#include "vk_beams.h" #include "vk_common.h" #include "camera.h" #include "vk_render.h" #include "vk_geometry.h" #include "vk_textures.h" #include "vk_sprite.h" #include "vk_scene.h" #include "vk_math.h" #include "vk_triapi.h" #include "xash3d_types.h" #include "xash3d_mathlib.h" #include "customentity.h" #include "beamdef.h" #define NOISE_DIVISIONS 64 // don't touch - many tripmines cause the crash when it equal 128 typedef struct { vec3_t pos; float texcoord; // Y texture coordinate float width; } beamseg_t; /* ============================================================== FRACTAL NOISE ============================================================== */ static float rgNoise[NOISE_DIVISIONS+1]; // global noise array // freq2 += step * 0.1; // Fractal noise generator, power of 2 wavelength static void FracNoise( float *noise, int divs ) { int div2; div2 = divs >> 1; if( divs < 2 ) return; // noise is normalized to +/- scale noise[div2] = ( noise[0] + noise[divs] ) * 0.5f + divs * gEngine.COM_RandomFloat( -0.125f, 0.125f ); if( div2 > 1 ) { FracNoise( &noise[div2], div2 ); FracNoise( noise, div2 ); } } static void SineNoise( float *noise, int divs ) { float freq = 0; float step = M_PI_F / (float)divs; int i; for( i = 0; i < divs; i++ ) { noise[i] = sin( freq ); freq += step; } } /* ============================================================== BEAM MATHLIB ============================================================== */ static void R_BeamComputePerpendicular( const vec3_t vecBeamDelta, vec3_t pPerp ) { // direction in worldspace of the center of the beam vec3_t vecBeamCenter; VectorNormalize2( vecBeamDelta, vecBeamCenter ); CrossProduct( g_camera.vforward, vecBeamCenter, pPerp ); VectorNormalize( pPerp ); } static void R_BeamComputeNormal( const vec3_t vStartPos, const vec3_t vNextPos, vec3_t pNormal ) { // vTangentY = line vector for beam vec3_t vTangentY, vDirToBeam; VectorSubtract( vStartPos, vNextPos, vTangentY ); // vDirToBeam = vector from viewer origin to beam VectorSubtract( vStartPos, g_camera.vieworg, vDirToBeam ); // get a vector that is perpendicular to us and perpendicular to the beam. // this is used to fatten the beam. CrossProduct( vTangentY, vDirToBeam, pNormal ); VectorNormalizeFast( pNormal ); } /* ============== R_BeamCull Cull the beam by bbox ============== */ qboolean R_BeamCull( const vec3_t start, const vec3_t end, qboolean pvsOnly ) { vec3_t mins, maxs; int i; for( i = 0; i < 3; i++ ) { if( start[i] < end[i] ) { mins[i] = start[i]; maxs[i] = end[i]; } else { mins[i] = end[i]; maxs[i] = start[i]; } // don't let it be zero sized if( mins[i] == maxs[i] ) maxs[i] += 1.0f; } /* FIXME VK // check bbox if( gEngine.Mod_BoxVisible( mins, maxs, Mod_GetCurrentVis( ))) { if( pvsOnly || !R_CullBox( mins, maxs )) { // beam is visible return false; } } */ return false; // beam is culled return true; } static float clampf(float v, float min, float max) { if (v < min) return min; if (v > max) return max; return v; } // FIXME unclear how to organize this static void applyBrightness( float brightness, rgba_t out ) { out[0] = out[1] = out[2] = clampf(brightness, 0, 1) * 255.f; out[3] = 255; } static void TriBrightness( float brightness ) { TriColor4f( brightness, brightness, brightness, 1.f ); } static void R_DrawSegs( vec3_t source, vec3_t delta, float width, float scale, float freq, float speed, int segments, int flags, const vec4_t color, int texture, int render_mode ) { int noiseIndex, noiseStep; int i, total_segs, segs_drawn; float div, length, fraction, factor; float flMaxWidth, vLast, vStep, brightness; vec3_t perp1, vLastNormal = {0}; beamseg_t curSeg = {0}; int total_vertices = 0; int total_indices = 0; r_geometry_buffer_lock_t buffer; vk_vertex_t *dst_vtx; uint16_t *dst_idx; if( segments < 2 ) return; length = VectorLength( delta ); flMaxWidth = width * 0.5f; div = 1.0f / ( segments - 1 ); if( length * div < flMaxWidth * 1.414f ) { // here, we have too many segments; we could get overlap... so lets have less segments segments = (int)( length / ( flMaxWidth * 1.414f )) + 1.0f; if( segments < 2 ) segments = 2; } if( segments > NOISE_DIVISIONS ) segments = NOISE_DIVISIONS; div = 1.0f / (segments - 1); length *= 0.01f; vStep = length * div; // Texture length texels per space pixel // Scroll speed 3.5 -- initial texture position, scrolls 3.5/sec (1.0 is entire texture) vLast = fmod( freq * speed, 1 ); if( flags & FBEAM_SINENOISE ) { if( segments < 16 ) { segments = 16; div = 1.0f / ( segments - 1 ); } scale *= 100.0f; length = segments * 0.1f; } else { scale *= length * 2.0f; } // Iterator to resample noise waveform (it needs to be generated in powers of 2) noiseStep = (int)((float)( NOISE_DIVISIONS - 1 ) * div * 65536.0f ); brightness = 1.0f; noiseIndex = 0; if( FBitSet( flags, FBEAM_SHADEIN )) brightness = 0; // Choose two vectors that are perpendicular to the beam R_BeamComputePerpendicular( delta, perp1 ); total_segs = segments; segs_drawn = 0; total_vertices = (total_segs - 1) * 2 + 2; total_indices = (total_vertices - 2) * 3; // STRIP unrolled into LIST (TODO get rid of this) ASSERT(total_vertices < UINT16_MAX ); if (!R_GeometryBufferAllocAndLock( &buffer, total_vertices, total_indices, LifetimeSingleFrame )) { gEngine.Con_Printf(S_ERROR "Cannot allocate geometry for beam\n"); return; } dst_vtx = buffer.vertices.ptr; dst_idx = buffer.indices.ptr; // specify all the segments. for( i = 0; i < segments; i++ ) { beamseg_t nextSeg; vec3_t vPoint1, vPoint2; ASSERT( noiseIndex < ( NOISE_DIVISIONS << 16 )); fraction = i * div; VectorMA( source, fraction, delta, nextSeg.pos ); // distort using noise if( scale != 0 ) { factor = rgNoise[noiseIndex>>16] * scale; if( FBitSet( flags, FBEAM_SINENOISE )) { float s, c; SinCos( fraction * M_PI_F * length + freq, &s, &c ); VectorMA( nextSeg.pos, (factor * s), g_camera.vup, nextSeg.pos ); // rotate the noise along the perpendicluar axis a bit to keep the bolt from looking diagonal VectorMA( nextSeg.pos, (factor * c), g_camera.vright, nextSeg.pos ); } else { VectorMA( nextSeg.pos, factor, perp1, nextSeg.pos ); } } // specify the next segment. nextSeg.width = width * 2.0f; nextSeg.texcoord = vLast; if( segs_drawn > 0 ) { // Get a vector that is perpendicular to us and perpendicular to the beam. // This is used to fatten the beam. vec3_t vNormal, vAveNormal; R_BeamComputeNormal( curSeg.pos, nextSeg.pos, vNormal ); if( segs_drawn > 1 ) { // Average this with the previous normal VectorAdd( vNormal, vLastNormal, vAveNormal ); VectorScale( vAveNormal, 0.5f, vAveNormal ); VectorNormalizeFast( vAveNormal ); } else { VectorCopy( vNormal, vAveNormal ); } VectorCopy( vNormal, vLastNormal ); // draw regular segment VectorMA( curSeg.pos, ( curSeg.width * 0.5f ), vAveNormal, vPoint1 ); VectorMA( curSeg.pos, (-curSeg.width * 0.5f ), vAveNormal, vPoint2 ); dst_vtx->lm_tc[0] = dst_vtx->lm_tc[1] = 0.f; dst_vtx->gl_tc[0] = 0.0f; dst_vtx->gl_tc[1] = curSeg.texcoord; applyBrightness( brightness, dst_vtx->color ); VectorCopy( vPoint1, dst_vtx->pos ); VectorCopy( vAveNormal, dst_vtx->normal ); ++dst_vtx; dst_vtx->lm_tc[0] = dst_vtx->lm_tc[1] = 0.f; dst_vtx->gl_tc[0] = 1.0f; dst_vtx->gl_tc[1] = curSeg.texcoord; applyBrightness( brightness, dst_vtx->color ); VectorCopy( vPoint2, dst_vtx->pos ); VectorCopy( vAveNormal, dst_vtx->normal ); ++dst_vtx; } curSeg = nextSeg; segs_drawn++; if( FBitSet( flags, FBEAM_SHADEIN ) && FBitSet( flags, FBEAM_SHADEOUT )) { if( fraction < 0.5f ) brightness = fraction; else brightness = ( 1.0f - fraction ); } else if( FBitSet( flags, FBEAM_SHADEIN )) { brightness = fraction; } else if( FBitSet( flags, FBEAM_SHADEOUT )) { brightness = 1.0f - fraction; } if( segs_drawn == total_segs ) { // draw the last segment VectorMA( curSeg.pos, ( curSeg.width * 0.5f ), vLastNormal, vPoint1 ); VectorMA( curSeg.pos, (-curSeg.width * 0.5f ), vLastNormal, vPoint2 ); dst_vtx->lm_tc[0] = dst_vtx->lm_tc[1] = 0.f; dst_vtx->gl_tc[0] = 0.0f; dst_vtx->gl_tc[1] = curSeg.texcoord; applyBrightness( brightness, dst_vtx->color ); VectorCopy( vPoint1, dst_vtx->pos ); VectorCopy( vLastNormal, dst_vtx->normal ); ++dst_vtx; dst_vtx->lm_tc[0] = dst_vtx->lm_tc[1] = 0.f; dst_vtx->gl_tc[0] = 1.0f; dst_vtx->gl_tc[1] = curSeg.texcoord; applyBrightness( brightness, dst_vtx->color ); VectorCopy( vPoint2, dst_vtx->pos ); VectorCopy( vLastNormal, dst_vtx->normal ); ++dst_vtx; } vLast += vStep; // Advance texture scroll (v axis only) noiseIndex += noiseStep; } for (int i = 2; i < total_vertices; ++i) { if( i & 1 ) { // draw triangle [n-1 n-2 n] dst_idx[(i-2)*3+0] = i - 1; dst_idx[(i-2)*3+1] = i - 2; dst_idx[(i-2)*3+2] = i; } else { // draw triangle [n-2 n-1 n] dst_idx[(i-2)*3+0] = i - 2; dst_idx[(i-2)*3+1] = i - 1; dst_idx[(i-2)*3+2] = i; } } R_GeometryBufferUnlock( &buffer ); { const vk_render_geometry_t geometry = { .texture = texture, .material = kXVkMaterialEmissive, .max_vertex = total_vertices, .vertex_offset = buffer.vertices.unit_offset, .element_count = total_indices, .index_offset = buffer.indices.unit_offset, .emissive = { color[0], color[1], color[2] }, }; vk_render_type_e render_type = render_mode == kRenderNormal ? kVkRenderTypeSolid : kVkRenderType_A_1_R; VK_RenderModelDynamicBegin( render_type, color, "beam" /* TODO its name */ ); VK_RenderModelDynamicAddGeometry( &geometry ); VK_RenderModelDynamicCommit(); } } static void R_DrawTorus( vec3_t source, vec3_t delta, float width, float scale, float freq, float speed, int segments, const vec4_t color ) { int i, noiseIndex, noiseStep; float div, length, fraction, factor, vLast, vStep; vec3_t last1, last2, point, screen, screenLast, tmp, normal; if( segments < 2 ) return; if( segments > NOISE_DIVISIONS ) segments = NOISE_DIVISIONS; length = VectorLength( delta ) * 0.01f; if( length < 0.5f ) length = 0.5f; // don't lose all of the noise/texture on short beams div = 1.0f / (segments - 1); vStep = length * div; // Texture length texels per space pixel // Scroll speed 3.5 -- initial texture position, scrolls 3.5/sec (1.0 is entire texture) vLast = fmod( freq * speed, 1 ); scale = scale * length; // Iterator to resample noise waveform (it needs to be generated in powers of 2) noiseStep = (int)((float)( NOISE_DIVISIONS - 1 ) * div * 65536.0f ); noiseIndex = 0; TriBegin( TRI_TRIANGLE_STRIP ); for( i = 0; i < segments; i++ ) { float s, c; fraction = i * div; SinCos( fraction * M_PI2_F, &s, &c ); point[0] = s * freq * delta[2] + source[0]; point[1] = c * freq * delta[2] + source[1]; point[2] = source[2]; // distort using noise if( scale != 0 ) { if(( noiseIndex >> 16 ) < NOISE_DIVISIONS ) { factor = rgNoise[noiseIndex>>16] * scale; VectorMA( point, factor, g_camera.vup, point ); // rotate the noise along the perpendicluar axis a bit to keep the bolt from looking diagonal factor = rgNoise[noiseIndex>>16] * scale * cos( fraction * M_PI_F * 3 + freq ); VectorMA( point, factor, g_camera.vright, point ); } } // Transform point into screen space TriWorldToScreen( point, screen ); if( i != 0 ) { // build world-space normal to screen-space direction vector VectorSubtract( screen, screenLast, tmp ); // we don't need Z, we're in screen space tmp[2] = 0; VectorNormalize( tmp ); VectorScale( g_camera.vup, -tmp[0], normal ); // Build point along noraml line (normal is -y, x) VectorMA( normal, tmp[1], g_camera.vright, normal ); // Make a wide line VectorMA( point, width, normal, last1 ); VectorMA( point, -width, normal, last2 ); vLast += vStep; // advance texture scroll (v axis only) TriTexCoord2f( 1, vLast ); TriVertex3fv( last2 ); TriTexCoord2f( 0, vLast ); TriVertex3fv( last1 ); } VectorCopy( screen, screenLast ); noiseIndex += noiseStep; } TriEndEx(color, "beam torus"); } static void R_DrawDisk( vec3_t source, vec3_t delta, float width, float scale, float freq, float speed, int segments, const vec4_t color ) { float div, length, fraction; float w, vLast, vStep; vec3_t point; int i; if( segments < 2 ) return; if( segments > NOISE_DIVISIONS ) // UNDONE: Allow more segments? segments = NOISE_DIVISIONS; length = VectorLength( delta ) * 0.01f; if( length < 0.5f ) length = 0.5f; // don't lose all of the noise/texture on short beams div = 1.0f / (segments - 1); vStep = length * div; // Texture length texels per space pixel // scroll speed 3.5 -- initial texture position, scrolls 3.5/sec (1.0 is entire texture) vLast = fmod( freq * speed, 1 ); scale = scale * length; // clamp the beam width w = fmod( freq, width * 0.1f ) * delta[2]; TriBegin( TRI_TRIANGLE_STRIP ); // NOTE: we must force the degenerate triangles to be on the edge for( i = 0; i < segments; i++ ) { float s, c; fraction = i * div; VectorCopy( source, point ); TriBrightness( 1.0f ); TriTexCoord2f( 1.0f, vLast ); TriVertex3fv( point ); SinCos( fraction * M_PI2_F, &s, &c ); point[0] = s * w + source[0]; point[1] = c * w + source[1]; point[2] = source[2]; TriBrightness( 1.0f ); TriTexCoord2f( 0.0f, vLast ); TriVertex3fv( point ); vLast += vStep; // advance texture scroll (v axis only) } TriEndEx(color, "beam disk"); } static void R_DrawCylinder( vec3_t source, vec3_t delta, float width, float scale, float freq, float speed, int segments, const vec4_t color ) { float div, length, fraction; float vLast, vStep; vec3_t point; int i; if( segments < 2 ) return; if( segments > NOISE_DIVISIONS ) segments = NOISE_DIVISIONS; length = VectorLength( delta ) * 0.01f; if( length < 0.5f ) length = 0.5f; // don't lose all of the noise/texture on short beams div = 1.0f / (segments - 1); vStep = length * div; // texture length texels per space pixel // Scroll speed 3.5 -- initial texture position, scrolls 3.5/sec (1.0 is entire texture) vLast = fmod( freq * speed, 1 ); scale = scale * length; TriBegin( TRI_TRIANGLE_STRIP ); for ( i = 0; i < segments; i++ ) { float s, c; fraction = i * div; SinCos( fraction * M_PI2_F, &s, &c ); point[0] = s * freq * delta[2] + source[0]; point[1] = c * freq * delta[2] + source[1]; point[2] = source[2] + width; TriBrightness( 0 ); TriTexCoord2f( 1, vLast ); TriVertex3fv( point ); point[0] = s * freq * ( delta[2] + width ) + source[0]; point[1] = c * freq * ( delta[2] + width ) + source[1]; point[2] = source[2] - width; TriBrightness( 1 ); TriTexCoord2f( 0, vLast ); TriVertex3fv( point ); vLast += vStep; // Advance texture scroll (v axis only) } TriEndEx(color, "beam cylinder"); } static void R_DrawBeamFollow( BEAM *pbeam, float frametime, const vec4_t color ) { particle_t *pnew, *particles; float fraction, div, vLast, vStep; vec3_t last1, last2, tmp, screen; vec3_t delta, screenLast, normal; gEngine.R_FreeDeadParticles( &pbeam->particles ); particles = pbeam->particles; pnew = NULL; div = 0; if( FBitSet( pbeam->flags, FBEAM_STARTENTITY )) { if( particles ) { VectorSubtract( particles->org, pbeam->source, delta ); div = VectorLength( delta ); if( div >= 32 ) { pnew = gEngine.CL_AllocParticleFast(); } } else { pnew = gEngine.CL_AllocParticleFast(); } } if( pnew ) { VectorCopy( pbeam->source, pnew->org ); pnew->die = gpGlobals->time + pbeam->amplitude; VectorClear( pnew->vel ); pnew->next = particles; pbeam->particles = pnew; particles = pnew; } // nothing to draw if( !particles ) return; if( !pnew && div != 0 ) { VectorCopy( pbeam->source, delta ); TriWorldToScreen( pbeam->source, screenLast ); TriWorldToScreen( particles->org, screen ); } else if( particles && particles->next ) { VectorCopy( particles->org, delta ); TriWorldToScreen( particles->org, screenLast ); TriWorldToScreen( particles->next->org, screen ); particles = particles->next; } else { return; } // UNDONE: This won't work, screen and screenLast must be extrapolated here to fix the // first beam segment for this trail // build world-space normal to screen-space direction vector VectorSubtract( screen, screenLast, tmp ); // we don't need Z, we're in screen space tmp[2] = 0; VectorNormalize( tmp ); // Build point along noraml line (normal is -y, x) VectorScale( g_camera.vup, tmp[0], normal ); // Build point along normal line (normal is -y, x) VectorMA( normal, tmp[1], g_camera.vright, normal ); // Make a wide line VectorMA( delta, pbeam->width, normal, last1 ); VectorMA( delta, -pbeam->width, normal, last2 ); div = 1.0f / pbeam->amplitude; fraction = ( pbeam->die - gpGlobals->time ) * div; vLast = 0.0f; vStep = 1.0f; TriBegin( TRI_QUADS ); while( particles ) { TriBrightness( fraction ); TriTexCoord2f( 1, 1 ); TriVertex3fv( last2 ); TriBrightness( fraction ); TriTexCoord2f( 0, 1 ); TriVertex3fv( last1 ); // Transform point into screen space TriWorldToScreen( particles->org, screen ); // Build world-space normal to screen-space direction vector VectorSubtract( screen, screenLast, tmp ); // we don't need Z, we're in screen space tmp[2] = 0; VectorNormalize( tmp ); VectorScale( g_camera.vup, tmp[0], normal ); // Build point along noraml line (normal is -y, x) VectorMA( normal, tmp[1], g_camera.vright, normal ); // Make a wide line VectorMA( particles->org, pbeam->width, normal, last1 ); VectorMA( particles->org, -pbeam->width, normal, last2 ); vLast += vStep; // Advance texture scroll (v axis only) if( particles->next != NULL ) { fraction = (particles->die - gpGlobals->time) * div; } else { fraction = 0.0; } TriBrightness( fraction ); TriTexCoord2f( 0, 0 ); TriVertex3fv( last1 ); TriBrightness( fraction ); TriTexCoord2f( 1, 0 ); TriVertex3fv( last2 ); VectorCopy( screen, screenLast ); particles = particles->next; } // drift popcorn trail if there is a velocity particles = pbeam->particles; while( particles ) { VectorMA( particles->org, frametime, particles->vel, particles->org ); particles = particles->next; } TriEndEx(color, "beam follow"); } static void R_DrawRing( vec3_t source, vec3_t delta, float width, float amplitude, float freq, float speed, int segments, const vec4_t color ) { int i, j, noiseIndex, noiseStep; float div, length, fraction, factor, vLast, vStep; vec3_t last1, last2, point, screen, screenLast; vec3_t tmp, normal, center, xaxis, yaxis; float radius, x, y, scale; if( segments < 2 ) return; VectorClear( screenLast ); segments = segments * M_PI_F; if( segments > NOISE_DIVISIONS * 8 ) segments = NOISE_DIVISIONS * 8; length = VectorLength( delta ) * 0.01f * M_PI_F; if( length < 0.5f ) length = 0.5f; // Don't lose all of the noise/texture on short beams div = 1.0f / ( segments - 1 ); vStep = length * div / 8.0f; // texture length texels per space pixel // Scroll speed 3.5 -- initial texture position, scrolls 3.5/sec (1.0 is entire texture) vLast = fmod( freq * speed, 1.0f ); scale = amplitude * length / 8.0f; // Iterator to resample noise waveform (it needs to be generated in powers of 2) noiseStep = (int)((float)( NOISE_DIVISIONS - 1 ) * div * 65536.0f ) * 8; noiseIndex = 0; VectorScale( delta, 0.5f, delta ); VectorAdd( source, delta, center ); VectorCopy( delta, xaxis ); radius = VectorLength( xaxis ); // cull beamring // -------------------------------- // Compute box center +/- radius VectorSet( last1, radius, radius, scale ); VectorAdd( center, last1, tmp ); // maxs VectorSubtract( center, last1, screen ); // mins /* FIXME VK if( !WORLDMODEL ) return; // is that box in PVS && frustum? if( !gEngine.Mod_BoxVisible( screen, tmp, Mod_GetCurrentVis( )) || R_CullBox( screen, tmp )) { return; } */ VectorSet( yaxis, xaxis[1], -xaxis[0], 0.0f ); VectorNormalize( yaxis ); VectorScale( yaxis, radius, yaxis ); j = segments / 8; TriBegin( TRI_TRIANGLE_STRIP ); for( i = 0; i < segments + 1; i++ ) { fraction = i * div; SinCos( fraction * M_PI2_F, &x, &y ); VectorMAMAM( x, xaxis, y, yaxis, 1.0f, center, point ); // distort using noise factor = rgNoise[(noiseIndex >> 16) & (NOISE_DIVISIONS - 1)] * scale; VectorMA( point, factor, g_camera.vup, point ); // Rotate the noise along the perpendicluar axis a bit to keep the bolt from looking diagonal factor = rgNoise[(noiseIndex >> 16) & (NOISE_DIVISIONS - 1)] * scale; factor *= cos( fraction * M_PI_F * 24 + freq ); VectorMA( point, factor, g_camera.vright, point ); // Transform point into screen space TriWorldToScreen( point, screen ); if( i != 0 ) { // build world-space normal to screen-space direction vector VectorSubtract( screen, screenLast, tmp ); // we don't need Z, we're in screen space tmp[2] = 0; VectorNormalize( tmp ); // Build point along normal line (normal is -y, x) VectorScale( g_camera.vup, tmp[0], normal ); VectorMA( normal, tmp[1], g_camera.vright, normal ); // Make a wide line VectorMA( point, width, normal, last1 ); VectorMA( point, -width, normal, last2 ); vLast += vStep; // Advance texture scroll (v axis only) TriTexCoord2f( 1.0f, vLast ); TriVertex3fv( last2 ); TriTexCoord2f( 0.0f, vLast ); TriVertex3fv( last1 ); } VectorCopy( screen, screenLast ); noiseIndex += noiseStep; j--; if( j == 0 && amplitude != 0 ) { j = segments / 8; FracNoise( rgNoise, NOISE_DIVISIONS ); } } TriEndEx( color, "beam ring" ); } /* ============== R_BeamComputePoint compute attachment point for beam ============== */ static qboolean R_BeamComputePoint( int beamEnt, vec3_t pt ) { cl_entity_t *ent; int attach; ent = gEngine.R_BeamGetEntity( beamEnt ); if( beamEnt < 0 ) attach = BEAMENT_ATTACHMENT( -beamEnt ); else attach = BEAMENT_ATTACHMENT( beamEnt ); if( !ent ) { gEngine.Con_DPrintf( S_ERROR "R_BeamComputePoint: invalid entity %i\n", BEAMENT_ENTITY( beamEnt )); VectorClear( pt ); return false; } // get attachment if( attach > 0 ) VectorCopy( ent->attachment[attach - 1], pt ); else if( ent->index == gEngine.EngineGetParm( PARM_PLAYER_INDEX, 0 ) ) { vec3_t simorg; gEngine.GetPredictedOrigin( simorg ); VectorCopy( simorg, pt ); } else VectorCopy( ent->origin, pt ); return true; } /* ============== R_BeamRecomputeEndpoints Recomputes beam endpoints.. ============== */ static qboolean R_BeamRecomputeEndpoints( BEAM *pbeam ) { if( FBitSet( pbeam->flags, FBEAM_STARTENTITY )) { cl_entity_t *start = gEngine.R_BeamGetEntity( pbeam->startEntity ); if( R_BeamComputePoint( pbeam->startEntity, pbeam->source )) { if( !pbeam->pFollowModel ) pbeam->pFollowModel = start->model; SetBits( pbeam->flags, FBEAM_STARTVISIBLE ); } else if( !FBitSet( pbeam->flags, FBEAM_FOREVER )) { ClearBits( pbeam->flags, FBEAM_STARTENTITY ); } } if( FBitSet( pbeam->flags, FBEAM_ENDENTITY )) { cl_entity_t *end = gEngine.R_BeamGetEntity( pbeam->endEntity ); if( R_BeamComputePoint( pbeam->endEntity, pbeam->target )) { if( !pbeam->pFollowModel ) pbeam->pFollowModel = end->model; SetBits( pbeam->flags, FBEAM_ENDVISIBLE ); } else if( !FBitSet( pbeam->flags, FBEAM_FOREVER )) { ClearBits( pbeam->flags, FBEAM_ENDENTITY ); pbeam->die = gpGlobals->time; return false; } else { return false; } } if( FBitSet( pbeam->flags, FBEAM_STARTENTITY ) && !FBitSet( pbeam->flags, FBEAM_STARTVISIBLE )) return false; return true; } /* ============== R_BeamDraw Update beam vars and draw it ============== */ void R_BeamDraw( BEAM *pbeam, float frametime ) { model_t *model; vec3_t delta; vec4_t color; int render_mode; int texturenum; model = gEngine.pfnGetModelByIndex( pbeam->modelIndex ); SetBits( pbeam->flags, FBEAM_ISACTIVE ); if( !model || model->type != mod_sprite ) { pbeam->flags &= ~FBEAM_ISACTIVE; // force to ignore pbeam->die = gpGlobals->time; return; } // update frequency pbeam->freq += frametime; // generate fractal noise if( frametime != 0.0f ) { rgNoise[0] = 0; rgNoise[NOISE_DIVISIONS] = 0; } if( pbeam->amplitude != 0 && frametime != 0.0f ) { if( FBitSet( pbeam->flags, FBEAM_SINENOISE )) SineNoise( rgNoise, NOISE_DIVISIONS ); else FracNoise( rgNoise, NOISE_DIVISIONS ); } // update end points if( FBitSet( pbeam->flags, FBEAM_STARTENTITY|FBEAM_ENDENTITY )) { // makes sure attachment[0] + attachment[1] are valid if( !R_BeamRecomputeEndpoints( pbeam )) { ClearBits( pbeam->flags, FBEAM_ISACTIVE ); // force to ignore return; } // compute segments from the new endpoints VectorSubtract( pbeam->target, pbeam->source, delta ); VectorClear( pbeam->delta ); if( VectorLength( delta ) > 0.0000001f ) VectorCopy( delta, pbeam->delta ); if( pbeam->amplitude >= 0.50f ) pbeam->segments = VectorLength( pbeam->delta ) * 0.25f + 3.0f; // one per 4 pixels else pbeam->segments = VectorLength( pbeam->delta ) * 0.075f + 3.0f; // one per 16 pixels } if( pbeam->type == TE_BEAMPOINTS && R_BeamCull( pbeam->source, pbeam->target, 0 )) { ClearBits( pbeam->flags, FBEAM_ISACTIVE ); return; } // don't draw really short or inactive beams if( !FBitSet( pbeam->flags, FBEAM_ISACTIVE ) || VectorLength( pbeam->delta ) < 0.1f ) { return; } if( pbeam->flags & ( FBEAM_FADEIN|FBEAM_FADEOUT )) { // update life cycle pbeam->t = pbeam->freq + ( pbeam->die - gpGlobals->time ); if( pbeam->t != 0.0f ) pbeam->t = 1.0f - pbeam->freq / pbeam->t; } if( pbeam->type == TE_BEAMHOSE ) { float flDot; VectorSubtract( pbeam->target, pbeam->source, delta ); VectorNormalize( delta ); flDot = DotProduct( delta, g_camera.vforward ); // abort if the player's looking along it away from the source if( flDot > 0 ) { return; } else { float flFade = pow( flDot, 10 ); vec3_t localDir, vecProjection, tmp; float flDistance; // fade the beam if the player's not looking at the source VectorSubtract( g_camera.vieworg, pbeam->source, localDir ); flDot = DotProduct( delta, localDir ); VectorScale( delta, flDot, vecProjection ); VectorSubtract( localDir, vecProjection, tmp ); flDistance = VectorLength( tmp ); if( flDistance > 30 ) { flDistance = 1.0f - (( flDistance - 30.0f ) / 64.0f ); if( flDistance <= 0 ) flFade = 0; else flFade *= pow( flDistance, 3 ); } if( flFade < ( 1.0f / 255.0f )) return; // FIXME: needs to be testing pbeam->brightness *= flFade; } } render_mode = FBitSet( pbeam->flags, FBEAM_SOLID ) ? kRenderNormal : kRenderTransAdd; texturenum = R_GetSpriteTexture( model, (int)(pbeam->frame + pbeam->frameRate * gpGlobals->time) % pbeam->frameCount); if( texturenum <= 0 ) // FIXME VK || texturenum > MAX_TEXTURES ) { ClearBits( pbeam->flags, FBEAM_ISACTIVE ); return; } if( pbeam->type == TE_BEAMFOLLOW ) { cl_entity_t *pStart; // XASH SPECIFIC: get brightness from head entity pStart = gEngine.R_BeamGetEntity( pbeam->startEntity ); if( pStart && pStart->curstate.rendermode != kRenderNormal ) pbeam->brightness = CL_FxBlend( pStart ) / 255.0f; } color[0] = pbeam->r; color[1] = pbeam->g; color[2] = pbeam->b; if( FBitSet( pbeam->flags, FBEAM_FADEIN )) color[3] = pbeam->t * pbeam->brightness; else if( FBitSet( pbeam->flags, FBEAM_FADEOUT )) color[3] = (1.f - pbeam->t) * pbeam->brightness; else color[3] = pbeam->brightness; // FIXME VK what is our vk_render matrix state now? do we have all matrices set properly? // TODO this can be done only once for all beams, i.e. before calling CL_DrawEFX VK_RenderStateSetMatrixModel( matrix4x4_identity ); // TODO gl renderer has per-vertex color that is updated using brightness and whatever VK_RenderDebugLabelBegin( "beam" ); TriSetTexture( texturenum ); TriRenderMode( render_mode ); TriColor4f( color[0], color[1], color[2], color[3] ); switch( pbeam->type ) { case TE_BEAMTORUS: // FIXME VK GL_Cull( GL_NONE ); R_DrawTorus( pbeam->source, pbeam->delta, pbeam->width, pbeam->amplitude, pbeam->freq, pbeam->speed, pbeam->segments, color ); break; case TE_BEAMDISK: // FIXME VK GL_Cull( GL_NONE ); R_DrawDisk( pbeam->source, pbeam->delta, pbeam->width, pbeam->amplitude, pbeam->freq, pbeam->speed, pbeam->segments, color ); break; case TE_BEAMCYLINDER: // FIXME VK GL_Cull( GL_NONE ); R_DrawCylinder( pbeam->source, pbeam->delta, pbeam->width, pbeam->amplitude, pbeam->freq, pbeam->speed, pbeam->segments, color ); break; case TE_BEAMPOINTS: case TE_BEAMHOSE: R_DrawSegs( pbeam->source, pbeam->delta, pbeam->width, pbeam->amplitude, pbeam->freq, pbeam->speed, pbeam->segments, pbeam->flags, color, texturenum, render_mode ); break; case TE_BEAMFOLLOW: R_DrawBeamFollow( pbeam, frametime, color ); break; case TE_BEAMRING: // FIXME VK GL_Cull( GL_NONE ); R_DrawRing( pbeam->source, pbeam->delta, pbeam->width, pbeam->amplitude, pbeam->freq, pbeam->speed, pbeam->segments, color ); break; } VK_RenderDebugLabelEnd(); // FIXME VK r_stats.c_view_beams_count++; } /* ============== R_BeamSetAttributes set beam attributes ============== */ static void R_BeamSetAttributes( BEAM *pbeam, float r, float g, float b, float framerate, int startFrame ) { pbeam->frame = (float)startFrame; pbeam->frameRate = framerate; pbeam->r = r; pbeam->g = g; pbeam->b = b; } /* ============== R_BeamSetup generic function. all beams must be passed through this ============== */ static void R_BeamSetup( BEAM *pbeam, vec3_t start, vec3_t end, int modelIndex, float life, float width, float amplitude, float brightness, float speed ) { model_t *sprite = gEngine.pfnGetModelByIndex( modelIndex ); if( !sprite ) return; pbeam->type = BEAM_POINTS; pbeam->modelIndex = modelIndex; pbeam->frame = 0; pbeam->frameRate = 0; pbeam->frameCount = sprite->numframes; VectorCopy( start, pbeam->source ); VectorCopy( end, pbeam->target ); VectorSubtract( end, start, pbeam->delta ); pbeam->freq = speed * gpGlobals->time; pbeam->die = life + gpGlobals->time; pbeam->amplitude = amplitude; pbeam->brightness = brightness; pbeam->width = width; pbeam->speed = speed; if( amplitude >= 0.50f ) pbeam->segments = VectorLength( pbeam->delta ) * 0.25f + 3.0f; // one per 4 pixels else pbeam->segments = VectorLength( pbeam->delta ) * 0.075f + 3.0f; // one per 16 pixels pbeam->pFollowModel = NULL; pbeam->flags = 0; } /* ============== R_BeamDrawCustomEntity initialize beam from server entity ============== */ void R_BeamDrawCustomEntity( cl_entity_t *ent, float frametime ) { BEAM beam; float amp = ent->curstate.body / 100.0f; float blend = CL_FxBlend( ent ) / 255.0f; float r, g, b; int beamFlags; r = ent->curstate.rendercolor.r / 255.0f; g = ent->curstate.rendercolor.g / 255.0f; b = ent->curstate.rendercolor.b / 255.0f; R_BeamSetup( &beam, ent->origin, ent->angles, ent->curstate.modelindex, 0, ent->curstate.scale, amp, blend, ent->curstate.animtime ); R_BeamSetAttributes( &beam, r, g, b, ent->curstate.framerate, ent->curstate.frame ); beam.pFollowModel = NULL; switch( ent->curstate.rendermode & 0x0F ) { case BEAM_ENTPOINT: beam.type = TE_BEAMPOINTS; if( ent->curstate.sequence ) { SetBits( beam.flags, FBEAM_STARTENTITY ); beam.startEntity = ent->curstate.sequence; } if( ent->curstate.skin ) { SetBits( beam.flags, FBEAM_ENDENTITY ); beam.endEntity = ent->curstate.skin; } break; case BEAM_ENTS: beam.type = TE_BEAMPOINTS; SetBits( beam.flags, FBEAM_STARTENTITY | FBEAM_ENDENTITY ); beam.startEntity = ent->curstate.sequence; beam.endEntity = ent->curstate.skin; break; case BEAM_HOSE: beam.type = TE_BEAMHOSE; break; case BEAM_POINTS: // already set up break; } beamFlags = ( ent->curstate.rendermode & 0xF0 ); if( FBitSet( beamFlags, BEAM_FSINE )) SetBits( beam.flags, FBEAM_SINENOISE ); if( FBitSet( beamFlags, BEAM_FSOLID )) SetBits( beam.flags, FBEAM_SOLID ); if( FBitSet( beamFlags, BEAM_FSHADEIN )) SetBits( beam.flags, FBEAM_SHADEIN ); if( FBitSet( beamFlags, BEAM_FSHADEOUT )) SetBits( beam.flags, FBEAM_SHADEOUT ); // draw it R_BeamDraw( &beam, frametime ); }