xash3d-fwgs/ref/vk/vk_core.c

857 lines
30 KiB
C

#include "vk_core.h"
#include "vk_common.h"
#include "vk_textures.h"
#include "vk_overlay.h"
#include "vk_renderstate.h"
#include "vk_staging.h"
#include "vk_framectl.h"
#include "vk_brush.h"
#include "vk_scene.h"
#include "vk_cvar.h"
#include "vk_pipeline.h"
#include "vk_render.h"
#include "vk_geometry.h"
#include "vk_studio.h"
#include "vk_rtx.h"
#include "vk_descriptor.h"
#include "vk_nv_aftermath.h"
#include "vk_devmem.h"
#include "vk_commandpool.h"
// FIXME move this rt-specific stuff out
#include "vk_light.h"
#include "xash3d_types.h"
#include "cvardef.h"
#include "const.h" // required for ref_api.h
#include "ref_api.h"
#include "crtlib.h"
#include "com_strings.h"
#include "eiface.h"
#include <string.h>
#include <errno.h>
#define XVK_PARSE_VERSION(v) \
VK_VERSION_MAJOR(v), \
VK_VERSION_MINOR(v), \
VK_VERSION_PATCH(v)
#define NULLINST_FUNCS(X) \
X(vkEnumerateInstanceVersion) \
X(vkCreateInstance) \
static PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr;
#define X(f) PFN_##f f = NULL;
NULLINST_FUNCS(X)
INSTANCE_FUNCS(X)
INSTANCE_DEBUG_FUNCS(X)
DEVICE_FUNCS(X)
DEVICE_FUNCS_RTX(X)
#undef X
static dllfunc_t nullinst_funcs[] = {
#define X(f) {#f, (void**)&f},
NULLINST_FUNCS(X)
#undef X
};
static dllfunc_t instance_funcs[] = {
#define X(f) {#f, (void**)&f},
INSTANCE_FUNCS(X)
#undef X
};
static dllfunc_t instance_debug_funcs[] = {
#define X(f) {#f, (void**)&f},
INSTANCE_DEBUG_FUNCS(X)
#undef X
};
static dllfunc_t device_funcs[] = {
#define X(f) {#f, (void**)&f},
DEVICE_FUNCS(X)
#undef X
};
static dllfunc_t device_funcs_rtx[] = {
#define X(f) {#f, (void**)&f},
DEVICE_FUNCS_RTX(X)
#undef X
};
static const char *validation_layers[] = {
"VK_LAYER_KHRONOS_validation",
};
static const char* device_extensions_req[] = {
VK_KHR_SWAPCHAIN_EXTENSION_NAME,
};
static const char* device_extensions_rt[] = {
VK_KHR_ACCELERATION_STRUCTURE_EXTENSION_NAME,
VK_KHR_RAY_TRACING_PIPELINE_EXTENSION_NAME,
VK_KHR_DEFERRED_HOST_OPERATIONS_EXTENSION_NAME,
VK_KHR_RAY_QUERY_EXTENSION_NAME,
};
static const char* device_extensions_nv_checkpoint[] = {
VK_NV_DEVICE_DIAGNOSTIC_CHECKPOINTS_EXTENSION_NAME,
VK_NV_DEVICE_DIAGNOSTICS_CONFIG_EXTENSION_NAME,
};
VkBool32 VKAPI_PTR debugCallback(
VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageTypes,
const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData,
void *pUserData) {
(void)(pUserData);
(void)(messageTypes);
(void)(messageSeverity);
if (Q_strcmp(pCallbackData->pMessageIdName, "VUID-vkMapMemory-memory-00683") == 0)
return VK_FALSE;
/* if (messageSeverity != VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) { */
/* gEngine.Con_Printf(S_WARN "Validation: %s\n", pCallbackData->pMessage); */
/* } */
// TODO better messages, not only errors, what are other arguments for, ...
if (messageSeverity == VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) {
gEngine.Con_Printf(S_ERROR "Validation: %s\n", pCallbackData->pMessage);
#ifdef _MSC_VER
__debugbreak();
#else
__builtin_trap();
#endif
}
return VK_FALSE;
}
vulkan_core_t vk_core = {0};
static void loadInstanceFunctions(dllfunc_t *funcs, int count)
{
for (int i = 0; i < count; ++i)
{
*funcs[i].func = vkGetInstanceProcAddr(vk_core.instance, funcs[i].name);
if (!*funcs[i].func)
{
gEngine.Con_Printf( S_WARN "Function %s was not loaded\n", funcs[i].name);
}
}
}
static void loadDeviceFunctions(dllfunc_t *funcs, int count)
{
for (int i = 0; i < count; ++i)
{
*funcs[i].func = vkGetDeviceProcAddr(vk_core.device, funcs[i].name);
if (!*funcs[i].func)
{
gEngine.Con_Printf( S_WARN "Function %s was not loaded\n", funcs[i].name);
}
}
}
static qboolean createInstance( void )
{
const char ** instance_extensions = NULL;
unsigned int num_instance_extensions = vk_core.debug ? 1 : 0;
const VkApplicationInfo app_info = {
.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
// TODO support versions 1.0 and 1.1 for simple traditional rendering
// This would require using older physical device features and props query structures
// .apiVersion = vk_core.rtx ? VK_API_VERSION_1_2 : VK_API_VERSION_1_1,
.apiVersion = VK_API_VERSION_1_2,
.applicationVersion = VK_MAKE_VERSION(0, 0, 0), // TODO
.engineVersion = VK_MAKE_VERSION(0, 0, 0),
.pApplicationName = "",
.pEngineName = "xash3d-fwgs",
};
const VkValidationFeatureEnableEXT validation_features[] = {
VK_VALIDATION_FEATURE_ENABLE_SYNCHRONIZATION_VALIDATION_EXT,
VK_VALIDATION_FEATURE_ENABLE_BEST_PRACTICES_EXT,
};
const VkValidationFeaturesEXT validation_ext = {
.sType = VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT,
.pEnabledValidationFeatures = validation_features,
.enabledValidationFeatureCount = COUNTOF(validation_features),
};
VkInstanceCreateInfo create_info = {
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
.pApplicationInfo = &app_info,
.pNext = vk_core.validate ? &validation_ext : NULL,
};
int vid_extensions = gEngine.XVK_GetInstanceExtensions(0, NULL);
if (vid_extensions < 0)
{
gEngine.Con_Printf( S_ERROR "Cannot get Vulkan instance extensions\n" );
return false;
}
num_instance_extensions += vid_extensions;
instance_extensions = Mem_Malloc(vk_core.pool, sizeof(const char*) * num_instance_extensions);
vid_extensions = gEngine.XVK_GetInstanceExtensions(vid_extensions, instance_extensions);
if (vid_extensions < 0)
{
gEngine.Con_Printf( S_ERROR "Cannot get Vulkan instance extensions\n" );
Mem_Free((void*)instance_extensions);
return false;
}
if (vk_core.debug)
{
instance_extensions[vid_extensions] = VK_EXT_DEBUG_UTILS_EXTENSION_NAME;
}
gEngine.Con_Reportf("Requesting instance extensions: %d\n", num_instance_extensions);
for (int i = 0; i < num_instance_extensions; ++i)
{
gEngine.Con_Reportf("\t%d: %s\n", i, instance_extensions[i]);
}
create_info.enabledExtensionCount = num_instance_extensions;
create_info.ppEnabledExtensionNames = instance_extensions;
if (vk_core.validate)
{
create_info.enabledLayerCount = ARRAYSIZE(validation_layers);
create_info.ppEnabledLayerNames = validation_layers;
gEngine.Con_Printf(S_WARN "Using Vulkan validation layers, expect severely degraded performance\n");
}
// TODO handle errors gracefully -- let it try next renderer
XVK_CHECK(vkCreateInstance(&create_info, NULL, &vk_core.instance));
loadInstanceFunctions(instance_funcs, ARRAYSIZE(instance_funcs));
if (vk_core.debug || vk_core.validate)
{
loadInstanceFunctions(instance_debug_funcs, ARRAYSIZE(instance_debug_funcs));
if (vk_core.validate) {
if (vkCreateDebugUtilsMessengerEXT) {
VkDebugUtilsMessengerCreateInfoEXT debug_create_info = {
.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT,
.messageSeverity = 0x1111, //:vovka: VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT,
.messageType = 0x07,
.pfnUserCallback = debugCallback,
};
XVK_CHECK(vkCreateDebugUtilsMessengerEXT(vk_core.instance, &debug_create_info, NULL, &vk_core.debug_messenger));
} else {
gEngine.Con_Printf(S_WARN "Vulkan debug utils messenger is not available\n");
}
}
}
Mem_Free((void*)instance_extensions);
return true;
}
static const VkExtensionProperties *findExtension( const VkExtensionProperties *exts, uint32_t num_exts, const char *extension ) {
for (uint32_t i = 0; i < num_exts; ++i) {
if (strncmp(exts[i].extensionName, extension, sizeof(exts[i].extensionName)) == 0)
return exts + i;
}
return NULL;
}
static qboolean deviceSupportsExtensions(const VkExtensionProperties *exts, uint32_t num_exts, const char *check_extensions[], int check_extensions_count) {
qboolean result = true;
for (int i = 0; i < check_extensions_count; ++i) {
if (!findExtension(exts, num_exts, check_extensions[i])) {
gEngine.Con_Reportf(S_ERROR "Extension %s is not supported\n", check_extensions[i]);
result = false;
}
}
return result;
}
static void devicePrintExtensionsFromList(const VkExtensionProperties *exts, uint32_t num_exts, const char *print_extensions[], int print_extensions_count) {
for (int i = 0; i < print_extensions_count; ++i) {
const VkExtensionProperties *const ext_prop = findExtension(exts, num_exts, print_extensions[i]);
if (!ext_prop) {
gEngine.Con_Printf( "\t\t\t%s: N/A\n", print_extensions[i]);
} else {
gEngine.Con_Printf( "\t\t\t%s: %u.%u.%u\n", ext_prop->extensionName, XVK_PARSE_VERSION(ext_prop->specVersion));
}
}
}
#define MAX_DEVICE_EXTENSIONS 16
static int appendDeviceExtensions(const char** out, int out_count, const char *in_extensions[], int in_extensions_count) {
for (int i = 0; i < in_extensions_count; ++i) {
ASSERT(out_count < MAX_DEVICE_EXTENSIONS);
out[out_count++] = in_extensions[i];
}
return out_count;
}
// FIXME this is almost exactly the physical_device_t, reuse
typedef struct {
VkPhysicalDevice device;
VkPhysicalDeviceFeatures2 features;
VkPhysicalDeviceProperties props;
uint32_t queue_index;
qboolean anisotropy;
qboolean ray_tracing;
qboolean nv_checkpoint;
} vk_available_device_t;
static int enumerateDevices( vk_available_device_t **available_devices ) {
VkPhysicalDevice *physical_devices = NULL;
uint32_t num_physical_devices = 0;
vk_available_device_t *this_device = NULL;
XVK_CHECK(vkEnumeratePhysicalDevices(vk_core.instance, &num_physical_devices, physical_devices));
physical_devices = Mem_Malloc(vk_core.pool, sizeof(VkPhysicalDevice) * num_physical_devices);
XVK_CHECK(vkEnumeratePhysicalDevices(vk_core.instance, &num_physical_devices, physical_devices));
gEngine.Con_Reportf("Have %u devices:\n", num_physical_devices);
vk_core.num_devices = num_physical_devices;
vk_core.devices = Mem_Calloc( vk_core.pool, num_physical_devices * sizeof( *vk_core.devices ));
*available_devices = Mem_Malloc(vk_core.pool, num_physical_devices * sizeof(vk_available_device_t));
this_device = *available_devices;
for (uint32_t i = 0; i < num_physical_devices; ++i) {
uint32_t queue_index = VK_QUEUE_FAMILY_IGNORED;
VkPhysicalDeviceProperties props;
VkPhysicalDeviceFeatures2 features = {.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2,};
// FIXME also pay attention to various device limits. We depend on them implicitly now.
vkGetPhysicalDeviceProperties(physical_devices[i], &props);
// Store devices list in vk_core.devices for pfnGetRenderDevices
vk_core.devices[i].vendorID = props.vendorID;
vk_core.devices[i].deviceID = props.deviceID;
switch( props.deviceType )
{
case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU:
vk_core.devices[i].deviceType = REF_DEVICE_TYPE_INTERGRATED_GPU;
break;
case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU:
vk_core.devices[i].deviceType = REF_DEVICE_TYPE_DISCRETE_GPU;
break;
case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU:
vk_core.devices[i].deviceType = REF_DEVICE_TYPE_VIRTUAL_GPU;
break;
case VK_PHYSICAL_DEVICE_TYPE_CPU:
vk_core.devices[i].deviceType = REF_DEVICE_TYPE_CPU;
break;
default:
vk_core.devices[i].deviceType = REF_DEVICE_TYPE_OTHER;
break;
}
Q_strncpy( vk_core.devices[i].deviceName, props.deviceName, sizeof( vk_core.devices[i].deviceName ));
gEngine.Con_Printf("\t%u: %04x:%04x %d %s %u.%u.%u %u.%u.%u\n",
i, props.vendorID, props.deviceID, props.deviceType, props.deviceName,
XVK_PARSE_VERSION(props.driverVersion), XVK_PARSE_VERSION(props.apiVersion));
{
uint32_t num_queue_family_properties = 0;
VkQueueFamilyProperties *queue_family_props = NULL;
vkGetPhysicalDeviceQueueFamilyProperties(physical_devices[i], &num_queue_family_properties, queue_family_props);
queue_family_props = Mem_Malloc(vk_core.pool, sizeof(VkQueueFamilyProperties) * num_queue_family_properties);
vkGetPhysicalDeviceQueueFamilyProperties(physical_devices[i], &num_queue_family_properties, queue_family_props);
// Find queue family that supports needed properties
for (uint32_t j = 0; j < num_queue_family_properties; ++j) {
VkBool32 supports_present = 0;
const qboolean supports_graphics = !!(queue_family_props[j].queueFlags & VK_QUEUE_GRAPHICS_BIT);
const qboolean supports_compute = !!(queue_family_props[j].queueFlags & VK_QUEUE_COMPUTE_BIT);
vkGetPhysicalDeviceSurfaceSupportKHR(physical_devices[i], j, vk_core.surface.surface, &supports_present);
gEngine.Con_Reportf("\t\tQueue %d/%d present: %d graphics: %d compute: %d\n", j, num_queue_family_properties, supports_present, supports_graphics, supports_compute);
if (!supports_present)
continue;
// ray tracing needs compute
// also, by vk spec graphics queue must support compute
if (!supports_graphics || !supports_compute)
continue;
queue_index = j;
break;
}
Mem_Free(queue_family_props);
}
if (queue_index == VK_QUEUE_FAMILY_IGNORED) {
gEngine.Con_Printf( S_WARN "\t\tSkipping this device as compatible queue (which has both compute and graphics and also can present) not found\n" );
continue;
}
{
uint32_t num_device_extensions = 0;
VkExtensionProperties *extensions;
XVK_CHECK(vkEnumerateDeviceExtensionProperties(physical_devices[i], NULL, &num_device_extensions, NULL));
extensions = Mem_Malloc(vk_core.pool, sizeof(VkExtensionProperties) * num_device_extensions);
XVK_CHECK(vkEnumerateDeviceExtensionProperties(physical_devices[i], NULL, &num_device_extensions, extensions));
gEngine.Con_Reportf( "\t\tSupported device extensions: %u\n", num_device_extensions);
devicePrintExtensionsFromList(extensions, num_device_extensions, device_extensions_req, ARRAYSIZE(device_extensions_req));
devicePrintExtensionsFromList(extensions, num_device_extensions, device_extensions_rt, ARRAYSIZE(device_extensions_rt));
devicePrintExtensionsFromList(extensions, num_device_extensions, device_extensions_nv_checkpoint, ARRAYSIZE(device_extensions_nv_checkpoint));
vkGetPhysicalDeviceFeatures2(physical_devices[i], &features);
this_device->anisotropy = features.features.samplerAnisotropy;
gEngine.Con_Printf("\t\tAnistoropy supported: %d\n", this_device->anisotropy);
this_device->ray_tracing = deviceSupportsExtensions(extensions, num_device_extensions, device_extensions_rt, ARRAYSIZE(device_extensions_rt));
gEngine.Con_Printf("\t\tRay tracing supported: %d\n", this_device->ray_tracing);
this_device->nv_checkpoint = vk_core.debug && deviceSupportsExtensions(extensions, num_device_extensions, device_extensions_nv_checkpoint, ARRAYSIZE(device_extensions_nv_checkpoint));
gEngine.Con_Printf("\t\tNV checkpoints supported: %d\n", this_device->nv_checkpoint);
Mem_Free(extensions);
}
this_device->device = physical_devices[i];
this_device->queue_index = queue_index;
this_device->features = features;
this_device->props = props;
++this_device;
}
Mem_Free(physical_devices);
return this_device - *available_devices;
}
static void devicePrintMemoryInfo(const VkPhysicalDeviceMemoryProperties *props, const VkPhysicalDeviceMemoryBudgetPropertiesEXT *budget) {
gEngine.Con_Printf("Memory heaps: %d\n", props->memoryHeapCount);
for (int i = 0; i < (int)props->memoryHeapCount; ++i) {
const VkMemoryHeap* const heap = props->memoryHeaps + i;
gEngine.Con_Printf(" %d: size=%dMb used=%dMb avail=%dMb device_local=%d\n", i,
(int)(heap->size / (1024 * 1024)),
(int)(budget->heapUsage[i] / (1024 * 1024)),
(int)(budget->heapBudget[i] / (1024 * 1024)),
!!(heap->flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT));
}
gEngine.Con_Printf("Memory types: %d\n", props->memoryTypeCount);
for (int i = 0; i < (int)props->memoryTypeCount; ++i) {
const VkMemoryType* const type = props->memoryTypes + i;
gEngine.Con_Printf(" %d: bit=0x%x heap=%d flags=%c%c%c%c%c\n", i,
(1 << i),
type->heapIndex,
type->propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT ? 'D' : '.',
type->propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT ? 'V' : '.',
type->propertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT ? 'C' : '.',
type->propertyFlags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT ? '$' : '.',
type->propertyFlags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT ? 'L' : '.'
);
}
}
static qboolean createDevice( void ) {
void *head = NULL;
vk_available_device_t *available_devices;
const int num_available_devices = enumerateDevices( &available_devices );
char unique_deviceID[16];
const qboolean is_target_device = vk_device_target_id && Q_stricmp(vk_device_target_id->string, "") && num_available_devices > 0;
qboolean is_target_device_found = false;
for (int i = 0; i < num_available_devices; ++i) {
const vk_available_device_t *candidate_device = available_devices + i;
// Skip non-target device
Q_snprintf( unique_deviceID, sizeof( unique_deviceID ), "%04x:%04x", candidate_device->props.vendorID, candidate_device->props.deviceID );
if (is_target_device && !is_target_device_found && Q_stricmp(vk_device_target_id->string, unique_deviceID)) {
if (i == num_available_devices-1) {
gEngine.Con_Printf("Not found device %s, start on %s. Please set a valid device.\n", vk_device_target_id->string, unique_deviceID);
} else {
gEngine.Con_Printf("Skip device %s, because selected %s\n", unique_deviceID, vk_device_target_id->string);
continue;
}
} else {
is_target_device_found = true;
}
if (candidate_device->ray_tracing && !CVAR_TO_BOOL(vk_only)) {
vk_core.rtx = true;
}
VkPhysicalDeviceAccelerationStructureFeaturesKHR accel_feature = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_FEATURES_KHR,
.pNext = head,
.accelerationStructure = VK_TRUE,
};
head = &accel_feature;
VkPhysicalDevice16BitStorageFeatures sixteen_bit_feature = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_16BIT_STORAGE_FEATURES,
.pNext = head,
.storageBuffer16BitAccess = VK_TRUE,
};
head = &sixteen_bit_feature;
VkPhysicalDeviceVulkan12Features vk12_features = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES,
.pNext = head,
.shaderSampledImageArrayNonUniformIndexing = VK_TRUE, // Needed for texture sampling in closest hit shader
.storageBuffer8BitAccess = VK_TRUE,
.uniformAndStorageBuffer8BitAccess = VK_TRUE,
.bufferDeviceAddress = VK_TRUE,
};
head = &vk12_features;
VkPhysicalDeviceRayTracingPipelineFeaturesKHR ray_tracing_pipeline_feature = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_FEATURES_KHR,
.pNext = head,
.rayTracingPipeline = VK_TRUE,
// TODO .rayTraversalPrimitiveCulling = VK_TRUE,
};
head = &ray_tracing_pipeline_feature;
VkPhysicalDeviceRayQueryFeaturesKHR ray_query_pipeline_feature = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_QUERY_FEATURES_KHR,
.pNext = head,
.rayQuery = VK_TRUE,
};
if (vk_core.rtx) {
head = &ray_query_pipeline_feature;
} else {
head = NULL;
}
VkPhysicalDeviceFeatures2 features = {
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2,
.pNext = head,
.features.samplerAnisotropy = candidate_device->features.features.samplerAnisotropy,
.features.shaderInt16 = true,
};
head = &features;
VkDeviceDiagnosticsConfigCreateInfoNV diag_config_nv = {
.sType = VK_STRUCTURE_TYPE_DEVICE_DIAGNOSTICS_CONFIG_CREATE_INFO_NV,
.pNext = head,
.flags = VK_DEVICE_DIAGNOSTICS_CONFIG_ENABLE_AUTOMATIC_CHECKPOINTS_BIT_NV | VK_DEVICE_DIAGNOSTICS_CONFIG_ENABLE_RESOURCE_TRACKING_BIT_NV | VK_DEVICE_DIAGNOSTICS_CONFIG_ENABLE_SHADER_DEBUG_INFO_BIT_NV | VK_DEVICE_DIAGNOSTICS_CONFIG_ENABLE_SHADER_ERROR_REPORTING_BIT_NV
};
if (candidate_device->nv_checkpoint)
head = &diag_config_nv;
const float queue_priorities[1] = {1.f};
VkDeviceQueueCreateInfo queue_info = {
.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
.flags = 0,
.queueFamilyIndex = candidate_device->queue_index,
.queueCount = ARRAYSIZE(queue_priorities),
.pQueuePriorities = queue_priorities,
};
const char* device_extensions[MAX_DEVICE_EXTENSIONS];
int device_extensions_count = 0;
device_extensions_count = appendDeviceExtensions(device_extensions, device_extensions_count, device_extensions_req, ARRAYSIZE(device_extensions_req));
if (vk_core.rtx)
device_extensions_count = appendDeviceExtensions(device_extensions, device_extensions_count, device_extensions_rt, ARRAYSIZE(device_extensions_rt));
if (candidate_device->nv_checkpoint)
device_extensions_count = appendDeviceExtensions(device_extensions, device_extensions_count, device_extensions_nv_checkpoint, ARRAYSIZE(device_extensions_nv_checkpoint));
VkDeviceCreateInfo create_info = {
.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
.pNext = head,
.flags = 0,
.queueCreateInfoCount = 1,
.pQueueCreateInfos = &queue_info,
.enabledExtensionCount = device_extensions_count,
.ppEnabledExtensionNames = device_extensions,
};
{
vk_core.physical_device.memory_properties2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2;
vk_core.physical_device.memory_properties2.pNext = &vk_core.physical_device.memory_budget;
vk_core.physical_device.memory_budget.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT;
vk_core.physical_device.memory_budget.pNext = NULL;
vkGetPhysicalDeviceMemoryProperties2(candidate_device->device, &vk_core.physical_device.memory_properties2);
}
gEngine.Con_Printf("Trying device #%d: %04x:%04x %d %s %u.%u.%u %u.%u.%u\n",
i, candidate_device->props.vendorID, candidate_device->props.deviceID, candidate_device->props.deviceType, candidate_device->props.deviceName,
XVK_PARSE_VERSION(candidate_device->props.driverVersion), XVK_PARSE_VERSION(candidate_device->props.apiVersion));
devicePrintMemoryInfo(&vk_core.physical_device.memory_properties2.memoryProperties, &vk_core.physical_device.memory_budget);
{
const VkResult result = vkCreateDevice(candidate_device->device, &create_info, NULL, &vk_core.device);
if (result != VK_SUCCESS) {
gEngine.Con_Printf( S_ERROR "%s:%d vkCreateDevice failed (%d): %s\n",
__FILE__, __LINE__, result, R_VkResultName(result));
continue;
}
}
vk_core.nv_checkpoint = candidate_device->nv_checkpoint;
vk_core.physical_device.device = candidate_device->device;
vk_core.physical_device.anisotropy_enabled = features.features.samplerAnisotropy;
vk_core.physical_device.properties = candidate_device->props;
loadDeviceFunctions(device_funcs, ARRAYSIZE(device_funcs));
if (vk_core.rtx)
{
loadDeviceFunctions(device_funcs_rtx, ARRAYSIZE(device_funcs_rtx));
vk_core.physical_device.properties2.pNext = &vk_core.physical_device.properties_accel;
vk_core.physical_device.properties_accel.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ACCELERATION_STRUCTURE_PROPERTIES_KHR;
vk_core.physical_device.properties_accel.pNext = &vk_core.physical_device.properties_ray_tracing_pipeline;
vk_core.physical_device.properties_ray_tracing_pipeline.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RAY_TRACING_PIPELINE_PROPERTIES_KHR;
vk_core.physical_device.properties_ray_tracing_pipeline.pNext = NULL;
}
// TODO should we check Vk version first?
vk_core.physical_device.properties2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
vkGetPhysicalDeviceProperties2(vk_core.physical_device.device, &vk_core.physical_device.properties2);
if (vk_core.rtx) {
//g_rtx.sbt_record_size = ALIGN_UP(vk_core.physical_device.properties_ray_tracing_pipeline.shaderGroupHandleSize, vk_core.physical_device.properties_ray_tracing_pipeline.shaderGroupHandleAlignment);
vk_core.physical_device.sbt_record_size = ALIGN_UP(vk_core.physical_device.properties_ray_tracing_pipeline.shaderGroupHandleSize, vk_core.physical_device.properties_ray_tracing_pipeline.shaderGroupBaseAlignment);
}
vkGetDeviceQueue(vk_core.device, 0, 0, &vk_core.queue);
return true;
}
gEngine.Con_Printf( S_ERROR "No compatibe Vulkan devices found. Vulkan render will not be available\n" );
return false;
}
static qboolean initSurface( void )
{
XVK_CHECK(vkGetPhysicalDeviceSurfacePresentModesKHR(vk_core.physical_device.device, vk_core.surface.surface, &vk_core.surface.num_present_modes, vk_core.surface.present_modes));
vk_core.surface.present_modes = Mem_Malloc(vk_core.pool, sizeof(*vk_core.surface.present_modes) * vk_core.surface.num_present_modes);
XVK_CHECK(vkGetPhysicalDeviceSurfacePresentModesKHR(vk_core.physical_device.device, vk_core.surface.surface, &vk_core.surface.num_present_modes, vk_core.surface.present_modes));
gEngine.Con_Printf("Supported surface present modes: %u\n", vk_core.surface.num_present_modes);
for (uint32_t i = 0; i < vk_core.surface.num_present_modes; ++i)
{
gEngine.Con_Reportf("\t%u: %s (%u)\n", i, R_VkPresentModeName(vk_core.surface.present_modes[i]), vk_core.surface.present_modes[i]);
}
XVK_CHECK(vkGetPhysicalDeviceSurfaceFormatsKHR(vk_core.physical_device.device, vk_core.surface.surface, &vk_core.surface.num_surface_formats, vk_core.surface.surface_formats));
vk_core.surface.surface_formats = Mem_Malloc(vk_core.pool, sizeof(*vk_core.surface.surface_formats) * vk_core.surface.num_surface_formats);
XVK_CHECK(vkGetPhysicalDeviceSurfaceFormatsKHR(vk_core.physical_device.device, vk_core.surface.surface, &vk_core.surface.num_surface_formats, vk_core.surface.surface_formats));
gEngine.Con_Reportf("Supported surface formats: %u\n", vk_core.surface.num_surface_formats);
for (uint32_t i = 0; i < vk_core.surface.num_surface_formats; ++i)
{
gEngine.Con_Reportf("\t%u: %s(%u) %s(%u)\n", i,
R_VkFormatName(vk_core.surface.surface_formats[i].format), vk_core.surface.surface_formats[i].format,
R_VkColorSpaceName(vk_core.surface.surface_formats[i].colorSpace), vk_core.surface.surface_formats[i].colorSpace);
}
return true;
}
qboolean R_VkInit( void )
{
// FIXME !!!! handle initialization errors properly: destroy what has already been created
vk_core.validate = !!gEngine.Sys_CheckParm("-vkvalidate");
vk_core.debug = vk_core.validate || !!(gEngine.Sys_CheckParm("-vkdebug") || gEngine.Sys_CheckParm("-gldebug"));
vk_core.rtx = false;
VK_LoadCvars();
if( !gEngine.R_Init_Video( REF_VULKAN )) // request Vulkan surface
{
gEngine.Con_Printf( S_ERROR "Cannot initialize Vulkan video\n" );
return false;
}
vkGetInstanceProcAddr = gEngine.XVK_GetVkGetInstanceProcAddr();
if (!vkGetInstanceProcAddr)
{
gEngine.Con_Printf( S_ERROR "Cannot get vkGetInstanceProcAddr address\n" );
return false;
}
vk_core.pool = Mem_AllocPool("Vulkan pool");
loadInstanceFunctions(nullinst_funcs, ARRAYSIZE(nullinst_funcs));
if (vkEnumerateInstanceVersion)
{
vkEnumerateInstanceVersion(&vk_core.vulkan_version);
}
else
{
vk_core.vulkan_version = VK_MAKE_VERSION(1, 0, 0);
}
gEngine.Con_Printf( "Vulkan version %u.%u.%u\n", XVK_PARSE_VERSION(vk_core.vulkan_version));
if (!createInstance())
return false;
vk_core.surface.surface = gEngine.XVK_CreateSurface(vk_core.instance);
if (!vk_core.surface.surface)
{
gEngine.Con_Printf( S_ERROR "Cannot create Vulkan surface\n" );
return false;
}
#if USE_AFTERMATH
if (!VK_AftermathInit()) {
gEngine.Con_Printf( S_ERROR "Cannot initialize Nvidia Nsight Aftermath SDK\n" );
}
#endif
if (!createDevice())
return false;
VK_LoadCvarsAfterInit();
if (!initSurface())
return false;
if (!VK_DevMemInit())
return false;
if (!R_VkStagingInit())
return false;
// TODO move this to vk_texture module
{
VkSamplerCreateInfo sci = {
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.magFilter = VK_FILTER_LINEAR,
.minFilter = VK_FILTER_LINEAR,
.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT,// TODO CLAMP_TO_EDGE, for menus
.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT,//CLAMP_TO_EDGE,
.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.anisotropyEnable = vk_core.physical_device.anisotropy_enabled,
.maxAnisotropy = vk_core.physical_device.properties.limits.maxSamplerAnisotropy,
.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK,
.unnormalizedCoordinates = VK_FALSE,
.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR,
.minLod = 0.f,
.maxLod = 16.,
};
XVK_CHECK(vkCreateSampler(vk_core.device, &sci, NULL, &vk_core.default_sampler));
}
if (!VK_PipelineInit())
return false;
// TODO ...
if (!VK_DescriptorInit())
return false;
if (!VK_FrameCtlInit())
return false;
if (!R_GeometryBuffer_Init())
return false;
if (!VK_RenderInit())
return false;
VK_StudioInit();
VK_SceneInit();
initTextures();
// All below need render_pass
if (!R_VkOverlay_Init())
return false;
if (!VK_BrushInit())
return false;
if (vk_core.rtx)
{
if (!VK_RayInit())
return false;
// FIXME move all this to rt-specific modules
VK_LightsInit();
}
return true;
}
void R_VkShutdown( void ) {
XVK_CHECK(vkDeviceWaitIdle(vk_core.device));
if (vk_core.rtx)
{
VK_LightsShutdown();
VK_RayShutdown();
}
VK_BrushShutdown();
VK_StudioShutdown();
R_VkOverlay_Shutdown();
VK_RenderShutdown();
R_GeometryBuffer_Shutdown();
VK_FrameCtlShutdown();
destroyTextures();
VK_PipelineShutdown();
VK_DescriptorShutdown();
vkDestroySampler(vk_core.device, vk_core.default_sampler, NULL);
R_VkStagingShutdown();
VK_DevMemDestroy();
vkDestroyDevice(vk_core.device, NULL);
#if USE_AFTERMATH
VK_AftermathShutdown();
#endif
if (vk_core.debug_messenger)
{
vkDestroyDebugUtilsMessengerEXT(vk_core.instance, vk_core.debug_messenger, NULL);
}
Mem_Free(vk_core.surface.present_modes);
Mem_Free(vk_core.surface.surface_formats);
vkDestroySurfaceKHR(vk_core.instance, vk_core.surface.surface, NULL);
vkDestroyInstance(vk_core.instance, NULL);
Mem_FreePool(&vk_core.pool);
gEngine.R_Free_Video();
}
VkSemaphore R_VkSemaphoreCreate( void ) {
VkSemaphore sema;
VkSemaphoreCreateInfo sci = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
.flags = 0,
};
XVK_CHECK(vkCreateSemaphore(vk_core.device, &sci, NULL, &sema));
return sema;
}
void R_VkSemaphoreDestroy(VkSemaphore sema) {
vkDestroySemaphore(vk_core.device, sema, NULL);
}
VkFence R_VkFenceCreate( qboolean signaled ) {
VkFence fence;
const VkFenceCreateInfo fci = {
.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO,
.flags = signaled ? VK_FENCE_CREATE_SIGNALED_BIT : 0,
};
XVK_CHECK(vkCreateFence(vk_core.device, &fci, NULL, &fence));
return fence;
}
void R_VkFenceDestroy(VkFence fence) {
vkDestroyFence(vk_core.device, fence, NULL);
}