xash3d-fwgs/ref/vk/camera.c
Ivan Avdeev 481aa651c6 vk: refactor passing m,v,p matrices around
View and projection now set only once in a logical place.
Model matrix is now closely associated with its model, and not stored as
a global state.
2023-05-04 11:10:22 -07:00

161 lines
4.7 KiB
C

#include "camera.h"
#include "vk_common.h"
#include "vk_math.h"
#include "ref_params.h"
#include "pm_movevars.h"
vk_global_camera_t g_camera;
#define WORLDMODEL (gEngine.pfnGetModelByIndex( 1 ))
#define MOVEVARS (gEngine.pfnGetMoveVars())
static float R_GetFarClip( void )
{
if( WORLDMODEL /* FIXME VK && RI.drawWorld */ )
return MOVEVARS->zmax * 1.73f;
return 2048.0f;
}
static void R_SetupModelviewMatrix( matrix4x4 m )
{
Matrix4x4_CreateModelview( m );
Matrix4x4_ConcatRotate( m, -g_camera.viewangles[2], 1, 0, 0 );
Matrix4x4_ConcatRotate( m, -g_camera.viewangles[0], 0, 1, 0 );
Matrix4x4_ConcatRotate( m, -g_camera.viewangles[1], 0, 0, 1 );
Matrix4x4_ConcatTranslate( m, -g_camera.vieworg[0], -g_camera.vieworg[1], -g_camera.vieworg[2] );
}
static void R_SetupProjectionMatrix( matrix4x4 m )
{
float xMin, xMax, yMin, yMax, zNear, zFar;
/*
if( RI.drawOrtho )
{
const ref_overview_t *ov = gEngfuncs.GetOverviewParms();
Matrix4x4_CreateOrtho( m, ov->xLeft, ov->xRight, ov->yTop, ov->yBottom, ov->zNear, ov->zFar );
return;
}
*/
const float farClip = R_GetFarClip();
zNear = 4.0f;
zFar = Q_max( 256.0f, farClip );
yMax = zNear * tan( g_camera.fov_y * M_PI_F / 360.0f );
yMin = -yMax;
xMax = zNear * tan( g_camera.fov_x * M_PI_F / 360.0f );
xMin = -xMax;
Matrix4x4_CreateProjection( m, xMax, xMin, yMax, yMin, zNear, zFar );
}
// Analagous to R_SetupRefParams, R_SetupFrustum in GL/Soft renderers
void R_SetupCamera( const ref_viewpass_t *rvp )
{
/* FIXME VK unused?
RI.params = RP_NONE;
RI.drawWorld = FBitSet( rvp->flags, RF_DRAW_WORLD );
RI.onlyClientDraw = FBitSet( rvp->flags, RF_ONLY_CLIENTDRAW );
RI.farClip = 0;
if( !FBitSet( rvp->flags, RF_DRAW_CUBEMAP ))
RI.drawOrtho = FBitSet( rvp->flags, RF_DRAW_OVERVIEW );
else RI.drawOrtho = false;
*/
// setup viewport
g_camera.viewport[0] = rvp->viewport[0];
g_camera.viewport[1] = rvp->viewport[1];
g_camera.viewport[2] = rvp->viewport[2];
g_camera.viewport[3] = rvp->viewport[3];
// calc FOV
g_camera.fov_x = rvp->fov_x;
g_camera.fov_y = rvp->fov_y;
VectorCopy( rvp->vieworigin, g_camera.vieworg );
VectorCopy( rvp->viewangles, g_camera.viewangles );
// FIXME VK unused? VectorCopy( rvp->vieworigin, g_camera.pvsorigin );
#define RP_NORMALPASS() true // FIXME ???
if( RP_NORMALPASS() && ( gEngine.EngineGetParm( PARM_WATER_LEVEL, 0 ) >= 3 ))
{
g_camera.fov_x = atan( tan( DEG2RAD( g_camera.fov_x ) / 2 ) * ( 0.97f + sin( gpGlobals->time * 1.5f ) * 0.03f )) * 2 / (M_PI_F / 180.0f);
g_camera.fov_y = atan( tan( DEG2RAD( g_camera.fov_y ) / 2 ) * ( 1.03f - sin( gpGlobals->time * 1.5f ) * 0.03f )) * 2 / (M_PI_F / 180.0f);
}
// build the transformation matrix for the given view angles
AngleVectors( g_camera.viewangles, g_camera.vforward, g_camera.vright, g_camera.vup );
/* FIXME VK unused?
if( !r_lockfrustum->value )
{
VectorCopy( RI.vieworg, RI.cullorigin );
VectorCopy( RI.vforward, RI.cull_vforward );
VectorCopy( RI.vright, RI.cull_vright );
VectorCopy( RI.vup, RI.cull_vup );
}
*/
/* FIXME VK unused?
if( RI.drawOrtho )
GL_FrustumInitOrtho( &RI.frustum, ov->xLeft, ov->xRight, ov->yTop, ov->yBottom, ov->zNear, ov->zFar );
else GL_FrustumInitProj( &g_camera.frustum, 0.0f, R_GetFarClip(), g_camera.fov_x, g_camera.fov_y ); // NOTE: we ignore nearplane here (mirrors only)
*/
R_SetupProjectionMatrix( g_camera.projectionMatrix );
R_SetupModelviewMatrix( g_camera.viewMatrix );
Matrix4x4_Concat( g_camera.worldviewProjectionMatrix, g_camera.projectionMatrix, g_camera.viewMatrix );
}
int R_WorldToScreen( const vec3_t point, vec3_t screen )
{
matrix4x4 worldToScreen;
qboolean behind;
float w;
if( !point || !screen )
return true;
Matrix4x4_Copy( worldToScreen, g_camera.worldviewProjectionMatrix );
screen[0] = worldToScreen[0][0] * point[0] + worldToScreen[0][1] * point[1] + worldToScreen[0][2] * point[2] + worldToScreen[0][3];
screen[1] = worldToScreen[1][0] * point[0] + worldToScreen[1][1] * point[1] + worldToScreen[1][2] * point[2] + worldToScreen[1][3];
w = worldToScreen[3][0] * point[0] + worldToScreen[3][1] * point[1] + worldToScreen[3][2] * point[2] + worldToScreen[3][3];
screen[2] = 0.0f; // just so we have something valid here
if( w < 0.001f )
{
screen[0] *= 100000;
screen[1] *= 100000;
behind = true;
}
else
{
float invw = 1.0f / w;
screen[0] *= invw;
screen[1] *= invw;
behind = false;
}
return behind;
}
int TriWorldToScreen( const float *world, float *screen )
{
int retval;
retval = R_WorldToScreen( world, screen );
screen[0] = 0.5f * screen[0] * (float)g_camera.viewport[2];
screen[1] = -0.5f * screen[1] * (float)g_camera.viewport[3];
screen[0] += 0.5f * (float)g_camera.viewport[2];
screen[1] += 0.5f * (float)g_camera.viewport[3];
return retval;
}