xash3d-fwgs/ref_gl/gl_rmain.c
Gleb Mazovetskiy 5e0a0765ce Trim all trailing whitespace
The `.editorconfig` file in this repo is configured to trim all trailing
whitespace regardless of whether the line is modified.

Trims all trailing whitespace in the repository to make the codebase easier
to work with in editors that respect `.editorconfig`.

`git blame` becomes less useful on these lines but it already isn't very useful.

Commands:

```
find . -type f -name '*.h' -exec sed --in-place 's/[[:space:]]\+$//' {} \+
find . -type f -name '*.c' -exec sed --in-place 's/[[:space:]]\+$//' {} \+
```
2021-01-04 20:55:10 +03:00

1280 lines
28 KiB
C

/*
gl_rmain.c - renderer main loop
Copyright (C) 2010 Uncle Mike
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
*/
#include "gl_local.h"
#include "xash3d_mathlib.h"
#include "library.h"
#include "beamdef.h"
#include "particledef.h"
#include "entity_types.h"
#define IsLiquidContents( cnt ) ( cnt == CONTENTS_WATER || cnt == CONTENTS_SLIME || cnt == CONTENTS_LAVA )
float gldepthmin, gldepthmax;
ref_instance_t RI;
static int R_RankForRenderMode( int rendermode )
{
switch( rendermode )
{
case kRenderTransTexture:
return 1; // draw second
case kRenderTransAdd:
return 2; // draw third
case kRenderGlow:
return 3; // must be last!
}
return 0;
}
void R_AllowFog( qboolean allowed )
{
if( allowed )
{
if( glState.isFogEnabled )
pglEnable( GL_FOG );
}
else
{
if( glState.isFogEnabled )
pglDisable( GL_FOG );
}
}
/*
===============
R_OpaqueEntity
Opaque entity can be brush or studio model but sprite
===============
*/
static qboolean R_OpaqueEntity( cl_entity_t *ent )
{
if( R_GetEntityRenderMode( ent ) == kRenderNormal )
return true;
return false;
}
/*
===============
R_TransEntityCompare
Sorting translucent entities by rendermode then by distance
===============
*/
static int R_TransEntityCompare( const void *a, const void *b )
{
cl_entity_t *ent1, *ent2;
vec3_t vecLen, org;
float dist1, dist2;
int rendermode1;
int rendermode2;
ent1 = *(cl_entity_t **)a;
ent2 = *(cl_entity_t **)b;
rendermode1 = R_GetEntityRenderMode( ent1 );
rendermode2 = R_GetEntityRenderMode( ent2 );
// sort by distance
if( ent1->model->type != mod_brush || rendermode1 != kRenderTransAlpha )
{
VectorAverage( ent1->model->mins, ent1->model->maxs, org );
VectorAdd( ent1->origin, org, org );
VectorSubtract( RI.vieworg, org, vecLen );
dist1 = DotProduct( vecLen, vecLen );
}
else dist1 = 1000000000;
if( ent2->model->type != mod_brush || rendermode2 != kRenderTransAlpha )
{
VectorAverage( ent2->model->mins, ent2->model->maxs, org );
VectorAdd( ent2->origin, org, org );
VectorSubtract( RI.vieworg, org, vecLen );
dist2 = DotProduct( vecLen, vecLen );
}
else dist2 = 1000000000;
if( dist1 > dist2 )
return -1;
if( dist1 < dist2 )
return 1;
// then sort by rendermode
if( R_RankForRenderMode( rendermode1 ) > R_RankForRenderMode( rendermode2 ))
return 1;
if( R_RankForRenderMode( rendermode1 ) < R_RankForRenderMode( rendermode2 ))
return -1;
return 0;
}
/*
===============
R_WorldToScreen
Convert a given point from world into screen space
Returns true if we behind to screen
===============
*/
int R_WorldToScreen( const vec3_t point, vec3_t screen )
{
matrix4x4 worldToScreen;
qboolean behind;
float w;
if( !point || !screen )
return true;
Matrix4x4_Copy( worldToScreen, RI.worldviewProjectionMatrix );
screen[0] = worldToScreen[0][0] * point[0] + worldToScreen[0][1] * point[1] + worldToScreen[0][2] * point[2] + worldToScreen[0][3];
screen[1] = worldToScreen[1][0] * point[0] + worldToScreen[1][1] * point[1] + worldToScreen[1][2] * point[2] + worldToScreen[1][3];
w = worldToScreen[3][0] * point[0] + worldToScreen[3][1] * point[1] + worldToScreen[3][2] * point[2] + worldToScreen[3][3];
screen[2] = 0.0f; // just so we have something valid here
if( w < 0.001f )
{
screen[0] *= 100000;
screen[1] *= 100000;
behind = true;
}
else
{
float invw = 1.0f / w;
screen[0] *= invw;
screen[1] *= invw;
behind = false;
}
return behind;
}
/*
===============
R_ScreenToWorld
Convert a given point from screen into world space
===============
*/
void R_ScreenToWorld( const vec3_t screen, vec3_t point )
{
matrix4x4 screenToWorld;
float w;
if( !point || !screen )
return;
Matrix4x4_Invert_Full( screenToWorld, RI.worldviewProjectionMatrix );
point[0] = screen[0] * screenToWorld[0][0] + screen[1] * screenToWorld[0][1] + screen[2] * screenToWorld[0][2] + screenToWorld[0][3];
point[1] = screen[0] * screenToWorld[1][0] + screen[1] * screenToWorld[1][1] + screen[2] * screenToWorld[1][2] + screenToWorld[1][3];
point[2] = screen[0] * screenToWorld[2][0] + screen[1] * screenToWorld[2][1] + screen[2] * screenToWorld[2][2] + screenToWorld[2][3];
w = screen[0] * screenToWorld[3][0] + screen[1] * screenToWorld[3][1] + screen[2] * screenToWorld[3][2] + screenToWorld[3][3];
if( w != 0.0f ) VectorScale( point, ( 1.0f / w ), point );
}
/*
===============
R_PushScene
===============
*/
void R_PushScene( void )
{
if( ++tr.draw_stack_pos >= MAX_DRAW_STACK )
gEngfuncs.Host_Error( "draw stack overflow\n" );
tr.draw_list = &tr.draw_stack[tr.draw_stack_pos];
}
/*
===============
R_PopScene
===============
*/
void R_PopScene( void )
{
if( --tr.draw_stack_pos < 0 )
gEngfuncs.Host_Error( "draw stack underflow\n" );
tr.draw_list = &tr.draw_stack[tr.draw_stack_pos];
}
/*
===============
R_ClearScene
===============
*/
void R_ClearScene( void )
{
tr.draw_list->num_solid_entities = 0;
tr.draw_list->num_trans_entities = 0;
tr.draw_list->num_beam_entities = 0;
// clear the scene befor start new frame
if( gEngfuncs.drawFuncs->R_ClearScene != NULL )
gEngfuncs.drawFuncs->R_ClearScene();
}
/*
===============
R_AddEntity
===============
*/
qboolean R_AddEntity( struct cl_entity_s *clent, int type )
{
if( !r_drawentities->value )
return false; // not allow to drawing
if( !clent || !clent->model )
return false; // if set to invisible, skip
if( FBitSet( clent->curstate.effects, EF_NODRAW ))
return false; // done
if( !R_ModelOpaque( clent->curstate.rendermode ) && CL_FxBlend( clent ) <= 0 )
return true; // invisible
switch( type )
{
case ET_FRAGMENTED:
r_stats.c_client_ents++;
break;
case ET_TEMPENTITY:
r_stats.c_active_tents_count++;
break;
default: break;
}
if( R_OpaqueEntity( clent ))
{
// opaque
if( tr.draw_list->num_solid_entities >= MAX_VISIBLE_PACKET )
return false;
tr.draw_list->solid_entities[tr.draw_list->num_solid_entities] = clent;
tr.draw_list->num_solid_entities++;
}
else
{
// translucent
if( tr.draw_list->num_trans_entities >= MAX_VISIBLE_PACKET )
return false;
tr.draw_list->trans_entities[tr.draw_list->num_trans_entities] = clent;
tr.draw_list->num_trans_entities++;
}
return true;
}
/*
=============
R_Clear
=============
*/
static void R_Clear( int bitMask )
{
int bits;
if( ENGINE_GET_PARM( PARM_DEV_OVERVIEW ))
pglClearColor( 0.0f, 1.0f, 0.0f, 1.0f ); // green background (Valve rules)
else pglClearColor( 0.5f, 0.5f, 0.5f, 1.0f );
bits = GL_DEPTH_BUFFER_BIT;
if( glState.stencilEnabled )
bits |= GL_STENCIL_BUFFER_BIT;
bits &= bitMask;
pglClear( bits );
// change ordering for overview
if( RI.drawOrtho )
{
gldepthmin = 1.0f;
gldepthmax = 0.0f;
}
else
{
gldepthmin = 0.0f;
gldepthmax = 1.0f;
}
pglDepthFunc( GL_LEQUAL );
pglDepthRange( gldepthmin, gldepthmax );
}
//=============================================================================
/*
===============
R_GetFarClip
===============
*/
static float R_GetFarClip( void )
{
if( WORLDMODEL && RI.drawWorld )
return MOVEVARS->zmax * 1.73f;
return 2048.0f;
}
/*
===============
R_SetupFrustum
===============
*/
void R_SetupFrustum( void )
{
const ref_overview_t *ov = gEngfuncs.GetOverviewParms();
if( RP_NORMALPASS() && ( ENGINE_GET_PARM( PARM_WATER_LEVEL ) >= 3 ))
{
RI.fov_x = atan( tan( DEG2RAD( RI.fov_x ) / 2 ) * ( 0.97f + sin( gpGlobals->time * 1.5f ) * 0.03f )) * 2 / (M_PI_F / 180.0f);
RI.fov_y = atan( tan( DEG2RAD( RI.fov_y ) / 2 ) * ( 1.03f - sin( gpGlobals->time * 1.5f ) * 0.03f )) * 2 / (M_PI_F / 180.0f);
}
// build the transformation matrix for the given view angles
AngleVectors( RI.viewangles, RI.vforward, RI.vright, RI.vup );
if( !r_lockfrustum->value )
{
VectorCopy( RI.vieworg, RI.cullorigin );
VectorCopy( RI.vforward, RI.cull_vforward );
VectorCopy( RI.vright, RI.cull_vright );
VectorCopy( RI.vup, RI.cull_vup );
}
if( RI.drawOrtho )
GL_FrustumInitOrtho( &RI.frustum, ov->xLeft, ov->xRight, ov->yTop, ov->yBottom, ov->zNear, ov->zFar );
else GL_FrustumInitProj( &RI.frustum, 0.0f, R_GetFarClip(), RI.fov_x, RI.fov_y ); // NOTE: we ignore nearplane here (mirrors only)
}
/*
=============
R_SetupProjectionMatrix
=============
*/
static void R_SetupProjectionMatrix( matrix4x4 m )
{
GLfloat xMin, xMax, yMin, yMax, zNear, zFar;
if( RI.drawOrtho )
{
const ref_overview_t *ov = gEngfuncs.GetOverviewParms();
Matrix4x4_CreateOrtho( m, ov->xLeft, ov->xRight, ov->yTop, ov->yBottom, ov->zNear, ov->zFar );
return;
}
RI.farClip = R_GetFarClip();
zNear = 4.0f;
zFar = max( 256.0f, RI.farClip );
yMax = zNear * tan( RI.fov_y * M_PI_F / 360.0f );
yMin = -yMax;
xMax = zNear * tan( RI.fov_x * M_PI_F / 360.0f );
xMin = -xMax;
Matrix4x4_CreateProjection( m, xMax, xMin, yMax, yMin, zNear, zFar );
}
/*
=============
R_SetupModelviewMatrix
=============
*/
static void R_SetupModelviewMatrix( matrix4x4 m )
{
Matrix4x4_CreateModelview( m );
Matrix4x4_ConcatRotate( m, -RI.viewangles[2], 1, 0, 0 );
Matrix4x4_ConcatRotate( m, -RI.viewangles[0], 0, 1, 0 );
Matrix4x4_ConcatRotate( m, -RI.viewangles[1], 0, 0, 1 );
Matrix4x4_ConcatTranslate( m, -RI.vieworg[0], -RI.vieworg[1], -RI.vieworg[2] );
}
/*
=============
R_LoadIdentity
=============
*/
void R_LoadIdentity( void )
{
if( tr.modelviewIdentity ) return;
Matrix4x4_LoadIdentity( RI.objectMatrix );
Matrix4x4_Copy( RI.modelviewMatrix, RI.worldviewMatrix );
pglMatrixMode( GL_MODELVIEW );
GL_LoadMatrix( RI.modelviewMatrix );
tr.modelviewIdentity = true;
}
/*
=============
R_RotateForEntity
=============
*/
void R_RotateForEntity( cl_entity_t *e )
{
float scale = 1.0f;
if( e == gEngfuncs.GetEntityByIndex( 0 ) )
{
R_LoadIdentity();
return;
}
if( e->model->type != mod_brush && e->curstate.scale > 0.0f )
scale = e->curstate.scale;
Matrix4x4_CreateFromEntity( RI.objectMatrix, e->angles, e->origin, scale );
Matrix4x4_ConcatTransforms( RI.modelviewMatrix, RI.worldviewMatrix, RI.objectMatrix );
pglMatrixMode( GL_MODELVIEW );
GL_LoadMatrix( RI.modelviewMatrix );
tr.modelviewIdentity = false;
}
/*
=============
R_TranslateForEntity
=============
*/
void R_TranslateForEntity( cl_entity_t *e )
{
float scale = 1.0f;
if( e == gEngfuncs.GetEntityByIndex( 0 ) )
{
R_LoadIdentity();
return;
}
if( e->model->type != mod_brush && e->curstate.scale > 0.0f )
scale = e->curstate.scale;
Matrix4x4_CreateFromEntity( RI.objectMatrix, vec3_origin, e->origin, scale );
Matrix4x4_ConcatTransforms( RI.modelviewMatrix, RI.worldviewMatrix, RI.objectMatrix );
pglMatrixMode( GL_MODELVIEW );
GL_LoadMatrix( RI.modelviewMatrix );
tr.modelviewIdentity = false;
}
/*
===============
R_FindViewLeaf
===============
*/
void R_FindViewLeaf( void )
{
RI.oldviewleaf = RI.viewleaf;
RI.viewleaf = gEngfuncs.Mod_PointInLeaf( RI.pvsorigin, WORLDMODEL->nodes );
}
/*
===============
R_SetupFrame
===============
*/
static void R_SetupFrame( void )
{
// setup viewplane dist
RI.viewplanedist = DotProduct( RI.vieworg, RI.vforward );
// NOTE: this request is the fps-killer on some NVidia drivers
glState.isFogEnabled = pglIsEnabled( GL_FOG );
if( !gl_nosort->value )
{
// sort translucents entities by rendermode and distance
qsort( tr.draw_list->trans_entities, tr.draw_list->num_trans_entities, sizeof( cl_entity_t* ), R_TransEntityCompare );
}
// current viewleaf
if( RI.drawWorld )
{
RI.isSkyVisible = false; // unknown at this moment
R_FindViewLeaf();
}
}
/*
=============
R_SetupGL
=============
*/
void R_SetupGL( qboolean set_gl_state )
{
R_SetupModelviewMatrix( RI.worldviewMatrix );
R_SetupProjectionMatrix( RI.projectionMatrix );
Matrix4x4_Concat( RI.worldviewProjectionMatrix, RI.projectionMatrix, RI.worldviewMatrix );
if( !set_gl_state ) return;
if( RP_NORMALPASS( ))
{
int x, x2, y, y2;
// set up viewport (main, playersetup)
x = floor( RI.viewport[0] * gpGlobals->width / gpGlobals->width );
x2 = ceil(( RI.viewport[0] + RI.viewport[2] ) * gpGlobals->width / gpGlobals->width );
y = floor( gpGlobals->height - RI.viewport[1] * gpGlobals->height / gpGlobals->height );
y2 = ceil( gpGlobals->height - ( RI.viewport[1] + RI.viewport[3] ) * gpGlobals->height / gpGlobals->height );
pglViewport( x, y2, x2 - x, y - y2 );
}
else
{
// envpass, mirrorpass
pglViewport( RI.viewport[0], RI.viewport[1], RI.viewport[2], RI.viewport[3] );
}
pglMatrixMode( GL_PROJECTION );
GL_LoadMatrix( RI.projectionMatrix );
pglMatrixMode( GL_MODELVIEW );
GL_LoadMatrix( RI.worldviewMatrix );
if( FBitSet( RI.params, RP_CLIPPLANE ))
{
GLdouble clip[4];
mplane_t *p = &RI.clipPlane;
clip[0] = p->normal[0];
clip[1] = p->normal[1];
clip[2] = p->normal[2];
clip[3] = -p->dist;
pglClipPlane( GL_CLIP_PLANE0, clip );
pglEnable( GL_CLIP_PLANE0 );
}
GL_Cull( GL_FRONT );
pglDisable( GL_BLEND );
pglDisable( GL_ALPHA_TEST );
pglColor4f( 1.0f, 1.0f, 1.0f, 1.0f );
}
/*
=============
R_EndGL
=============
*/
static void R_EndGL( void )
{
if( RI.params & RP_CLIPPLANE )
pglDisable( GL_CLIP_PLANE0 );
}
/*
=============
R_RecursiveFindWaterTexture
using to find source waterleaf with
watertexture to grab fog values from it
=============
*/
static gl_texture_t *R_RecursiveFindWaterTexture( const mnode_t *node, const mnode_t *ignore, qboolean down )
{
gl_texture_t *tex = NULL;
// assure the initial node is not null
// we could check it here, but we would rather check it
// outside the call to get rid of one additional recursion level
Assert( node != NULL );
// ignore solid nodes
if( node->contents == CONTENTS_SOLID )
return NULL;
if( node->contents < 0 )
{
mleaf_t *pleaf;
msurface_t **mark;
int i, c;
// ignore non-liquid leaves
if( node->contents != CONTENTS_WATER && node->contents != CONTENTS_LAVA && node->contents != CONTENTS_SLIME )
return NULL;
// find texture
pleaf = (mleaf_t *)node;
mark = pleaf->firstmarksurface;
c = pleaf->nummarksurfaces;
for( i = 0; i < c; i++, mark++ )
{
if( (*mark)->flags & SURF_DRAWTURB && (*mark)->texinfo && (*mark)->texinfo->texture )
return R_GetTexture( (*mark)->texinfo->texture->gl_texturenum );
}
// texture not found
return NULL;
}
// this is a regular node
// traverse children
if( node->children[0] && ( node->children[0] != ignore ))
{
tex = R_RecursiveFindWaterTexture( node->children[0], node, true );
if( tex ) return tex;
}
if( node->children[1] && ( node->children[1] != ignore ))
{
tex = R_RecursiveFindWaterTexture( node->children[1], node, true );
if( tex ) return tex;
}
// for down recursion, return immediately
if( down ) return NULL;
// texture not found, step up if any
if( node->parent )
return R_RecursiveFindWaterTexture( node->parent, node, false );
// top-level node, bail out
return NULL;
}
/*
=============
R_CheckFog
check for underwater fog
Using backward recursion to find waterline leaf
from underwater leaf (idea: XaeroX)
=============
*/
static void R_CheckFog( void )
{
cl_entity_t *ent;
gl_texture_t *tex;
int i, cnt, count;
// quake global fog
if( ENGINE_GET_PARM( PARM_QUAKE_COMPATIBLE ))
{
if( !MOVEVARS->fog_settings )
{
if( pglIsEnabled( GL_FOG ))
pglDisable( GL_FOG );
RI.fogEnabled = false;
return;
}
// quake-style global fog
RI.fogColor[0] = ((MOVEVARS->fog_settings & 0xFF000000) >> 24) / 255.0f;
RI.fogColor[1] = ((MOVEVARS->fog_settings & 0xFF0000) >> 16) / 255.0f;
RI.fogColor[2] = ((MOVEVARS->fog_settings & 0xFF00) >> 8) / 255.0f;
RI.fogDensity = ((MOVEVARS->fog_settings & 0xFF) / 255.0f) * 0.01f;
RI.fogStart = RI.fogEnd = 0.0f;
RI.fogColor[3] = 1.0f;
RI.fogCustom = false;
RI.fogEnabled = true;
RI.fogSkybox = true;
return;
}
RI.fogEnabled = false;
if( RI.onlyClientDraw || ENGINE_GET_PARM( PARM_WATER_LEVEL ) < 3 || !RI.drawWorld || !RI.viewleaf )
{
if( RI.cached_waterlevel == 3 )
{
// in some cases waterlevel jumps from 3 to 1. Catch it
RI.cached_waterlevel = ENGINE_GET_PARM( PARM_WATER_LEVEL );
RI.cached_contents = CONTENTS_EMPTY;
if( !RI.fogCustom )
{
glState.isFogEnabled = false;
pglDisable( GL_FOG );
}
}
return;
}
ent = gEngfuncs.CL_GetWaterEntity( RI.vieworg );
if( ent && ent->model && ent->model->type == mod_brush && ent->curstate.skin < 0 )
cnt = ent->curstate.skin;
else cnt = RI.viewleaf->contents;
RI.cached_waterlevel = ENGINE_GET_PARM( PARM_WATER_LEVEL );
if( !IsLiquidContents( RI.cached_contents ) && IsLiquidContents( cnt ))
{
tex = NULL;
// check for water texture
if( ent && ent->model && ent->model->type == mod_brush )
{
msurface_t *surf;
count = ent->model->nummodelsurfaces;
for( i = 0, surf = &ent->model->surfaces[ent->model->firstmodelsurface]; i < count; i++, surf++ )
{
if( surf->flags & SURF_DRAWTURB && surf->texinfo && surf->texinfo->texture )
{
tex = R_GetTexture( surf->texinfo->texture->gl_texturenum );
RI.cached_contents = ent->curstate.skin;
break;
}
}
}
else
{
tex = R_RecursiveFindWaterTexture( RI.viewleaf->parent, NULL, false );
if( tex ) RI.cached_contents = RI.viewleaf->contents;
}
if( !tex ) return; // no valid fogs
// copy fog params
RI.fogColor[0] = tex->fogParams[0] / 255.0f;
RI.fogColor[1] = tex->fogParams[1] / 255.0f;
RI.fogColor[2] = tex->fogParams[2] / 255.0f;
RI.fogDensity = tex->fogParams[3] * 0.000025f;
RI.fogStart = RI.fogEnd = 0.0f;
RI.fogColor[3] = 1.0f;
RI.fogCustom = false;
RI.fogEnabled = true;
RI.fogSkybox = true;
}
else
{
RI.fogCustom = false;
RI.fogEnabled = true;
RI.fogSkybox = true;
}
}
/*
=============
R_CheckGLFog
special condition for Spirit 1.9
that used direct calls of glFog-functions
=============
*/
static void R_CheckGLFog( void )
{
#ifdef HACKS_RELATED_HLMODS
if(( !RI.fogEnabled && !RI.fogCustom ) && pglIsEnabled( GL_FOG ) && VectorIsNull( RI.fogColor ))
{
// fill the fog color from GL-state machine
pglGetFloatv( GL_FOG_COLOR, RI.fogColor );
RI.fogSkybox = true;
}
#endif
}
/*
=============
R_DrawFog
=============
*/
void R_DrawFog( void )
{
if( !RI.fogEnabled ) return;
pglEnable( GL_FOG );
if( ENGINE_GET_PARM( PARM_QUAKE_COMPATIBLE ))
pglFogi( GL_FOG_MODE, GL_EXP2 );
else pglFogi( GL_FOG_MODE, GL_EXP );
pglFogf( GL_FOG_DENSITY, RI.fogDensity );
pglFogfv( GL_FOG_COLOR, RI.fogColor );
pglHint( GL_FOG_HINT, GL_NICEST );
}
/*
=============
R_DrawEntitiesOnList
=============
*/
void R_DrawEntitiesOnList( void )
{
int i;
tr.blend = 1.0f;
GL_CheckForErrors();
// first draw solid entities
for( i = 0; i < tr.draw_list->num_solid_entities && !RI.onlyClientDraw; i++ )
{
RI.currententity = tr.draw_list->solid_entities[i];
RI.currentmodel = RI.currententity->model;
Assert( RI.currententity != NULL );
Assert( RI.currentmodel != NULL );
switch( RI.currentmodel->type )
{
case mod_brush:
R_DrawBrushModel( RI.currententity );
break;
case mod_alias:
R_DrawAliasModel( RI.currententity );
break;
case mod_studio:
R_DrawStudioModel( RI.currententity );
break;
default:
break;
}
}
GL_CheckForErrors();
// quake-specific feature
R_DrawAlphaTextureChains();
GL_CheckForErrors();
// draw sprites seperately, because of alpha blending
for( i = 0; i < tr.draw_list->num_solid_entities && !RI.onlyClientDraw; i++ )
{
RI.currententity = tr.draw_list->solid_entities[i];
RI.currentmodel = RI.currententity->model;
Assert( RI.currententity != NULL );
Assert( RI.currentmodel != NULL );
switch( RI.currentmodel->type )
{
case mod_sprite:
R_DrawSpriteModel( RI.currententity );
break;
}
}
GL_CheckForErrors();
if( !RI.onlyClientDraw )
{
gEngfuncs.CL_DrawEFX( tr.frametime, false );
}
GL_CheckForErrors();
if( RI.drawWorld )
gEngfuncs.pfnDrawNormalTriangles();
GL_CheckForErrors();
// then draw translucent entities
for( i = 0; i < tr.draw_list->num_trans_entities && !RI.onlyClientDraw; i++ )
{
RI.currententity = tr.draw_list->trans_entities[i];
RI.currentmodel = RI.currententity->model;
// handle studiomodels with custom rendermodes on texture
if( RI.currententity->curstate.rendermode != kRenderNormal )
tr.blend = CL_FxBlend( RI.currententity ) / 255.0f;
else tr.blend = 1.0f; // draw as solid but sorted by distance
if( tr.blend <= 0.0f ) continue;
Assert( RI.currententity != NULL );
Assert( RI.currentmodel != NULL );
switch( RI.currentmodel->type )
{
case mod_brush:
R_DrawBrushModel( RI.currententity );
break;
case mod_alias:
R_DrawAliasModel( RI.currententity );
break;
case mod_studio:
R_DrawStudioModel( RI.currententity );
break;
case mod_sprite:
R_DrawSpriteModel( RI.currententity );
break;
default:
break;
}
}
GL_CheckForErrors();
if( RI.drawWorld )
{
pglTexEnvi( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE );
gEngfuncs.pfnDrawTransparentTriangles ();
}
GL_CheckForErrors();
if( !RI.onlyClientDraw )
{
R_AllowFog( false );
gEngfuncs.CL_DrawEFX( tr.frametime, true );
R_AllowFog( true );
}
GL_CheckForErrors();
pglDisable( GL_BLEND ); // Trinity Render issues
if( !RI.onlyClientDraw )
R_DrawViewModel();
gEngfuncs.CL_ExtraUpdate();
GL_CheckForErrors();
}
/*
================
R_RenderScene
R_SetupRefParams must be called right before
================
*/
void R_RenderScene( void )
{
if( !WORLDMODEL && RI.drawWorld )
gEngfuncs.Host_Error( "R_RenderView: NULL worldmodel\n" );
// frametime is valid only for normal pass
if( RP_NORMALPASS( ))
tr.frametime = gpGlobals->time - gpGlobals->oldtime;
else tr.frametime = 0.0;
// begin a new frame
tr.framecount++;
R_PushDlights();
R_SetupFrustum();
R_SetupFrame();
R_SetupGL( true );
R_Clear( ~0 );
R_MarkLeaves();
R_DrawFog ();
R_CheckGLFog();
R_DrawWorld();
R_CheckFog();
gEngfuncs.CL_ExtraUpdate (); // don't let sound get messed up if going slow
R_DrawEntitiesOnList();
R_DrawWaterSurfaces();
R_EndGL();
}
/*
===============
R_CheckGamma
===============
*/
void R_CheckGamma( void )
{
if( gEngfuncs.R_DoResetGamma( ))
{
// paranoia cubemaps uses this
gEngfuncs.BuildGammaTable( 1.8f, 0.0f );
// paranoia cubemap rendering
if( gEngfuncs.drawFuncs->GL_BuildLightmaps )
gEngfuncs.drawFuncs->GL_BuildLightmaps( );
}
else if( FBitSet( vid_gamma->flags, FCVAR_CHANGED ) || FBitSet( vid_brightness->flags, FCVAR_CHANGED ))
{
gEngfuncs.BuildGammaTable( vid_gamma->value, vid_brightness->value );
glConfig.softwareGammaUpdate = true;
GL_RebuildLightmaps();
glConfig.softwareGammaUpdate = false;
}
}
/*
===============
R_BeginFrame
===============
*/
void R_BeginFrame( qboolean clearScene )
{
glConfig.softwareGammaUpdate = false; // in case of possible fails
if(( gl_clear->value || ENGINE_GET_PARM( PARM_DEV_OVERVIEW )) &&
clearScene && ENGINE_GET_PARM( PARM_CONNSTATE ) != ca_cinematic )
{
pglClear( GL_COLOR_BUFFER_BIT );
}
R_CheckGamma();
R_Set2DMode( true );
// draw buffer stuff
pglDrawBuffer( GL_BACK );
// update texture parameters
if( FBitSet( gl_texture_nearest->flags|gl_lightmap_nearest->flags|gl_texture_anisotropy->flags|gl_texture_lodbias->flags, FCVAR_CHANGED ))
R_SetTextureParameters();
gEngfuncs.CL_ExtraUpdate ();
}
/*
===============
R_SetupRefParams
set initial params for renderer
===============
*/
void R_SetupRefParams( const ref_viewpass_t *rvp )
{
RI.params = RP_NONE;
RI.drawWorld = FBitSet( rvp->flags, RF_DRAW_WORLD );
RI.onlyClientDraw = FBitSet( rvp->flags, RF_ONLY_CLIENTDRAW );
RI.farClip = 0;
if( !FBitSet( rvp->flags, RF_DRAW_CUBEMAP ))
RI.drawOrtho = FBitSet( rvp->flags, RF_DRAW_OVERVIEW );
else RI.drawOrtho = false;
// setup viewport
RI.viewport[0] = rvp->viewport[0];
RI.viewport[1] = rvp->viewport[1];
RI.viewport[2] = rvp->viewport[2];
RI.viewport[3] = rvp->viewport[3];
// calc FOV
RI.fov_x = rvp->fov_x;
RI.fov_y = rvp->fov_y;
VectorCopy( rvp->vieworigin, RI.vieworg );
VectorCopy( rvp->viewangles, RI.viewangles );
VectorCopy( rvp->vieworigin, RI.pvsorigin );
}
/*
===============
R_RenderFrame
===============
*/
void R_RenderFrame( const ref_viewpass_t *rvp )
{
if( r_norefresh->value )
return;
// setup the initial render params
R_SetupRefParams( rvp );
if( gl_finish->value && RI.drawWorld )
pglFinish();
if( glConfig.max_multisamples > 1 && FBitSet( gl_msaa->flags, FCVAR_CHANGED ))
{
if( CVAR_TO_BOOL( gl_msaa ))
pglEnable( GL_MULTISAMPLE_ARB );
else pglDisable( GL_MULTISAMPLE_ARB );
ClearBits( gl_msaa->flags, FCVAR_CHANGED );
}
// completely override rendering
if( gEngfuncs.drawFuncs->GL_RenderFrame != NULL )
{
tr.fCustomRendering = true;
if( gEngfuncs.drawFuncs->GL_RenderFrame( rvp ))
{
R_GatherPlayerLight();
tr.realframecount++;
tr.fResetVis = true;
return;
}
}
tr.fCustomRendering = false;
if( !RI.onlyClientDraw )
R_RunViewmodelEvents();
tr.realframecount++; // right called after viewmodel events
R_RenderScene();
return;
}
/*
===============
R_EndFrame
===============
*/
void R_EndFrame( void )
{
// flush any remaining 2D bits
R_Set2DMode( false );
gEngfuncs.GL_SwapBuffers();
}
/*
===============
R_DrawCubemapView
===============
*/
void R_DrawCubemapView( const vec3_t origin, const vec3_t angles, int size )
{
ref_viewpass_t rvp;
// basic params
rvp.flags = rvp.viewentity = 0;
SetBits( rvp.flags, RF_DRAW_WORLD );
SetBits( rvp.flags, RF_DRAW_CUBEMAP );
rvp.viewport[0] = rvp.viewport[1] = 0;
rvp.viewport[2] = rvp.viewport[3] = size;
rvp.fov_x = rvp.fov_y = 90.0f; // this is a final fov value
// setup origin & angles
VectorCopy( origin, rvp.vieworigin );
VectorCopy( angles, rvp.viewangles );
R_RenderFrame( &rvp );
RI.viewleaf = NULL; // force markleafs next frame
}
/*
===============
CL_FxBlend
===============
*/
int CL_FxBlend( cl_entity_t *e )
{
int blend = 0;
float offset, dist;
vec3_t tmp;
offset = ((int)e->index ) * 363.0f; // Use ent index to de-sync these fx
switch( e->curstate.renderfx )
{
case kRenderFxPulseSlowWide:
blend = e->curstate.renderamt + 0x40 * sin( gpGlobals->time * 2 + offset );
break;
case kRenderFxPulseFastWide:
blend = e->curstate.renderamt + 0x40 * sin( gpGlobals->time * 8 + offset );
break;
case kRenderFxPulseSlow:
blend = e->curstate.renderamt + 0x10 * sin( gpGlobals->time * 2 + offset );
break;
case kRenderFxPulseFast:
blend = e->curstate.renderamt + 0x10 * sin( gpGlobals->time * 8 + offset );
break;
case kRenderFxFadeSlow:
if( RP_NORMALPASS( ))
{
if( e->curstate.renderamt > 0 )
e->curstate.renderamt -= 1;
else e->curstate.renderamt = 0;
}
blend = e->curstate.renderamt;
break;
case kRenderFxFadeFast:
if( RP_NORMALPASS( ))
{
if( e->curstate.renderamt > 3 )
e->curstate.renderamt -= 4;
else e->curstate.renderamt = 0;
}
blend = e->curstate.renderamt;
break;
case kRenderFxSolidSlow:
if( RP_NORMALPASS( ))
{
if( e->curstate.renderamt < 255 )
e->curstate.renderamt += 1;
else e->curstate.renderamt = 255;
}
blend = e->curstate.renderamt;
break;
case kRenderFxSolidFast:
if( RP_NORMALPASS( ))
{
if( e->curstate.renderamt < 252 )
e->curstate.renderamt += 4;
else e->curstate.renderamt = 255;
}
blend = e->curstate.renderamt;
break;
case kRenderFxStrobeSlow:
blend = 20 * sin( gpGlobals->time * 4 + offset );
if( blend < 0 ) blend = 0;
else blend = e->curstate.renderamt;
break;
case kRenderFxStrobeFast:
blend = 20 * sin( gpGlobals->time * 16 + offset );
if( blend < 0 ) blend = 0;
else blend = e->curstate.renderamt;
break;
case kRenderFxStrobeFaster:
blend = 20 * sin( gpGlobals->time * 36 + offset );
if( blend < 0 ) blend = 0;
else blend = e->curstate.renderamt;
break;
case kRenderFxFlickerSlow:
blend = 20 * (sin( gpGlobals->time * 2 ) + sin( gpGlobals->time * 17 + offset ));
if( blend < 0 ) blend = 0;
else blend = e->curstate.renderamt;
break;
case kRenderFxFlickerFast:
blend = 20 * (sin( gpGlobals->time * 16 ) + sin( gpGlobals->time * 23 + offset ));
if( blend < 0 ) blend = 0;
else blend = e->curstate.renderamt;
break;
case kRenderFxHologram:
case kRenderFxDistort:
VectorCopy( e->origin, tmp );
VectorSubtract( tmp, RI.vieworg, tmp );
dist = DotProduct( tmp, RI.vforward );
// turn off distance fade
if( e->curstate.renderfx == kRenderFxDistort )
dist = 1;
if( dist <= 0 )
{
blend = 0;
}
else
{
e->curstate.renderamt = 180;
if( dist <= 100 ) blend = e->curstate.renderamt;
else blend = (int) ((1.0f - ( dist - 100 ) * ( 1.0f / 400.0f )) * e->curstate.renderamt );
blend += gEngfuncs.COM_RandomLong( -32, 31 );
}
break;
default:
blend = e->curstate.renderamt;
break;
}
blend = bound( 0, blend, 255 );
return blend;
}