing_pipeline.shaderGroupHandleSize, vk_core.physical_device.properties_ray_tracing_pipeline.shaderGroupHandleAlignment); g_rtx.sbt_record_size = ALIGN_UP(vk_core.physical_device.properties_ray_tracing_pipeline.shaderGroupHandleSize, vk_core.physical_device.properties_ray_tracing_pipeline.shaderGroupBaseAlignment); if (!createBuffer("ray sbt_buffer", &g_rtx.sbt_buffer, SBT_SIZE * g_rtx.sbt_record_size, VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_SHADER_BINDING_TABLE_BIT_KHR, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) { return false; } if (!createBuffer("ray accels_buffer", &g_rtx.accels_buffer, MAX_ACCELS_BUFFER, VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT )) { return false; } g_rtx.accels_buffer_addr = getBufferDeviceAddress(g_rtx.accels_buffer.buffer); g_rtx.accels_buffer_alloc.size = g_rtx.accels_buffer.size; if (!createBuffer("ray scratch_buffer", &g_rtx.scratch_buffer, MAX_SCRATCH_BUFFER, VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT )) { return false; } g_rtx.scratch_buffer_addr = getBufferDeviceAddress(g_rtx.scratch_buffer.buffer); if (!createBuffer("ray tlas_geom_buffer", &g_rtx.tlas_geom_buffer, sizeof(VkAccelerationStructureInstanceKHR) * MAX_ACCELS, VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) { // FIXME complain, handle return false; } if (!createBuffer("ray kusochki_buffer", &g_ray_model_state.kusochki_buffer, sizeof(vk_kusok_data_t) * MAX_KUSOCHKI, VK_BUFFER_USAGE_STORAGE_BUFFER_BIT /* | VK_BUFFER_USAGE_TRANSFER_DST_BIT */, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) { // FIXME complain, handle return false; } g_ray_model_state.kusochki_alloc.size = MAX_KUSOCHKI; if (!createBuffer("ray emissive_kusochki_buffer", &g_ray_model_state.emissive_kusochki_buffer, sizeof(vk_emissive_kusochki_t), VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT /* | VK_BUFFER_USAGE_TRANSFER_DST_BIT */, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) { // FIXME complain, handle return false; } if (!createBuffer("ray light_grid_buffer", &g_rtx.light_grid_buffer, sizeof(vk_ray_shader_light_grid), VK_BUFFER_USAGE_STORAGE_BUFFER_BIT /* | VK_BUFFER_USAGE_TRANSFER_DST_BIT */, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) { // FIXME complain, handle return false; } createLayouts(); createPipeline(); for (int i = 0; i < ARRAYSIZE(g_rtx.frames); ++i) { g_rtx.frames[i] = VK_ImageCreate(FRAME_WIDTH, FRAME_HEIGHT, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TILING_OPTIMAL, VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT); } // Start with black previous frame { const VkCommandBufferBeginInfo beginfo = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, }; XVK_CHECK(vkBeginCommandBuffer(vk_core.cb, &beginfo)); clearVkImage( vk_core.cb, g_rtx.frames[1].image ); XVK_CHECK(vkEndCommandBuffer(vk_core.cb)); { const VkSubmitInfo subinfo = { .sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .commandBufferCount = 1, .pCommandBuffers = &vk_core.cb, }; XVK_CHECK(vkQueueSubmit(vk_core.queue, 1, &subinfo, VK_NULL_HANDLE)); XVK_CHECK(vkQueueWaitIdle(vk_core.queue)); } } if (vk_core.debug) { gEngine.Cmd_AddCommand("vk_rtx_reload", reloadPipeline, "Reload RTX shader"); gEngine.Cmd_AddCommand("vk_rtx_freeze", freezeModels, "Freeze models, do not update/add/delete models from to-draw list"); } return true; } void VK_RayShutdown( void ) { ASSERT(vk_core.rtx); for (int i = 0; i < ARRAYSIZE(g_rtx.frames); ++i) VK_ImageDestroy(g_rtx.frames + i); vkDestroyPipeline(vk_core.device, g_rtx.pipeline, NULL); VK_DescriptorsDestroy(&g_rtx.descriptors); if (g_rtx.tlas != VK_NULL_HANDLE) vkDestroyAccelerationStructureKHR(vk_core.device, g_rtx.tlas, NULL); for (int i = 0; i < ARRAYSIZE(g_ray_model_state.models_cache); ++i) { vk_ray_model_t *model = g_ray_model_state.models_cache + i; if (model->as != VK_NULL_HANDLE) vkDestroyAccelerationStructureKHR(vk_core.device, model->as, NULL); model->as = VK_NULL_HANDLE; } destroyBuffer(&g_rtx.scratch_buffer); destroyBuffer(&g_rtx.accels_buffer); destroyBuffer(&g_rtx.tlas_geom_buffer); destroyBuffer(&g_ray_model_state.kusochki_buffer); destroyBuffer(&g_ray_model_state.emissive_kusochki_buffer); destroyBuffer(&g_rtx.light_grid_buffer); destroyBuffer(&g_rtx.sbt_buffer); }