xash3d-fwgs/public/crclib.c

471 lines
14 KiB
C

/*
crclib.c - generate crc stuff
Copyright (C) 2007 Uncle Mike
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
*/
#include "crclib.h"
#include "crtlib.h"
#include <string.h>
#include <stdlib.h>
#define NUM_BYTES 256
#define CRC32_INIT_VALUE 0xFFFFFFFFUL
#define CRC32_XOR_VALUE 0xFFFFFFFFUL
static const dword crc32table[NUM_BYTES] =
{
0x00000000, 0x77073096, 0xee0e612c, 0x990951ba,
0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de,
0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec,
0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940,
0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116,
0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a,
0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818,
0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c,
0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2,
0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086,
0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4,
0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8,
0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe,
0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252,
0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60,
0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04,
0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a,
0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e,
0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c,
0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0,
0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6,
0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
};
void CRC32_Init( dword *pulCRC )
{
*pulCRC = CRC32_INIT_VALUE;
}
dword CRC32_Final( dword pulCRC )
{
return pulCRC ^ CRC32_XOR_VALUE;
}
void CRC32_ProcessByte( dword *pulCRC, byte ch )
{
dword ulCrc = *pulCRC;
ulCrc ^= ch;
ulCrc = crc32table[(byte)ulCrc] ^ (ulCrc >> 8);
*pulCRC = ulCrc;
}
void CRC32_ProcessBuffer( dword *pulCRC, const void *pBuffer, int nBuffer )
{
dword ulCrc = *pulCRC, tmp;
byte *pb = (byte *)pBuffer;
uint nFront;
int nMain;
JustAfew:
switch( nBuffer )
{
case 7: ulCrc = crc32table[*pb++ ^ (byte)ulCrc] ^ (ulCrc >> 8); // fallthrough
case 6: ulCrc = crc32table[*pb++ ^ (byte)ulCrc] ^ (ulCrc >> 8); // fallthrough
case 5: ulCrc = crc32table[*pb++ ^ (byte)ulCrc] ^ (ulCrc >> 8); // fallthrough
case 4:
memcpy( &tmp, pb, sizeof(dword));
ulCrc ^= tmp; // warning, this only works on little-endian.
ulCrc = crc32table[(byte)ulCrc] ^ (ulCrc >> 8);
ulCrc = crc32table[(byte)ulCrc] ^ (ulCrc >> 8);
ulCrc = crc32table[(byte)ulCrc] ^ (ulCrc >> 8);
ulCrc = crc32table[(byte)ulCrc] ^ (ulCrc >> 8);
*pulCRC = ulCrc;
return;
case 3: ulCrc = crc32table[*pb++ ^ (byte)ulCrc] ^ (ulCrc >> 8); // fallthrough
case 2: ulCrc = crc32table[*pb++ ^ (byte)ulCrc] ^ (ulCrc >> 8); // fallthrough
case 1: ulCrc = crc32table[*pb++ ^ (byte)ulCrc] ^ (ulCrc >> 8); // fallthrough
case 0: *pulCRC = ulCrc;
return;
}
// We may need to do some alignment work up front, and at the end, so that
// the main loop is aligned and only has to worry about 8 byte at a time.
// The low-order two bits of pb and nBuffer in total control the
// upfront work.
nFront = ((uint)pb) & 3;
nBuffer -= nFront;
switch( nFront )
{
case 3: ulCrc = crc32table[*pb++ ^ (byte)ulCrc] ^ (ulCrc >> 8); // fallthrough
case 2: ulCrc = crc32table[*pb++ ^ (byte)ulCrc] ^ (ulCrc >> 8); // fallthrough
case 1: ulCrc = crc32table[*pb++ ^ (byte)ulCrc] ^ (ulCrc >> 8); // fallthrough
}
nMain = nBuffer >> 3;
while( nMain-- )
{
memcpy( &tmp, pb, sizeof(dword));
ulCrc ^= tmp; // warning, this only works on little-endian.
ulCrc = crc32table[(byte)ulCrc] ^ (ulCrc >> 8);
ulCrc = crc32table[(byte)ulCrc] ^ (ulCrc >> 8);
ulCrc = crc32table[(byte)ulCrc] ^ (ulCrc >> 8);
ulCrc = crc32table[(byte)ulCrc] ^ (ulCrc >> 8);
memcpy( &tmp, pb + 4, sizeof(dword));
ulCrc ^= tmp; // warning, this only works on little-endian.
ulCrc = crc32table[(byte)ulCrc] ^ (ulCrc >> 8);
ulCrc = crc32table[(byte)ulCrc] ^ (ulCrc >> 8);
ulCrc = crc32table[(byte)ulCrc] ^ (ulCrc >> 8);
ulCrc = crc32table[(byte)ulCrc] ^ (ulCrc >> 8);
pb += 8;
}
nBuffer &= 7;
goto JustAfew;
}
/*
====================
CRC32_BlockSequence
For proxy protecting
====================
*/
byte CRC32_BlockSequence( byte *base, int length, int sequence )
{
dword CRC;
char *ptr;
char buffer[64];
if( sequence < 0 ) sequence = abs( sequence );
ptr = (char *)crc32table + (sequence % 0x3FC);
if( length > 60 ) length = 60;
memcpy( buffer, base, length );
buffer[length+0] = ptr[0];
buffer[length+1] = ptr[1];
buffer[length+2] = ptr[2];
buffer[length+3] = ptr[3];
length += 4;
CRC32_Init( &CRC );
CRC32_ProcessBuffer( &CRC, buffer, length );
CRC = CRC32_Final( CRC );
return (byte)CRC;
}
void MD5Transform( uint buf[4], const uint in[16] );
/*
==================
MD5Init
Start MD5 accumulation. Set bit count to 0 and buffer to mysterious initialization constants.
==================
*/
void MD5Init( MD5Context_t *ctx )
{
ctx->buf[0] = 0x67452301;
ctx->buf[1] = 0xefcdab89;
ctx->buf[2] = 0x98badcfe;
ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
}
/*
===================
MD5Update
Update context to reflect the concatenation of another buffer full of bytes.
===================
*/
void MD5Update( MD5Context_t *ctx, const byte *buf, uint len )
{
uint t;
// update bitcount
t = ctx->bits[0];
if(( ctx->bits[0] = t + ((uint) len << 3 )) < t )
ctx->bits[1]++; // carry from low to high
ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; // bytes already in shsInfo->data
// handle any leading odd-sized chunks
if( t )
{
byte *p = (byte *)ctx->in + t;
t = 64 - t;
if( len < t )
{
memcpy( p, buf, len );
return;
}
memcpy( p, buf, t );
MD5Transform( ctx->buf, (uint *)ctx->in );
buf += t;
len -= t;
}
// process data in 64-byte chunks
while( len >= 64 )
{
memcpy( ctx->in, buf, 64 );
MD5Transform( ctx->buf, (uint *)ctx->in );
buf += 64;
len -= 64;
}
// handle any remaining bytes of data.
memcpy( ctx->in, buf, len );
}
/*
===============
MD5Final
Final wrapup - pad to 64-byte boundary with the bit pattern
1 0* (64-bit count of bits processed, MSB-first)
===============
*/
void MD5Final( byte digest[16], MD5Context_t *ctx )
{
uint count;
byte *p;
// compute number of bytes mod 64
count = ( ctx->bits[0] >> 3 ) & 0x3F;
// set the first char of padding to 0x80.
// this is safe since there is always at least one byte free
p = ctx->in + count;
*p++ = 0x80;
// bytes of padding needed to make 64 bytes
count = 64 - 1 - count;
// pad out to 56 mod 64
if( count < 8 )
{
// two lots of padding: pad the first block to 64 bytes
memset( p, 0, count );
MD5Transform( ctx->buf, (uint *)ctx->in );
// now fill the next block with 56 bytes
memset( ctx->in, 0, 56 );
}
else
{
// pad block to 56 bytes
memset( p, 0, count - 8 );
}
// append length in bits and transform
((uint *)ctx->in)[14] = ctx->bits[0];
((uint *)ctx->in)[15] = ctx->bits[1];
MD5Transform( ctx->buf, (uint *)ctx->in );
memcpy( digest, ctx->buf, 16 );
memset( ctx, 0, sizeof( *ctx )); // in case it's sensitive
}
// The four core functions
#define F1( x, y, z ) ( z ^ ( x & ( y ^ z )))
#define F2( x, y, z ) F1( z, x, y )
#define F3( x, y, z ) ( x ^ y ^ z )
#define F4( x, y, z ) ( y ^ ( x | ~z ))
// this is the central step in the MD5 algorithm.
#define MD5STEP( f, w, x, y, z, data, s ) ( w += f( x, y, z ) + data, w = w << s|w >> (32 - s), w += x )
/*
=================
MD5Transform
The core of the MD5 algorithm, this alters an existing MD5 hash to
reflect the addition of 16 longwords of new data. MD5Update blocks
the data and converts bytes into longwords for this routine.
=================
*/
void MD5Transform( uint buf[4], const uint in[16] )
{
register uint a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP( F1, a, b, c, d, in[0] + 0xd76aa478, 7 );
MD5STEP( F1, d, a, b, c, in[1] + 0xe8c7b756, 12 );
MD5STEP( F1, c, d, a, b, in[2] + 0x242070db, 17 );
MD5STEP( F1, b, c, d, a, in[3] + 0xc1bdceee, 22 );
MD5STEP( F1, a, b, c, d, in[4] + 0xf57c0faf, 7 );
MD5STEP( F1, d, a, b, c, in[5] + 0x4787c62a, 12 );
MD5STEP( F1, c, d, a, b, in[6] + 0xa8304613, 17 );
MD5STEP( F1, b, c, d, a, in[7] + 0xfd469501, 22 );
MD5STEP( F1, a, b, c, d, in[8] + 0x698098d8, 7 );
MD5STEP( F1, d, a, b, c, in[9] + 0x8b44f7af, 12 );
MD5STEP( F1, c, d, a, b, in[10] + 0xffff5bb1, 17 );
MD5STEP( F1, b, c, d, a, in[11] + 0x895cd7be, 22 );
MD5STEP( F1, a, b, c, d, in[12] + 0x6b901122, 7 );
MD5STEP( F1, d, a, b, c, in[13] + 0xfd987193, 12 );
MD5STEP( F1, c, d, a, b, in[14] + 0xa679438e, 17 );
MD5STEP( F1, b, c, d, a, in[15] + 0x49b40821, 22 );
MD5STEP( F2, a, b, c, d, in[1] + 0xf61e2562, 5 );
MD5STEP( F2, d, a, b, c, in[6] + 0xc040b340, 9 );
MD5STEP( F2, c, d, a, b, in[11] + 0x265e5a51, 14 );
MD5STEP( F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20 );
MD5STEP( F2, a, b, c, d, in[5] + 0xd62f105d, 5 );
MD5STEP( F2, d, a, b, c, in[10] + 0x02441453, 9 );
MD5STEP( F2, c, d, a, b, in[15] + 0xd8a1e681, 14 );
MD5STEP( F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20 );
MD5STEP( F2, a, b, c, d, in[9] + 0x21e1cde6, 5 );
MD5STEP( F2, d, a, b, c, in[14] + 0xc33707d6, 9 );
MD5STEP( F2, c, d, a, b, in[3] + 0xf4d50d87, 14 );
MD5STEP( F2, b, c, d, a, in[8] + 0x455a14ed, 20 );
MD5STEP( F2, a, b, c, d, in[13] + 0xa9e3e905, 5 );
MD5STEP( F2, d, a, b, c, in[2] + 0xfcefa3f8, 9 );
MD5STEP( F2, c, d, a, b, in[7] + 0x676f02d9, 14 );
MD5STEP( F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20 );
MD5STEP( F3, a, b, c, d, in[5] + 0xfffa3942, 4 );
MD5STEP( F3, d, a, b, c, in[8] + 0x8771f681, 11 );
MD5STEP( F3, c, d, a, b, in[11] + 0x6d9d6122, 16 );
MD5STEP( F3, b, c, d, a, in[14] + 0xfde5380c, 23 );
MD5STEP( F3, a, b, c, d, in[1] + 0xa4beea44, 4 );
MD5STEP( F3, d, a, b, c, in[4] + 0x4bdecfa9, 11 );
MD5STEP( F3, c, d, a, b, in[7] + 0xf6bb4b60, 16 );
MD5STEP( F3, b, c, d, a, in[10] + 0xbebfbc70, 23 );
MD5STEP( F3, a, b, c, d, in[13] + 0x289b7ec6, 4 );
MD5STEP( F3, d, a, b, c, in[0] + 0xeaa127fa, 11 );
MD5STEP( F3, c, d, a, b, in[3] + 0xd4ef3085, 16 );
MD5STEP( F3, b, c, d, a, in[6] + 0x04881d05, 23 );
MD5STEP( F3, a, b, c, d, in[9] + 0xd9d4d039, 4 );
MD5STEP( F3, d, a, b, c, in[12] + 0xe6db99e5, 11 );
MD5STEP( F3, c, d, a, b, in[15] + 0x1fa27cf8, 16 );
MD5STEP( F3, b, c, d, a, in[2] + 0xc4ac5665, 23 );
MD5STEP( F4, a, b, c, d, in[0] + 0xf4292244, 6 );
MD5STEP( F4, d, a, b, c, in[7] + 0x432aff97, 10 );
MD5STEP( F4, c, d, a, b, in[14] + 0xab9423a7, 15 );
MD5STEP( F4, b, c, d, a, in[5] + 0xfc93a039, 21 );
MD5STEP( F4, a, b, c, d, in[12] + 0x655b59c3, 6 );
MD5STEP( F4, d, a, b, c, in[3] + 0x8f0ccc92, 10 );
MD5STEP( F4, c, d, a, b, in[10] + 0xffeff47d, 15 );
MD5STEP( F4, b, c, d, a, in[1] + 0x85845dd1, 21 );
MD5STEP( F4, a, b, c, d, in[8] + 0x6fa87e4f, 6 );
MD5STEP( F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10 );
MD5STEP( F4, c, d, a, b, in[6] + 0xa3014314, 15 );
MD5STEP( F4, b, c, d, a, in[13] + 0x4e0811a1, 21 );
MD5STEP( F4, a, b, c, d, in[4] + 0xf7537e82, 6 );
MD5STEP( F4, d, a, b, c, in[11] + 0xbd3af235, 10 );
MD5STEP( F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15 );
MD5STEP( F4, b, c, d, a, in[9] + 0xeb86d391, 21 );
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
/*
=================
MD5_Print
transform hash to hexadecimal printable symbols
=================
*/
char *MD5_Print( byte hash[16] )
{
static char szReturn[64];
char szChunk[10];
int i;
memset( szReturn, 0, 64 );
for( i = 0; i < 16; i++ )
{
Q_snprintf( szChunk, sizeof( szChunk ), "%02X", hash[i] );
Q_strncat( szReturn, szChunk, sizeof( szReturn ));
}
return szReturn;
}
/*
=================
COM_HashKey
returns hash key for string
=================
*/
uint COM_HashKey( const char *string, uint hashSize )
{
uint i, hashKey = 0;
for( i = 0; string[i]; i++ )
hashKey = (hashKey + i) * 37 + Q_tolower( string[i] );
return (hashKey % hashSize);
}