xash3d-fwgs/ref_vk/vk_rtx.c

1223 lines
41 KiB
C

#include "vk_rtx.h"
#include "vk_core.h"
#include "vk_common.h"
#include "vk_render.h"
#include "vk_buffer.h"
#include "vk_pipeline.h"
#include "vk_cvar.h"
#include "vk_textures.h"
#include "vk_light.h"
#include "vk_descriptor.h"
#include "eiface.h"
#include "xash3d_mathlib.h"
#include <string.h>
#define MAX_ACCELS 1024
#define MAX_KUSOCHKI 8192
#define MAX_SCRATCH_BUFFER (16*1024*1024)
#define MAX_ACCELS_BUFFER (64*1024*1024)
#define MAX_EMISSIVE_KUSOCHKI 256
#define MAX_LIGHT_LEAVES 8192
// TODO settings/realtime modifiable/adaptive
#define FRAME_WIDTH 1280
#define FRAME_HEIGHT 720
// TODO sync with shaders
// TODO optimal values
#define WG_W 16
#define WG_H 8
typedef struct {
vec3_t pos;
float radius;
vec3_t color;
float padding_;
} vk_light_t;
typedef struct {
uint32_t index_offset;
uint32_t vertex_offset;
uint32_t triangles;
uint32_t debug_is_emissive;
uint32_t texture;
//float sad_padding_[1];
} vk_kusok_data_t;
typedef struct {
uint32_t num_kusochki;
uint32_t padding__[3];
struct {
uint32_t kusok_index;
uint32_t padding__[3];
vec3_t emissive_color;
uint32_t padding___;
matrix3x4 transform;
} kusochki[MAX_EMISSIVE_KUSOCHKI];
} vk_emissive_kusochki_t;
typedef struct vk_ray_model_s {
VkAccelerationStructureKHR as;
VkAccelerationStructureGeometryKHR *geoms;
int num_geoms;
int size;
uint32_t kusochki_offset;
qboolean dynamic;
qboolean taken;
struct {
uint32_t as_offset;
} debug;
} vk_ray_model_t;
typedef struct {
matrix3x4 transform_row;
vk_ray_model_t *model;
} vk_ray_draw_model_t;
typedef struct {
float t;
int bounces;
float prev_frame_blend_factor;
} vk_rtx_push_constants_t;
typedef struct {
int min_cell[4], size[3]; // 4th element is padding
vk_lights_cell_t cells[MAX_LIGHT_CLUSTERS];
} vk_ray_shader_light_grid;
enum {
RayDescBinding_DestImage = 0,
RayDescBinding_TLAS = 1,
RayDescBinding_UBOMatrices = 2,
RayDescBinding_Kusochki = 3,
RayDescBinding_Indices = 4,
RayDescBinding_Vertices = 5,
RayDescBinding_UBOLights = 6,
RayDescBinding_EmissiveKusochki = 7,
RayDescBinding_PrevFrame = 8,
RayDescBinding_LightClusters = 9,
RayDescBinding_Textures = 10,
RayDescBinding_COUNT
};
static struct {
vk_descriptors_t descriptors;
VkDescriptorSetLayoutBinding desc_bindings[RayDescBinding_COUNT];
vk_descriptor_value_t desc_values[RayDescBinding_COUNT];
VkDescriptorSet desc_sets[1];
VkPipeline pipeline;
// Stores AS built data. Lifetime similar to render buffer:
// - some portion lives for entire map lifetime
// - some portion lives only for a single frame (may have several frames in flight)
// TODO: unify this with render buffer
// Needs: AS_STORAGE_BIT, SHADER_DEVICE_ADDRESS_BIT
vk_buffer_t accels_buffer;
vk_ring_buffer_t accels_buffer_alloc;
// Temp: lives only during a single frame (may have many in flight)
// Used for building ASes;
// Needs: AS_STORAGE_BIT, SHADER_DEVICE_ADDRESS_BIT
vk_buffer_t scratch_buffer;
VkDeviceAddress accels_buffer_addr, scratch_buffer_addr;
// Temp-ish: used for making TLAS, contains addressed to all used BLASes
// Lifetime and nature of usage similar to scratch_buffer
// TODO: unify them
// Needs: SHADER_DEVICE_ADDRESS, STORAGE_BUFFER, AS_BUILD_INPUT_READ_ONLY
vk_buffer_t tlas_geom_buffer;
// Geometry metadata. Lifetime is similar to geometry lifetime itself.
// Semantically close to render buffer (describes layout for those objects)
// TODO unify with render buffer
// Needs: STORAGE_BUFFER
vk_buffer_t kusochki_buffer;
vk_ring_buffer_t kusochki_alloc;
// TODO this should really be a single uniform buffer for matrices and light data
// Expected to be small (qualifies for uniform buffer)
// Two distinct modes: (TODO which?)
// - static map-only lighting: constant for the entire map lifetime.
// Could be joined with render buffer, if not for possible uniform buffer binding optimization.
// This is how it operates now.
// - fully dynamic lights: re-built each frame, so becomes similar to scratch_buffer and could be unified (same about uniform binding opt)
// This allows studio and other non-brush model to be emissive.
// Needs: STORAGE/UNIFORM_BUFFER
vk_buffer_t emissive_kusochki_buffer;
// Planned to contain seveal types of data:
// - grid structure itself
// - lights data:
// - dlights (fully dynamic)
// - entity lights (can be dynamic with light styles)
// - surface lights (map geometry is static, however brush models can have them too and move around (e.g. wagonchik and elevators))
// Therefore, this is also dynamic and lifetime is per-frame
// TODO: unify with scratch buffer
// Needs: STORAGE_BUFFER
// Can be potentially crated using compute shader (would need shader write bit)
vk_buffer_t light_grid_buffer;
// TODO need several TLASes for N frames in flight
VkAccelerationStructureKHR tlas;
// Per-frame data that is accumulated between RayFrameBegin and End calls
struct {
int num_models;
int num_lighttextures;
vk_ray_draw_model_t models[MAX_ACCELS];
uint32_t scratch_offset; // for building dynamic blases
} frame;
unsigned frame_number;
vk_image_t frames[2];
qboolean reload_pipeline;
qboolean freeze_models;
#define MODEL_CACHE_SIZE 1024
vk_ray_model_t models_cache[MODEL_CACHE_SIZE];
} g_rtx = {0};
static VkDeviceAddress getBufferDeviceAddress(VkBuffer buffer) {
const VkBufferDeviceAddressInfo bdai = {.sType = VK_STRUCTURE_TYPE_BUFFER_DEVICE_ADDRESS_INFO, .buffer = buffer};
return vkGetBufferDeviceAddress(vk_core.device, &bdai);
}
static VkDeviceAddress getASAddress(VkAccelerationStructureKHR as) {
VkAccelerationStructureDeviceAddressInfoKHR asdai = {
.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_DEVICE_ADDRESS_INFO_KHR,
.accelerationStructure = as,
};
return vkGetAccelerationStructureDeviceAddressKHR(vk_core.device, &asdai);
}
typedef struct {
const char *debug_name;
VkAccelerationStructureKHR *p_accel;
const VkAccelerationStructureGeometryKHR *geoms;
const uint32_t *max_prim_counts;
const VkAccelerationStructureBuildRangeInfoKHR **build_ranges;
uint32_t n_geoms;
VkAccelerationStructureTypeKHR type;
qboolean dynamic;
} as_build_args_t;
static void returnModelToCache(vk_ray_model_t *model) {
ASSERT(model->taken);
model->taken = false;
}
static vk_ray_model_t *getModelFromCache(int num_geoms, const VkAccelerationStructureGeometryKHR *geoms) { //}, int size) {
vk_ray_model_t *model = NULL;
int i;
for (i = 0; i < ARRAYSIZE(g_rtx.models_cache); ++i)
{
model = g_rtx.models_cache + i;
if (model->taken)
continue;
if (!model->as)
break;
if (model->num_geoms != num_geoms)
continue;
int j;
for (j = 0; j < num_geoms; ++j) {
if (model->geoms[j].geometryType != geoms[j].geometryType)
break;
if (model->geoms[j].flags != geoms[j].flags)
break;
if (geoms[j].geometryType == VK_GEOMETRY_TYPE_TRIANGLES_KHR) {
// TODO what else should we compare?
if (model->geoms[j].geometry.triangles.maxVertex != geoms[j].geometry.triangles.maxVertex)
break;
} else {
PRINT_NOT_IMPLEMENTED_ARGS("Non-tri geometries are not implemented");
break;
}
}
if (j == num_geoms)
break;
}
if (i == ARRAYSIZE(g_rtx.models_cache))
return NULL;
// if (model->size > 0)
// ASSERT(model->size >= size);
if (!model->geoms) {
const size_t size = sizeof(*geoms) * num_geoms;
model->geoms = Mem_Malloc(vk_core.pool, size);
memcpy(model->geoms, geoms, size);
model->num_geoms = num_geoms;
}
model->taken = true;
return model;
}
static qboolean createOrUpdateAccelerationStructure(VkCommandBuffer cmdbuf, const as_build_args_t *args, vk_ray_model_t *model) {
qboolean should_create = *args->p_accel == VK_NULL_HANDLE;
qboolean is_update = false; //!should_create && args->dynamic;
VkAccelerationStructureBuildGeometryInfoKHR build_info = {
.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_GEOMETRY_INFO_KHR,
.type = args->type,
.flags = VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_KHR | ( args->dynamic ? VK_BUILD_ACCELERATION_STRUCTURE_ALLOW_UPDATE_BIT_KHR : 0),
.mode = is_update ? VK_BUILD_ACCELERATION_STRUCTURE_MODE_UPDATE_KHR : VK_BUILD_ACCELERATION_STRUCTURE_MODE_BUILD_KHR,
.geometryCount = args->n_geoms,
.pGeometries = args->geoms,
.srcAccelerationStructure = *args->p_accel,
};
VkAccelerationStructureBuildSizesInfoKHR build_size = {
.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_BUILD_SIZES_INFO_KHR
};
uint32_t scratch_buffer_size = 0;
ASSERT(args->geoms);
ASSERT(args->n_geoms > 0);
ASSERT(args->p_accel);
vkGetAccelerationStructureBuildSizesKHR(
vk_core.device, VK_ACCELERATION_STRUCTURE_BUILD_TYPE_DEVICE_KHR, &build_info, args->max_prim_counts, &build_size);
scratch_buffer_size = is_update ? build_size.updateScratchSize : build_size.buildScratchSize;
if (0)
{
uint32_t max_prims = 0;
for (int i = 0; i < args->n_geoms; ++i)
max_prims += args->max_prim_counts[i];
gEngine.Con_Reportf(
"AS max_prims=%u, n_geoms=%u, build size: %d, scratch size: %d\n", max_prims, args->n_geoms, build_size.accelerationStructureSize, build_size.buildScratchSize);
}
if (MAX_SCRATCH_BUFFER < g_rtx.frame.scratch_offset + scratch_buffer_size) {
gEngine.Con_Printf(S_ERROR "Scratch buffer overflow: left %u bytes, but need %u\n",
MAX_SCRATCH_BUFFER - g_rtx.frame.scratch_offset,
scratch_buffer_size);
return false;
}
if (should_create) {
const uint32_t buffer_offset = VK_RingBuffer_Alloc(&g_rtx.accels_buffer_alloc, build_size.accelerationStructureSize, 256);
VkAccelerationStructureCreateInfoKHR asci = {
.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO_KHR,
.buffer = g_rtx.accels_buffer.buffer,
.offset = buffer_offset,
.type = args->type,
.size = build_size.accelerationStructureSize,
};
if (buffer_offset == AllocFailed) {
gEngine.Con_Printf(S_ERROR "Failed to allocated %u bytes for accel buffer\n",
build_size.accelerationStructureSize);
return false;
}
XVK_CHECK(vkCreateAccelerationStructureKHR(vk_core.device, &asci, NULL, args->p_accel));
SET_DEBUG_NAME(*args->p_accel, VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_KHR, args->debug_name);
if (model) {
model->size = asci.size;
model->debug.as_offset = buffer_offset;
}
// gEngine.Con_Reportf("AS=%p, n_geoms=%u, build: %#x %d %#x\n", *args->p_accel, args->n_geoms, buffer_offset, build_size.accelerationStructureSize, buffer_offset + build_size.accelerationStructureSize);
}
// If not enough data for building, just create
if (!cmdbuf || !args->build_ranges)
return true;
if (model) {
ASSERT(model->size >= build_size.accelerationStructureSize);
}
build_info.dstAccelerationStructure = *args->p_accel;
build_info.scratchData.deviceAddress = g_rtx.scratch_buffer_addr + g_rtx.frame.scratch_offset;
uint32_t scratch_offset_initial = g_rtx.frame.scratch_offset;
g_rtx.frame.scratch_offset += scratch_buffer_size;
g_rtx.frame.scratch_offset = ALIGN_UP(g_rtx.frame.scratch_offset, vk_core.physical_device.properties_accel.minAccelerationStructureScratchOffsetAlignment);
//gEngine.Con_Reportf("AS=%p, n_geoms=%u, scratch: %#x %d %#x\n", *args->p_accel, args->n_geoms, scratch_offset_initial, scratch_buffer_size, scratch_offset_initial + scratch_buffer_size);
vkCmdBuildAccelerationStructuresKHR(cmdbuf, 1, &build_info, args->build_ranges);
return true;
}
static void createTlas( VkCommandBuffer cmdbuf ) {
const VkAccelerationStructureGeometryKHR tl_geom[] = {
{
.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR,
//.flags = VK_GEOMETRY_OPAQUE_BIT,
.geometryType = VK_GEOMETRY_TYPE_INSTANCES_KHR,
.geometry.instances =
(VkAccelerationStructureGeometryInstancesDataKHR){
.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_INSTANCES_DATA_KHR,
.data.deviceAddress = getBufferDeviceAddress(g_rtx.tlas_geom_buffer.buffer),
.arrayOfPointers = VK_FALSE,
},
},
};
const uint32_t tl_max_prim_counts[ARRAYSIZE(tl_geom)] = { cmdbuf == VK_NULL_HANDLE ? MAX_ACCELS : g_rtx.frame.num_models };
const VkAccelerationStructureBuildRangeInfoKHR tl_build_range = {
.primitiveCount = g_rtx.frame.num_models,
};
const VkAccelerationStructureBuildRangeInfoKHR* tl_build_ranges[] = { &tl_build_range };
const as_build_args_t asrgs = {
.geoms = tl_geom,
.max_prim_counts = tl_max_prim_counts,
.build_ranges = cmdbuf == VK_NULL_HANDLE ? NULL : tl_build_ranges,
.n_geoms = ARRAYSIZE(tl_geom),
.type = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL_KHR,
// we can't really rebuild TLAS because instance count changes are not allowed .dynamic = true,
.dynamic = false,
.p_accel = &g_rtx.tlas,
.debug_name = "TLAS",
};
if (!createOrUpdateAccelerationStructure(cmdbuf, &asrgs, NULL)) {
gEngine.Host_Error("Could not create/update TLAS\n");
return;
}
}
void VK_RayNewMap( void ) {
ASSERT(vk_core.rtx);
VK_RingBuffer_Clear(&g_rtx.accels_buffer_alloc);
VK_RingBuffer_Clear(&g_rtx.kusochki_alloc);
// Clear model cache
for (int i = 0; i < ARRAYSIZE(g_rtx.models_cache); ++i) {
vk_ray_model_t *model = g_rtx.models_cache + i;
VK_RayModelDestroy(model);
}
// Recreate tlas
// Why here and not in init: to make sure that its memory is preserved. Map init will clear all memory regions.
{
if (g_rtx.tlas != VK_NULL_HANDLE) {
vkDestroyAccelerationStructureKHR(vk_core.device, g_rtx.tlas, NULL);
g_rtx.tlas = VK_NULL_HANDLE;
}
createTlas(VK_NULL_HANDLE);
}
}
void VK_RayMapLoadEnd( void ) {
VK_RingBuffer_Fix(&g_rtx.accels_buffer_alloc);
VK_RingBuffer_Fix(&g_rtx.kusochki_alloc);
}
void VK_RayFrameBegin( void )
{
ASSERT(vk_core.rtx);
if (g_rtx.freeze_models)
return;
// FIXME we depend on the fact that only a single frame can be in flight
// currently framectl waits for the queue to complete before returning
// so we can be sure here that previous frame is complete and we're free to
// destroy/reuse dynamic ASes from previous frame
for (int i = 0; i < g_rtx.frame.num_models; ++i) {
vk_ray_draw_model_t *model = g_rtx.frame.models + i;
ASSERT(model->model);
if (!model->model->dynamic)
continue;
returnModelToCache(model->model);
model->model = NULL;
}
g_rtx.frame.scratch_offset = 0;
g_rtx.frame.num_models = 0;
g_rtx.frame.num_lighttextures = 0;
VK_LightsFrameInit();
// TODO N frames in flight
// HACK: blas caching requires persistent memory
// proper fix would need some other memory allocation strategy
// VK_RingBuffer_ClearFrame(&g_rtx.accels_buffer_alloc);
VK_RingBuffer_ClearFrame(&g_rtx.kusochki_alloc);
}
static void createPipeline( void )
{
const vk_pipeline_compute_create_info_t ci = {
.layout = g_rtx.descriptors.pipeline_layout,
.shader_filename = "rtx.comp.spv",
};
g_rtx.pipeline = VK_PipelineComputeCreate(&ci);
ASSERT(g_rtx.pipeline);
}
static void assertNoOverlap( uint32_t o1, uint32_t s1, uint32_t o2, uint32_t s2 ) {
uint32_t min_offset, min_size;
uint32_t max_offset;
if (o1 < o2) {
min_offset = o1;
min_size = s1;
max_offset = o2;
} else {
min_offset = o2;
min_size = s2;
max_offset = o1;
}
ASSERT(min_offset + min_size <= max_offset);
}
static void validateModelPair( const vk_ray_model_t *m1, const vk_ray_model_t *m2 ) {
if (m1 == m2) return;
if (!m2->num_geoms) return;
assertNoOverlap(m1->debug.as_offset, m1->size, m2->debug.as_offset, m2->size);
if (m1->taken && m2->taken)
assertNoOverlap(m1->kusochki_offset, m1->num_geoms, m2->kusochki_offset, m2->num_geoms);
}
static void validateModel( const vk_ray_model_t *model ) {
for (int j = 0; j < ARRAYSIZE(g_rtx.models_cache); ++j) {
validateModelPair(model, g_rtx.models_cache + j);
}
}
static void validateModels( void ) {
for (int i = 0; i < ARRAYSIZE(g_rtx.models_cache); ++i) {
validateModel(g_rtx.models_cache + i);
}
}
static void validateModelData( void ) {
const vk_kusok_data_t* kusochki = g_rtx.kusochki_buffer.mapped;
ASSERT(g_rtx.frame.num_models <= ARRAYSIZE(g_rtx.frame.models));
for (int i = 0; i < g_rtx.frame.num_models; ++i) {
const vk_ray_draw_model_t *draw_model = g_rtx.frame.models + i;
const vk_ray_model_t *model = draw_model->model;
int num_geoms = 1; // TODO can't validate non-dynamic models because this info is lost
ASSERT(model);
ASSERT(model->as != VK_NULL_HANDLE);
ASSERT(model->kusochki_offset < MAX_KUSOCHKI);
ASSERT(model->geoms);
ASSERT(model->num_geoms > 0);
ASSERT(model->taken);
num_geoms = model->num_geoms;
for (int j = 0; j < num_geoms; j++) {
const vk_kusok_data_t *kusok = kusochki + j;
const vk_texture_t *tex = findTexture(kusok->texture);
ASSERT(tex);
ASSERT(tex->vk.image_view != VK_NULL_HANDLE);
// uint32_t index_offset;
// uint32_t vertex_offset;
// uint32_t triangles;
// uint32_t debug_is_emissive;
}
// Check for as model memory aliasing
for (int j = 0; j < g_rtx.frame.num_models; ++j) {
const vk_ray_model_t *model2 = g_rtx.frame.models[j].model;
validateModelPair(model, model2);
}
}
}
void VK_RayFrameEnd(const vk_ray_frame_render_args_t* args)
{
const VkCommandBuffer cmdbuf = args->cmdbuf;
const vk_image_t* frame_src = g_rtx.frames + ((g_rtx.frame_number + 1) % 2);
const vk_image_t* frame_dst = g_rtx.frames + (g_rtx.frame_number % 2);
ASSERT(vk_core.rtx);
// ubo should contain two matrices
// FIXME pass these matrices explicitly to let RTX module handle ubo itself
ASSERT(args->ubo.size == sizeof(float) * 16 * 2);
if (vk_core.debug)
validateModelData();
g_rtx.frame_number++;
// Finalize and update dynamic lights
{
VK_LightsFrameFinalize();
// Upload light grid
{
vk_ray_shader_light_grid *grid = g_rtx.light_grid_buffer.mapped;
ASSERT(g_lights.map.grid_cells <= MAX_LIGHT_CLUSTERS);
VectorCopy(g_lights.map.grid_min_cell, grid->min_cell);
VectorCopy(g_lights.map.grid_size, grid->size);
memcpy(grid->cells, g_lights.cells, g_lights.map.grid_cells * sizeof(vk_lights_cell_t));
}
// Upload dynamic emissive kusochki
{
vk_emissive_kusochki_t *ek = g_rtx.emissive_kusochki_buffer.mapped;
ASSERT(g_lights.num_emissive_surfaces <= MAX_EMISSIVE_KUSOCHKI);
ek->num_kusochki = g_lights.num_emissive_surfaces;
for (int i = 0; i < g_lights.num_emissive_surfaces; ++i) {
ek->kusochki[i].kusok_index = g_lights.emissive_surfaces[i].kusok_index;
VectorCopy(g_lights.emissive_surfaces[i].emissive, ek->kusochki[i].emissive_color);
Matrix3x4_Copy(ek->kusochki[i].transform, g_lights.emissive_surfaces[i].transform);
}
}
}
if (g_rtx.reload_pipeline) {
gEngine.Con_Printf(S_WARN "Reloading RTX shaders/pipelines\n");
// TODO gracefully handle reload errors: need to change createPipeline, loadShader, VK_PipelineCreate...
vkDestroyPipeline(vk_core.device, g_rtx.pipeline, NULL);
createPipeline();
g_rtx.reload_pipeline = false;
}
// Upload all blas instances references to GPU mem
{
VkAccelerationStructureInstanceKHR* inst = g_rtx.tlas_geom_buffer.mapped;
for (int i = 0; i < g_rtx.frame.num_models; ++i) {
const vk_ray_draw_model_t* const model = g_rtx.frame.models + i;
ASSERT(model->model);
ASSERT(model->model->as != VK_NULL_HANDLE);
inst[i] = (VkAccelerationStructureInstanceKHR){
.instanceCustomIndex = model->model->kusochki_offset,
.mask = 0xff,
.instanceShaderBindingTableRecordOffset = 0,
.flags = 0,
.accelerationStructureReference = getASAddress(model->model->as), // TODO cache this addr
};
memcpy(&inst[i].transform, model->transform_row, sizeof(VkTransformMatrixKHR));
}
}
// Barrier for building all BLASes
// BLAS building is now in cmdbuf, need to synchronize with results
{
VkBufferMemoryBarrier bmb[] = { {
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
.srcAccessMask = VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR, // | VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_ACCELERATION_STRUCTURE_READ_BIT_KHR,
.buffer = g_rtx.accels_buffer.buffer,
.offset = 0,
.size = VK_WHOLE_SIZE,
} };
vkCmdPipelineBarrier(cmdbuf,
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR,
0, 0, NULL, ARRAYSIZE(bmb), bmb, 0, NULL);
}
// 2. Build TLAS
if (g_rtx.frame.num_models > 0)
{
createTlas(cmdbuf);
}
if (g_rtx.tlas != VK_NULL_HANDLE)
{
// 3. Update descriptor sets (bind dest image, tlas, projection matrix)
VkDescriptorImageInfo dii_all_textures[MAX_TEXTURES];
g_rtx.desc_values[RayDescBinding_DestImage].image = (VkDescriptorImageInfo){
.sampler = VK_NULL_HANDLE,
.imageView = frame_dst->view,
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
};
g_rtx.desc_values[RayDescBinding_PrevFrame].image = (VkDescriptorImageInfo){
.sampler = VK_NULL_HANDLE,
.imageView = frame_src->view,
.imageLayout = VK_IMAGE_LAYOUT_GENERAL,
};
g_rtx.desc_values[RayDescBinding_UBOMatrices].buffer = (VkDescriptorBufferInfo){
.buffer = args->ubo.buffer,
.offset = args->ubo.offset,
.range = args->ubo.size,
};
g_rtx.desc_values[RayDescBinding_Kusochki].buffer = (VkDescriptorBufferInfo){
.buffer = g_rtx.kusochki_buffer.buffer,
.offset = 0,
.range = VK_WHOLE_SIZE, // TODO fails validation when empty g_rtx_scene.num_models * sizeof(vk_kusok_data_t),
};
g_rtx.desc_values[RayDescBinding_Indices].buffer = (VkDescriptorBufferInfo){
.buffer = args->geometry_data.buffer,
.offset = 0,
.range = VK_WHOLE_SIZE, // TODO fails validation when empty args->geometry_data.size,
};
g_rtx.desc_values[RayDescBinding_Vertices].buffer = (VkDescriptorBufferInfo){
.buffer = args->geometry_data.buffer,
.offset = 0,
.range = VK_WHOLE_SIZE, // TODO fails validation when empty args->geometry_data.size,
};
g_rtx.desc_values[RayDescBinding_TLAS].accel = (VkWriteDescriptorSetAccelerationStructureKHR){
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET_ACCELERATION_STRUCTURE_KHR,
.accelerationStructureCount = 1,
.pAccelerationStructures = &g_rtx.tlas,
};
g_rtx.desc_values[RayDescBinding_UBOLights].buffer = (VkDescriptorBufferInfo){
.buffer = args->dlights.buffer,
.offset = args->dlights.offset,
.range = args->dlights.size,
};
g_rtx.desc_values[RayDescBinding_EmissiveKusochki].buffer = (VkDescriptorBufferInfo){
.buffer = g_rtx.emissive_kusochki_buffer.buffer,
.offset = 0,
.range = VK_WHOLE_SIZE,
};
g_rtx.desc_values[RayDescBinding_LightClusters].buffer = (VkDescriptorBufferInfo){
.buffer = g_rtx.light_grid_buffer.buffer,
.offset = 0,
.range = VK_WHOLE_SIZE,
};
g_rtx.desc_values[RayDescBinding_Textures].image_array = dii_all_textures;
// TODO: move this to vk_texture.c
for (int i = 0; i < MAX_TEXTURES; ++i) {
const vk_texture_t *texture = findTexture(i);
const qboolean exists = texture->vk.image_view != VK_NULL_HANDLE;
dii_all_textures[i].sampler = VK_NULL_HANDLE;
dii_all_textures[i].imageView = exists ? texture->vk.image_view : findTexture(tglob.defaultTexture)->vk.image_view;
ASSERT(dii_all_textures[i].imageView != VK_NULL_HANDLE);
dii_all_textures[i].imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
}
VK_DescriptorsWrite(&g_rtx.descriptors);
}
// 4. Barrier for TLAS build and dest image layout transfer
{
VkBufferMemoryBarrier bmb[] = { {
.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER,
.srcAccessMask = VK_ACCESS_ACCELERATION_STRUCTURE_WRITE_BIT_KHR,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT,
.buffer = g_rtx.accels_buffer.buffer,
.offset = 0,
.size = VK_WHOLE_SIZE,
} };
VkImageMemoryBarrier image_barrier[] = { {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.image = frame_dst->image,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.subresourceRange = (VkImageSubresourceRange) {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
}} };
vkCmdPipelineBarrier(cmdbuf, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0,
0, NULL, ARRAYSIZE(bmb), bmb, ARRAYSIZE(image_barrier), image_barrier);
}
if (g_rtx.tlas) {
// 4. dispatch compute
vkCmdBindPipeline(cmdbuf, VK_PIPELINE_BIND_POINT_COMPUTE, g_rtx.pipeline);
{
vk_rtx_push_constants_t push_constants = {
.t = gpGlobals->realtime,
.bounces = vk_rtx_bounces->value,
.prev_frame_blend_factor = vk_rtx_prev_frame_blend_factor->value,
};
vkCmdPushConstants(cmdbuf, g_rtx.descriptors.pipeline_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(push_constants), &push_constants);
}
vkCmdBindDescriptorSets(cmdbuf, VK_PIPELINE_BIND_POINT_COMPUTE, g_rtx.descriptors.pipeline_layout, 0, 1, g_rtx.descriptors.desc_sets + 0, 0, NULL);
vkCmdDispatch(cmdbuf, (FRAME_WIDTH + WG_W - 1) / WG_W, (FRAME_HEIGHT + WG_H - 1) / WG_H, 1);
}
// Blit RTX frame onto swapchain image
{
VkImageMemoryBarrier image_barriers[] = {
{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.image = frame_dst->image,
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.subresourceRange =
(VkImageSubresourceRange){
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
},
{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.image = args->dst.image,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.subresourceRange =
(VkImageSubresourceRange){
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
}};
vkCmdPipelineBarrier(args->cmdbuf,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0, 0, NULL, 0, NULL, ARRAYSIZE(image_barriers), image_barriers);
}
{
VkImageBlit region = {0};
region.srcOffsets[1].x = FRAME_WIDTH;
region.srcOffsets[1].y = FRAME_HEIGHT;
region.srcOffsets[1].z = 1;
region.dstOffsets[1].x = args->dst.width;
region.dstOffsets[1].y = args->dst.height;
region.dstOffsets[1].z = 1;
region.srcSubresource.aspectMask = region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.srcSubresource.layerCount = region.dstSubresource.layerCount = 1;
vkCmdBlitImage(args->cmdbuf, frame_dst->image, VK_IMAGE_LAYOUT_GENERAL,
args->dst.image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region,
VK_FILTER_NEAREST);
}
}
static void createLayouts( void ) {
VkSampler samplers[MAX_TEXTURES];
g_rtx.descriptors.bindings = g_rtx.desc_bindings;
g_rtx.descriptors.num_bindings = ARRAYSIZE(g_rtx.desc_bindings);
g_rtx.descriptors.values = g_rtx.desc_values;
g_rtx.descriptors.num_sets = 1;
g_rtx.descriptors.desc_sets = g_rtx.desc_sets;
g_rtx.descriptors.push_constants = (VkPushConstantRange){
.offset = 0,
.size = sizeof(vk_rtx_push_constants_t),
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
};
g_rtx.desc_bindings[RayDescBinding_DestImage] = (VkDescriptorSetLayoutBinding){
.binding = RayDescBinding_DestImage,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
};
g_rtx.desc_bindings[RayDescBinding_TLAS] = (VkDescriptorSetLayoutBinding){
.binding = RayDescBinding_TLAS,
.descriptorType = VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
};
g_rtx.desc_bindings[RayDescBinding_UBOMatrices] = (VkDescriptorSetLayoutBinding){
.binding = RayDescBinding_UBOMatrices,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
};
g_rtx.desc_bindings[RayDescBinding_Kusochki] = (VkDescriptorSetLayoutBinding){
.binding = RayDescBinding_Kusochki,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
};
g_rtx.desc_bindings[RayDescBinding_Indices] = (VkDescriptorSetLayoutBinding){
.binding = RayDescBinding_Indices,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
};
g_rtx.desc_bindings[RayDescBinding_Vertices] = (VkDescriptorSetLayoutBinding){
.binding = RayDescBinding_Vertices,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
};
g_rtx.desc_bindings[RayDescBinding_UBOLights] = (VkDescriptorSetLayoutBinding){
.binding = RayDescBinding_UBOLights,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
};
g_rtx.desc_bindings[RayDescBinding_EmissiveKusochki] = (VkDescriptorSetLayoutBinding){
.binding = RayDescBinding_EmissiveKusochki,
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
};
g_rtx.desc_bindings[RayDescBinding_PrevFrame] = (VkDescriptorSetLayoutBinding){
.binding = RayDescBinding_PrevFrame,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
};
g_rtx.desc_bindings[RayDescBinding_LightClusters] = (VkDescriptorSetLayoutBinding){
.binding = RayDescBinding_LightClusters,
.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
.descriptorCount = 1,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
};
g_rtx.desc_bindings[RayDescBinding_Textures] = (VkDescriptorSetLayoutBinding){
.binding = RayDescBinding_Textures,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.descriptorCount = MAX_TEXTURES,
.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
.pImmutableSamplers = samplers,
};
for (int i = 0; i < ARRAYSIZE(samplers); ++i)
samplers[i] = vk_core.default_sampler;
VK_DescriptorsCreate(&g_rtx.descriptors);
}
static void reloadPipeline( void ) {
g_rtx.reload_pipeline = true;
}
static void freezeModels( void ) {
g_rtx.freeze_models = !g_rtx.freeze_models;
}
qboolean VK_RayInit( void )
{
ASSERT(vk_core.rtx);
// TODO complain and cleanup on failure
if (!createBuffer("ray accels_buffer", &g_rtx.accels_buffer, MAX_ACCELS_BUFFER,
VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
))
{
return false;
}
g_rtx.accels_buffer_addr = getBufferDeviceAddress(g_rtx.accels_buffer.buffer);
g_rtx.accels_buffer_alloc.size = g_rtx.accels_buffer.size;
if (!createBuffer("ray scratch_buffer", &g_rtx.scratch_buffer, MAX_SCRATCH_BUFFER,
VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_STORAGE_BIT_KHR | VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
)) {
return false;
}
g_rtx.scratch_buffer_addr = getBufferDeviceAddress(g_rtx.scratch_buffer.buffer);
if (!createBuffer("ray tlas_geom_buffer", &g_rtx.tlas_geom_buffer, sizeof(VkAccelerationStructureInstanceKHR) * MAX_ACCELS,
VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT |
VK_BUFFER_USAGE_ACCELERATION_STRUCTURE_BUILD_INPUT_READ_ONLY_BIT_KHR,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) {
// FIXME complain, handle
return false;
}
if (!createBuffer("ray kusochki_buffer", &g_rtx.kusochki_buffer, sizeof(vk_kusok_data_t) * MAX_KUSOCHKI,
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT /* | VK_BUFFER_USAGE_TRANSFER_DST_BIT */,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) {
// FIXME complain, handle
return false;
}
g_rtx.kusochki_alloc.size = MAX_KUSOCHKI;
if (!createBuffer("ray emissive_kusochki_buffer", &g_rtx.emissive_kusochki_buffer, sizeof(vk_emissive_kusochki_t),
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT /* | VK_BUFFER_USAGE_TRANSFER_DST_BIT */,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) {
// FIXME complain, handle
return false;
}
if (!createBuffer("ray light_grid_buffer", &g_rtx.light_grid_buffer, sizeof(vk_ray_shader_light_grid),
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT /* | VK_BUFFER_USAGE_TRANSFER_DST_BIT */,
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) {
// FIXME complain, handle
return false;
}
createLayouts();
createPipeline();
for (int i = 0; i < ARRAYSIZE(g_rtx.frames); ++i) {
g_rtx.frames[i] = VK_ImageCreate(FRAME_WIDTH, FRAME_HEIGHT, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_TILING_OPTIMAL,
VK_IMAGE_USAGE_STORAGE_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT);
}
// Start with black previous frame
{
const vk_image_t *frame_src = g_rtx.frames + 1;
const VkImageMemoryBarrier image_barriers[] = { {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.image = frame_src->image,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_SHADER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.subresourceRange = (VkImageSubresourceRange) {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
}} };
const VkClearColorValue clear_value = {0};
const VkCommandBufferBeginInfo beginfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
};
XVK_CHECK(vkBeginCommandBuffer(vk_core.cb, &beginfo));
vkCmdPipelineBarrier(vk_core.cb, VK_PIPELINE_STAGE_ACCELERATION_STRUCTURE_BUILD_BIT_KHR, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0,
0, NULL, 0, NULL, ARRAYSIZE(image_barriers), image_barriers);
vkCmdClearColorImage(vk_core.cb, frame_src->image, VK_IMAGE_LAYOUT_GENERAL, &clear_value, 1, &image_barriers->subresourceRange);
XVK_CHECK(vkEndCommandBuffer(vk_core.cb));
{
const VkSubmitInfo subinfo = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &vk_core.cb,
};
XVK_CHECK(vkQueueSubmit(vk_core.queue, 1, &subinfo, VK_NULL_HANDLE));
XVK_CHECK(vkQueueWaitIdle(vk_core.queue));
}
}
if (vk_core.debug) {
gEngine.Cmd_AddCommand("vk_rtx_reload", reloadPipeline, "Reload RTX shader");
gEngine.Cmd_AddCommand("vk_rtx_freeze", freezeModels, "Freeze models, do not update/add/delete models from to-draw list");
}
return true;
}
void VK_RayShutdown( void )
{
ASSERT(vk_core.rtx);
for (int i = 0; i < ARRAYSIZE(g_rtx.frames); ++i)
VK_ImageDestroy(g_rtx.frames + i);
vkDestroyPipeline(vk_core.device, g_rtx.pipeline, NULL);
VK_DescriptorsDestroy(&g_rtx.descriptors);
if (g_rtx.tlas != VK_NULL_HANDLE)
vkDestroyAccelerationStructureKHR(vk_core.device, g_rtx.tlas, NULL);
for (int i = 0; i < ARRAYSIZE(g_rtx.models_cache); ++i) {
vk_ray_model_t *model = g_rtx.models_cache + i;
if (model->as != VK_NULL_HANDLE)
vkDestroyAccelerationStructureKHR(vk_core.device, model->as, NULL);
model->as = VK_NULL_HANDLE;
}
destroyBuffer(&g_rtx.scratch_buffer);
destroyBuffer(&g_rtx.accels_buffer);
destroyBuffer(&g_rtx.tlas_geom_buffer);
destroyBuffer(&g_rtx.kusochki_buffer);
destroyBuffer(&g_rtx.emissive_kusochki_buffer);
destroyBuffer(&g_rtx.light_grid_buffer);
}
vk_ray_model_t* VK_RayModelCreate( vk_ray_model_init_t args ) {
VkAccelerationStructureGeometryKHR *geoms;
uint32_t *geom_max_prim_counts;
VkAccelerationStructureBuildRangeInfoKHR *geom_build_ranges;
VkAccelerationStructureBuildRangeInfoKHR **geom_build_ranges_ptr;
const VkDeviceAddress buffer_addr = getBufferDeviceAddress(args.buffer);
vk_kusok_data_t *kusochki;
const uint32_t kusochki_count_offset = VK_RingBuffer_Alloc(&g_rtx.kusochki_alloc, args.model->num_geometries, 1);
vk_ray_model_t *ray_model;
ASSERT(vk_core.rtx);
if (g_rtx.freeze_models)
return args.model->ray_model;
if (kusochki_count_offset == AllocFailed) {
gEngine.Con_Printf(S_ERROR "Maximum number of kusochki exceeded on model %s\n", args.model->debug_name);
return false;
}
// FIXME don't touch allocator each frame many times pls
geoms = Mem_Calloc(vk_core.pool, args.model->num_geometries * sizeof(*geoms));
geom_max_prim_counts = Mem_Malloc(vk_core.pool, args.model->num_geometries * sizeof(*geom_max_prim_counts));
geom_build_ranges = Mem_Calloc(vk_core.pool, args.model->num_geometries * sizeof(*geom_build_ranges));
geom_build_ranges_ptr = Mem_Malloc(vk_core.pool, args.model->num_geometries * sizeof(*geom_build_ranges));
kusochki = (vk_kusok_data_t*)(g_rtx.kusochki_buffer.mapped) + kusochki_count_offset;
for (int i = 0; i < args.model->num_geometries; ++i) {
vk_render_geometry_t *mg = args.model->geometries + i;
const uint32_t prim_count = mg->element_count / 3;
const uint32_t vertex_offset = mg->vertex_offset + VK_RenderBufferGetOffsetInUnits(mg->vertex_buffer);
const uint32_t index_offset = mg->index_buffer == InvalidHandle ? UINT32_MAX : (mg->index_offset + VK_RenderBufferGetOffsetInUnits(mg->index_buffer));
// const qboolean is_emissive = ((mg->texture >= 0 && mg->texture < MAX_TEXTURES)
// ? g_emissive_texture_table[mg->texture].set
// : false);
geom_max_prim_counts[i] = prim_count;
geoms[i] = (VkAccelerationStructureGeometryKHR)
{
.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_KHR,
.flags = VK_GEOMETRY_OPAQUE_BIT_KHR,
.geometryType = VK_GEOMETRY_TYPE_TRIANGLES_KHR,
.geometry.triangles =
(VkAccelerationStructureGeometryTrianglesDataKHR){
.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_GEOMETRY_TRIANGLES_DATA_KHR,
.indexType = mg->index_buffer == InvalidHandle ? VK_INDEX_TYPE_NONE_KHR : VK_INDEX_TYPE_UINT16,
.maxVertex = mg->vertex_count,
.vertexFormat = VK_FORMAT_R32G32B32_SFLOAT,
.vertexStride = sizeof(vk_vertex_t),
.vertexData.deviceAddress = buffer_addr + vertex_offset * sizeof(vk_vertex_t),
.indexData.deviceAddress = buffer_addr + index_offset * sizeof(uint16_t),
},
};
// gEngine.Con_Printf(" g%d: v(%#x %d %#x) V%d i(%#x %d %#x) I%d\n", i,
// vertex_offset*sizeof(vk_vertex_t), mg->vertex_count * sizeof(vk_vertex_t), (vertex_offset + mg->vertex_count) * sizeof(vk_vertex_t), mg->vertex_count,
// index_offset*sizeof(uint16_t), mg->element_count * sizeof(uint16_t), (index_offset + mg->element_count) * sizeof(uint16_t), mg->element_count);
geom_build_ranges[i] = (VkAccelerationStructureBuildRangeInfoKHR) {
.primitiveCount = prim_count,
};
geom_build_ranges_ptr[i] = geom_build_ranges + i;
kusochki[i].vertex_offset = vertex_offset;
kusochki[i].index_offset = index_offset;
kusochki[i].triangles = prim_count;
kusochki[i].debug_is_emissive = false; // is_emissive;
kusochki[i].texture = mg->texture;
mg->kusok_index = i + kusochki_count_offset;
}
{
as_build_args_t asrgs = {
.geoms = geoms,
.max_prim_counts = geom_max_prim_counts,
.build_ranges = geom_build_ranges_ptr,
.n_geoms = args.model->num_geometries,
.type = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL_KHR,
.dynamic = args.model->dynamic,
.debug_name = args.model->debug_name,
};
ray_model = getModelFromCache(args.model->num_geometries, geoms); //, build_size.accelerationStructureSize);
if (!ray_model) {
gEngine.Con_Printf(S_ERROR "Ran out of model cache slots\n");
} else {
qboolean result;
asrgs.p_accel = &ray_model->as;
result = createOrUpdateAccelerationStructure(vk_core.cb, &asrgs, ray_model);
if (!result)
{
gEngine.Con_Printf(S_ERROR "Could not build BLAS for %s\n", args.model->debug_name);
returnModelToCache(ray_model);
ray_model = NULL;
} else {
const VkSubmitInfo subinfo = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.commandBufferCount = 1,
.pCommandBuffers = &vk_core.cb,
};
ray_model->kusochki_offset = kusochki_count_offset;
ray_model->dynamic = args.model->dynamic;
if (vk_core.debug)
validateModel(ray_model);
}
}
}
Mem_Free(geom_build_ranges_ptr);
Mem_Free(geom_build_ranges);
Mem_Free(geom_max_prim_counts);
Mem_Free(geoms); // TODO this can be cached within models_cache ??
//gEngine.Con_Reportf("Model %s (%p) created blas %p\n", args.model->debug_name, args.model, args.model->rtx.blas);
return ray_model;
}
void VK_RayModelDestroy( struct vk_ray_model_s *model ) {
ASSERT(!g_rtx.freeze_models);
ASSERT(vk_core.rtx);
if (model->as != VK_NULL_HANDLE) {
//gEngine.Con_Reportf("Model %s destroying AS=%p blas_index=%d\n", model->debug_name, model->rtx.blas, blas_index);
vkDestroyAccelerationStructureKHR(vk_core.device, model->as, NULL);
Mem_Free(model->geoms);
memset(model, 0, sizeof(*model));
}
}
void VK_RayFrameAddModel( vk_ray_model_t *model, const vk_render_model_t *render_model, const matrix3x4 *transform_row ) {
ASSERT(vk_core.rtx);
ASSERT(g_rtx.frame.num_models <= ARRAYSIZE(g_rtx.frame.models));
if (g_rtx.freeze_models)
return;
if (g_rtx.frame.num_models == ARRAYSIZE(g_rtx.frame.models)) {
gEngine.Con_Printf(S_ERROR "Ran out of AccelerationStructure slots\n");
return;
}
{
vk_ray_draw_model_t* draw_model = g_rtx.frame.models + g_rtx.frame.num_models;
ASSERT(model->as != VK_NULL_HANDLE);
draw_model->model = model;
memcpy(draw_model->transform_row, *transform_row, sizeof(draw_model->transform_row));
g_rtx.frame.num_models++;
}
if (render_model)
VK_LightsAddEmissiveSurfacesFromModel( render_model, transform_row );
for (int i = 0; i < render_model->num_geometries; ++i) {
const vk_render_geometry_t *geom = render_model->geometries + i;
vk_kusok_data_t *kusok = (vk_kusok_data_t*)(g_rtx.kusochki_buffer.mapped) + geom->kusok_index;
kusok->texture = geom->texture;
}
}