xash3d-fwgs/ref/vk/vk_textures.c

1495 lines
42 KiB
C

#include "vk_textures.h"
#include "vk_common.h"
#include "vk_core.h"
#include "vk_staging.h"
#include "vk_const.h"
#include "vk_descriptor.h"
#include "vk_mapents.h" // wadlist
#include "vk_combuf.h"
#include "vk_logs.h"
#include "r_speeds.h"
#include "xash3d_mathlib.h"
#include "crtlib.h"
#include "crclib.h"
#include "com_strings.h"
#include "eiface.h"
#include "ktx2.h"
#define PCG_IMPLEMENT
#include "pcg.h"
#include <memory.h>
#include <math.h>
#define LOG_MODULE LogModule_Textures
#define MODULE_NAME "textures"
#define TEXTURES_HASH_SIZE (MAX_TEXTURES >> 2)
static vk_texture_t vk_textures[MAX_TEXTURES];
static vk_texture_t* vk_texturesHashTable[TEXTURES_HASH_SIZE];
static uint vk_numTextures;
vk_textures_global_t tglob = {0};
static struct {
struct {
int count;
int size_total;
} stats;
} g_textures;
static void VK_CreateInternalTextures(void);
static VkSampler pickSamplerForFlags( texFlags_t flags );
void initTextures( void ) {
R_SPEEDS_METRIC(g_textures.stats.count, "count", kSpeedsMetricCount);
R_SPEEDS_METRIC(g_textures.stats.size_total, "size_total", kSpeedsMetricBytes);
memset( vk_textures, 0, sizeof( vk_textures ));
memset( vk_texturesHashTable, 0, sizeof( vk_texturesHashTable ));
vk_numTextures = 0;
tglob.default_sampler_fixme = pickSamplerForFlags(0);
ASSERT(tglob.default_sampler_fixme != VK_NULL_HANDLE);
// create unused 0-entry
Q_strncpy( vk_textures->name, "*unused*", sizeof( vk_textures->name ));
vk_textures->hashValue = COM_HashKey( vk_textures->name, TEXTURES_HASH_SIZE );
vk_textures->nextHash = vk_texturesHashTable[vk_textures->hashValue];
vk_texturesHashTable[vk_textures->hashValue] = vk_textures;
vk_numTextures = 1;
/* FIXME
// validate cvars
R_SetTextureParameters();
*/
VK_CreateInternalTextures();
/* FIXME
gEngine.Cmd_AddCommand( "texturelist", R_TextureList_f, "display loaded textures list" );
*/
// Fill empty texture with references to the default texture
{
const VkImageView default_view = vk_textures[tglob.defaultTexture].vk.image.view;
ASSERT(default_view != VK_NULL_HANDLE);
for (int i = 0; i < MAX_TEXTURES; ++i) {
const vk_texture_t *const tex = vk_textures + i;
if (tex->vk.image.view)
continue;
tglob.dii_all_textures[i] = (VkDescriptorImageInfo){
.imageView = default_view,
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
.sampler = tglob.default_sampler_fixme,
};
}
}
}
static void unloadSkybox( void );
void destroyTextures( void )
{
for( unsigned int i = 0; i < vk_numTextures; i++ )
VK_FreeTexture( i );
unloadSkybox();
R_VkImageDestroy(&tglob.cubemap_placeholder.vk.image);
g_textures.stats.size_total -= tglob.cubemap_placeholder.total_size;
g_textures.stats.count--;
memset(&tglob.cubemap_placeholder, 0, sizeof(tglob.cubemap_placeholder));
for (int i = 0; i < ARRAYSIZE(tglob.samplers); ++i) {
if (tglob.samplers[i].sampler != VK_NULL_HANDLE)
vkDestroySampler(vk_core.device, tglob.samplers[i].sampler, NULL);
}
//memset( tglob.lightmapTextures, 0, sizeof( tglob.lightmapTextures ));
memset( vk_texturesHashTable, 0, sizeof( vk_texturesHashTable ));
memset( vk_textures, 0, sizeof( vk_textures ));
vk_numTextures = 0;
}
vk_texture_t *findTexture(int index)
{
ASSERT(index >= 0);
ASSERT(index < MAX_TEXTURES);
return vk_textures + index;
}
static vk_texture_t *Common_AllocTexture( const char *name, texFlags_t flags )
{
vk_texture_t *tex;
uint i;
// find a free texture_t slot
for( i = 0, tex = vk_textures; i < vk_numTextures; i++, tex++ )
if( !tex->name[0] ) break;
if( i == vk_numTextures )
{
if( vk_numTextures == MAX_TEXTURES )
gEngine.Host_Error( "VK_AllocTexture: MAX_TEXTURES limit exceeds\n" );
vk_numTextures++;
}
tex = &vk_textures[i];
// copy initial params
Q_strncpy( tex->name, name, sizeof( tex->name ));
tex->texnum = i; // texnum is used for fast acess into vk_textures array too
tex->flags = flags;
// add to hash table
tex->hashValue = COM_HashKey( name, TEXTURES_HASH_SIZE );
tex->nextHash = vk_texturesHashTable[tex->hashValue];
vk_texturesHashTable[tex->hashValue] = tex;
return tex;
}
static qboolean Common_CheckTexName( const char *name )
{
int len;
if( !COM_CheckString( name ))
return false;
len = Q_strlen( name );
// because multi-layered textures can exceed name string
if( len >= sizeof( vk_textures->name ))
{
ERR("LoadTexture: too long name %s (%d)", name, len );
return false;
}
return true;
}
static vk_texture_t *Common_TextureForName( const char *name )
{
vk_texture_t *tex;
uint hash;
// find the texture in array
hash = COM_HashKey( name, TEXTURES_HASH_SIZE );
for( tex = vk_texturesHashTable[hash]; tex != NULL; tex = tex->nextHash )
{
if( !Q_stricmp( tex->name, name ))
return tex;
}
return NULL;
}
static rgbdata_t *Common_FakeImage( int width, int height, int depth, int flags )
{
static byte data2D[1024]; // 16x16x4
static rgbdata_t r_image;
// also use this for bad textures, but without alpha
r_image.width = Q_max( 1, width );
r_image.height = Q_max( 1, height );
r_image.depth = Q_max( 1, depth );
r_image.flags = flags;
r_image.type = PF_RGBA_32;
r_image.size = r_image.width * r_image.height * r_image.depth * 4;
r_image.buffer = (r_image.size > sizeof( data2D )) ? NULL : data2D;
r_image.palette = NULL;
r_image.numMips = 1;
r_image.encode = 0;
if( FBitSet( r_image.flags, IMAGE_CUBEMAP ))
r_image.size *= 6;
memset( data2D, 0xFF, sizeof( data2D ));
return &r_image;
}
/*
===============
GL_ProcessImage
do specified actions on pixels
===============
*/
static void VK_ProcessImage( vk_texture_t *tex, rgbdata_t *pic )
{
float emboss_scale = 0.0f;
uint img_flags = 0;
// force upload texture as RGB or RGBA (detail textures requires this)
if( tex->flags & TF_FORCE_COLOR ) pic->flags |= IMAGE_HAS_COLOR;
if( pic->flags & IMAGE_HAS_ALPHA ) tex->flags |= TF_HAS_ALPHA;
//FIXME provod: ??? tex->encode = pic->encode; // share encode method
if( ImageDXT( pic->type ))
{
if( !pic->numMips )
tex->flags |= TF_NOMIPMAP; // disable mipmapping by user request
// clear all the unsupported flags
tex->flags &= ~TF_KEEP_SOURCE;
}
else
{
// copy flag about luma pixels
if( pic->flags & IMAGE_HAS_LUMA )
tex->flags |= TF_HAS_LUMA;
if( pic->flags & IMAGE_QUAKEPAL )
tex->flags |= TF_QUAKEPAL;
// create luma texture from quake texture
if( tex->flags & TF_MAKELUMA )
{
img_flags |= IMAGE_MAKE_LUMA;
tex->flags &= ~TF_MAKELUMA;
}
/* FIXME provod: ???
if( !FBitSet( tex->flags, TF_IMG_UPLOADED ) && FBitSet( tex->flags, TF_KEEP_SOURCE ))
tex->original = gEngine.FS_CopyImage( pic ); // because current pic will be expanded to rgba
*/
// we need to expand image into RGBA buffer
if( pic->type == PF_INDEXED_24 || pic->type == PF_INDEXED_32 )
img_flags |= IMAGE_FORCE_RGBA;
/* FIXME provod: ???
// dedicated server doesn't register this variable
if( gl_emboss_scale != NULL )
emboss_scale = gl_emboss_scale->value;
*/
// processing image before uploading (force to rgba, make luma etc)
if( pic->buffer ) gEngine.Image_Process( &pic, 0, 0, img_flags, emboss_scale );
if( FBitSet( tex->flags, TF_LUMINANCE ))
ClearBits( pic->flags, IMAGE_HAS_COLOR );
}
}
static qboolean uploadTexture(vk_texture_t *tex, rgbdata_t *const *const layers, int num_layers, qboolean cubemap, colorspace_hint_e colorspace_hint);
static int loadTextureInternal( const char *name, const byte *buf, size_t size, int flags, colorspace_hint_e colorspace_hint );
static int VK_LoadTextureF(int flags, colorspace_hint_e colorspace, const char *fmt, ...) {
int tex_id = 0;
char buffer[1024];
va_list argptr;
va_start( argptr, fmt );
vsnprintf( buffer, sizeof buffer, fmt, argptr );
va_end( argptr );
return loadTextureInternal(buffer, NULL, 0, flags, colorspace);
}
#define BLUE_NOISE_NAME_F "bluenoise/LDR_RGBA_%d.png"
static qboolean generateFallbackNoiseTextures(void) {
pcg32_random_t pcg_state = {
BLUE_NOISE_SIZE * BLUE_NOISE_SIZE - 1,
17,
};
uint32_t scratch[BLUE_NOISE_SIZE * BLUE_NOISE_SIZE];
rgbdata_t pic = {
.width = BLUE_NOISE_SIZE,
.height = BLUE_NOISE_SIZE,
.depth = 1,
.flags = 0,
.type = PF_RGBA_32,
.size = BLUE_NOISE_SIZE * BLUE_NOISE_SIZE * 4,
.buffer = (byte*)&scratch,
.palette = NULL,
.numMips = 1,
.encode = 0,
};
int blueNoiseTexturesBegin = -1;
for (int i = 0; i < BLUE_NOISE_SIZE; ++i) {
for (int j = 0; j < COUNTOF(scratch); ++j) {
scratch[j] = pcg32_random_r(&pcg_state);
}
char name[256];
snprintf(name, sizeof(name), BLUE_NOISE_NAME_F, i);
const int texid = VK_LoadTextureInternal(name, &pic, TF_NOMIPMAP);
ASSERT(texid > 0);
if (blueNoiseTexturesBegin == -1) {
ASSERT(texid == BLUE_NOISE_TEXTURE_ID);
blueNoiseTexturesBegin = texid;
} else {
ASSERT(blueNoiseTexturesBegin + i == texid);
}
}
return true;
}
static qboolean loadBlueNoiseTextures(void) {
int blueNoiseTexturesBegin = -1;
for (int i = 0; i < 64; ++i) {
const int texid = VK_LoadTextureF(TF_NOMIPMAP, kColorspaceLinear, BLUE_NOISE_NAME_F, i);
if (blueNoiseTexturesBegin == -1) {
if (texid <= 0) {
ERR("Couldn't find precomputed blue noise textures. Generating bad quality regular noise textures as a fallback");
return generateFallbackNoiseTextures();
}
blueNoiseTexturesBegin = texid;
} else {
ASSERT(texid > 0);
ASSERT(blueNoiseTexturesBegin + i == texid);
}
}
INFO("Base blue noise texture is %d", blueNoiseTexturesBegin);
ASSERT(blueNoiseTexturesBegin == BLUE_NOISE_TEXTURE_ID);
return true;
}
static void VK_CreateInternalTextures( void )
{
int dx2, dy, d;
int x, y;
rgbdata_t *pic;
// emo-texture from quake1
pic = Common_FakeImage( 16, 16, 1, IMAGE_HAS_COLOR );
for( y = 0; y < 16; y++ )
{
for( x = 0; x < 16; x++ )
{
if(( y < 8 ) ^ ( x < 8 ))
((uint *)pic->buffer)[y*16+x] = 0xFFFF00FF;
else ((uint *)pic->buffer)[y*16+x] = 0xFF000000;
}
}
tglob.defaultTexture = VK_LoadTextureInternal( REF_DEFAULT_TEXTURE, pic, TF_COLORMAP );
// particle texture from quake1
pic = Common_FakeImage( 16, 16, 1, IMAGE_HAS_COLOR|IMAGE_HAS_ALPHA );
for( x = 0; x < 16; x++ )
{
dx2 = x - 8;
dx2 = dx2 * dx2;
for( y = 0; y < 16; y++ )
{
dy = y - 8;
d = 255 - 35 * sqrt( dx2 + dy * dy );
pic->buffer[( y * 16 + x ) * 4 + 3] = bound( 0, d, 255 );
}
}
tglob.particleTexture = VK_LoadTextureInternal( REF_PARTICLE_TEXTURE, pic, TF_CLAMP );
// white texture
pic = Common_FakeImage( 4, 4, 1, IMAGE_HAS_COLOR );
for( x = 0; x < 16; x++ )
((uint *)pic->buffer)[x] = 0xFFFFFFFF;
tglob.whiteTexture = VK_LoadTextureInternal( REF_WHITE_TEXTURE, pic, TF_COLORMAP );
// gray texture
pic = Common_FakeImage( 4, 4, 1, IMAGE_HAS_COLOR );
for( x = 0; x < 16; x++ )
((uint *)pic->buffer)[x] = 0xFF7F7F7F;
tglob.grayTexture = VK_LoadTextureInternal( REF_GRAY_TEXTURE, pic, TF_COLORMAP );
// black texture
pic = Common_FakeImage( 4, 4, 1, IMAGE_HAS_COLOR );
for( x = 0; x < 16; x++ )
((uint *)pic->buffer)[x] = 0xFF000000;
tglob.blackTexture = VK_LoadTextureInternal( REF_BLACK_TEXTURE, pic, TF_COLORMAP );
// cinematic dummy
pic = Common_FakeImage( 640, 100, 1, IMAGE_HAS_COLOR );
tglob.cinTexture = VK_LoadTextureInternal( "*cintexture", pic, TF_NOMIPMAP|TF_CLAMP );
{
rgbdata_t *sides[6];
pic = Common_FakeImage( 4, 4, 1, IMAGE_HAS_COLOR );
for( x = 0; x < 16; x++ )
((uint *)pic->buffer)[x] = 0xFFFFFFFF;
sides[0] = pic;
sides[1] = pic;
sides[2] = pic;
sides[3] = pic;
sides[4] = pic;
sides[5] = pic;
uploadTexture( &tglob.cubemap_placeholder, sides, 6, true, kColorspaceGamma );
}
loadBlueNoiseTextures();
}
static VkFormat VK_GetFormat(pixformat_t format, colorspace_hint_e colorspace_hint ) {
switch(format)
{
case PF_RGBA_32:
return (colorspace_hint == kColorspaceLinear)
? VK_FORMAT_R8G8B8A8_UNORM
: VK_FORMAT_R8G8B8A8_SRGB;
default:
WARN("FIXME unsupported pixformat_t %d", format);
return VK_FORMAT_UNDEFINED;
}
}
static size_t CalcImageSize( pixformat_t format, int width, int height, int depth ) {
size_t size = 0;
// check the depth error
depth = Q_max( 1, depth );
switch( format )
{
case PF_LUMINANCE:
size = width * height * depth;
break;
case PF_RGB_24:
case PF_BGR_24:
size = width * height * depth * 3;
break;
case PF_BGRA_32:
case PF_RGBA_32:
size = width * height * depth * 4;
break;
case PF_DXT1:
size = (((width + 3) >> 2) * ((height + 3) >> 2) * 8) * depth;
break;
case PF_DXT3:
case PF_DXT5:
case PF_ATI2:
size = (((width + 3) >> 2) * ((height + 3) >> 2) * 16) * depth;
break;
default:
ERR("unsupported pixformat_t %d", format);
ASSERT(!"Unsupported format encountered");
}
return size;
}
static int CalcMipmapCount( vk_texture_t *tex, qboolean haveBuffer )
{
int width, height;
int mipcount;
ASSERT( tex != NULL );
if( !haveBuffer )// || tex->target == GL_TEXTURE_3D )
return 1;
// generate mip-levels by user request
if( FBitSet( tex->flags, TF_NOMIPMAP ))
return 1;
// mip-maps can't exceeds 16
for( mipcount = 0; mipcount < 16; mipcount++ )
{
width = Q_max( 1, ( tex->width >> mipcount ));
height = Q_max( 1, ( tex->height >> mipcount ));
if( width == 1 && height == 1 )
break;
}
return mipcount + 1;
}
static void BuildMipMap( byte *in, int srcWidth, int srcHeight, int srcDepth, int flags )
{
byte *out = in;
int instride = ALIGN( srcWidth * 4, 1 );
int mipWidth, mipHeight, outpadding;
int row, x, y, z;
vec3_t normal;
if( !in ) return;
mipWidth = Q_max( 1, ( srcWidth >> 1 ));
mipHeight = Q_max( 1, ( srcHeight >> 1 ));
outpadding = ALIGN( mipWidth * 4, 1 ) - mipWidth * 4;
if( FBitSet( flags, TF_ALPHACONTRAST ))
{
memset( in, mipWidth, mipWidth * mipHeight * 4 );
return;
}
// move through all layers
for( z = 0; z < srcDepth; z++ )
{
if( FBitSet( flags, TF_NORMALMAP ))
{
for( y = 0; y < mipHeight; y++, in += instride * 2, out += outpadding )
{
byte *next = ((( y << 1 ) + 1 ) < srcHeight ) ? ( in + instride ) : in;
for( x = 0, row = 0; x < mipWidth; x++, row += 8, out += 4 )
{
if((( x << 1 ) + 1 ) < srcWidth )
{
normal[0] = MAKE_SIGNED( in[row+0] ) + MAKE_SIGNED( in[row+4] )
+ MAKE_SIGNED( next[row+0] ) + MAKE_SIGNED( next[row+4] );
normal[1] = MAKE_SIGNED( in[row+1] ) + MAKE_SIGNED( in[row+5] )
+ MAKE_SIGNED( next[row+1] ) + MAKE_SIGNED( next[row+5] );
normal[2] = MAKE_SIGNED( in[row+2] ) + MAKE_SIGNED( in[row+6] )
+ MAKE_SIGNED( next[row+2] ) + MAKE_SIGNED( next[row+6] );
}
else
{
normal[0] = MAKE_SIGNED( in[row+0] ) + MAKE_SIGNED( next[row+0] );
normal[1] = MAKE_SIGNED( in[row+1] ) + MAKE_SIGNED( next[row+1] );
normal[2] = MAKE_SIGNED( in[row+2] ) + MAKE_SIGNED( next[row+2] );
}
if( !VectorNormalizeLength( normal ))
VectorSet( normal, 0.5f, 0.5f, 1.0f );
out[0] = 128 + (byte)(127.0f * normal[0]);
out[1] = 128 + (byte)(127.0f * normal[1]);
out[2] = 128 + (byte)(127.0f * normal[2]);
out[3] = 255;
}
}
}
else
{
for( y = 0; y < mipHeight; y++, in += instride * 2, out += outpadding )
{
byte *next = ((( y << 1 ) + 1 ) < srcHeight ) ? ( in + instride ) : in;
for( x = 0, row = 0; x < mipWidth; x++, row += 8, out += 4 )
{
if((( x << 1 ) + 1 ) < srcWidth )
{
out[0] = (in[row+0] + in[row+4] + next[row+0] + next[row+4]) >> 2;
out[1] = (in[row+1] + in[row+5] + next[row+1] + next[row+5]) >> 2;
out[2] = (in[row+2] + in[row+6] + next[row+2] + next[row+6]) >> 2;
out[3] = (in[row+3] + in[row+7] + next[row+3] + next[row+7]) >> 2;
}
else
{
out[0] = (in[row+0] + next[row+0]) >> 1;
out[1] = (in[row+1] + next[row+1]) >> 1;
out[2] = (in[row+2] + next[row+2]) >> 1;
out[3] = (in[row+3] + next[row+3]) >> 1;
}
}
}
}
}
}
static VkSampler createSamplerForFlags( texFlags_t flags ) {
VkSampler sampler;
const VkFilter filter_mode = (flags & TF_NEAREST) ? VK_FILTER_NEAREST : VK_FILTER_LINEAR;
const VkSamplerAddressMode addr_mode =
(flags & TF_BORDER) ? VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER
: ((flags & TF_CLAMP) ? VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE : VK_SAMPLER_ADDRESS_MODE_REPEAT);
const VkSamplerCreateInfo sci = {
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.magFilter = filter_mode,
.minFilter = filter_mode,
.addressModeU = addr_mode,
.addressModeV = addr_mode,
.addressModeW = addr_mode,
.anisotropyEnable = vk_core.physical_device.anisotropy_enabled,
.maxAnisotropy = vk_core.physical_device.properties.limits.maxSamplerAnisotropy,
.borderColor = VK_BORDER_COLOR_INT_OPAQUE_BLACK,
.unnormalizedCoordinates = VK_FALSE,
.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR,
.minLod = 0.f,
.maxLod = 16.,
};
XVK_CHECK(vkCreateSampler(vk_core.device, &sci, NULL, &sampler));
return sampler;
}
static VkSampler pickSamplerForFlags( texFlags_t flags ) {
flags &= (TF_BORDER | TF_CLAMP | TF_NEAREST);
for (int i = 0; i < ARRAYSIZE(tglob.samplers); ++i) {
if (tglob.samplers[i].sampler == VK_NULL_HANDLE) {
tglob.samplers[i].flags = flags;
return tglob.samplers[i].sampler = createSamplerForFlags(flags);
}
if (tglob.samplers[i].flags == flags)
return tglob.samplers[i].sampler;
}
ERR("Couldn't find/allocate sampler for flags %x", flags);
return tglob.default_sampler_fixme;
}
static qboolean loadKtx2Raw( vk_texture_t *tex, const rgbdata_t* pic );
static qboolean uploadTexture(vk_texture_t *tex, rgbdata_t *const *const layers, int num_layers, qboolean cubemap, colorspace_hint_e colorspace_hint) {
if (num_layers == 1 && layers[0]->type == PF_KTX2_RAW)
return loadKtx2Raw(tex, layers[0]);
const VkFormat format = VK_GetFormat(layers[0]->type, colorspace_hint);
int mipCount = 0;
tex->total_size = 0;
// TODO non-rbga textures
for (int i = 0; i < num_layers; ++i) {
// FIXME create empty black texture if there's no buffer
if (!layers[i]->buffer) {
ERR("Texture %s layer %d missing buffer", tex->name, i);
return false;
}
if (i == 0)
continue;
if (layers[0]->type != layers[i]->type) {
ERR("Texture %s layer %d has type %d inconsistent with layer 0 type %d", tex->name, i, layers[i]->type, layers[0]->type);
return false;
}
if (layers[0]->width != layers[i]->width || layers[0]->height != layers[i]->height) {
ERR("Texture %s layer %d has resolution %dx%d inconsistent with layer 0 resolution %dx%d",
tex->name, i, layers[i]->width, layers[i]->height, layers[0]->width, layers[0]->height);
return false;
}
if ((layers[0]->flags ^ layers[i]->flags) & IMAGE_HAS_ALPHA) {
ERR("Texture %s layer %d has_alpha=%d inconsistent with layer 0 has_alpha=%d",
tex->name, i,
!!(layers[i]->flags & IMAGE_HAS_ALPHA),
!!(layers[0]->flags & IMAGE_HAS_ALPHA));
}
}
tex->width = layers[0]->width;
tex->height = layers[0]->height;
mipCount = CalcMipmapCount( tex, true);
DEBUG("Uploading texture[%d] %s, mips=%d, layers=%d", (int)(tex-vk_textures), tex->name, mipCount, num_layers);
// TODO this vvv
// // NOTE: only single uncompressed textures can be resamples, no mips, no layers, no sides
// if(( tex->depth == 1 ) && (( layers->width != tex->width ) || ( layers->height != tex->height )))
// data = GL_ResampleTexture( buf, layers->width, layers->height, tex->width, tex->height, normalMap );
// else data = buf;
// if( !ImageDXT( layers->type ) && !FBitSet( tex->flags, TF_NOMIPMAP ) && FBitSet( layers->flags, IMAGE_ONEBIT_ALPHA ))
// data = GL_ApplyFilter( data, tex->width, tex->height );
{
const r_vk_image_create_t create = {
.debug_name = tex->name,
.width = tex->width,
.height = tex->height,
.mips = mipCount,
.layers = num_layers,
.format = format,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
.flags = 0
| ((layers[0]->flags & IMAGE_HAS_ALPHA) ? kVkImageFlagHasAlpha : 0)
| (cubemap ? kVkImageFlagIsCubemap : 0)
| (colorspace_hint == kColorspaceGamma ? kVkImageFlagCreateUnormView : 0),
};
tex->vk.image = R_VkImageCreate(&create);
}
{
// 5.1 upload buf -> image:layout:DST
// 5.1.1 transitionToLayout(UNDEFINED -> DST)
VkImageMemoryBarrier image_barrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.image = tex->vk.image.image,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.subresourceRange = (VkImageSubresourceRange) {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = mipCount,
.baseArrayLayer = 0,
.layerCount = num_layers,
}};
{
// cmdbuf may become invalidated in locks in the loops below
const VkCommandBuffer cmdbuf = R_VkStagingGetCommandBuffer();
vkCmdPipelineBarrier(cmdbuf,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0, 0, NULL, 0, NULL, 1, &image_barrier);
}
// 5.1.2 copyBufferToImage for all mip levels
for (int layer = 0; layer < num_layers; ++layer) {
for (int mip = 0; mip < mipCount; ++mip) {
const rgbdata_t *const pic = layers[layer];
byte *buf = pic->buffer;
const int width = Q_max( 1, ( pic->width >> mip ));
const int height = Q_max( 1, ( pic->height >> mip ));
const size_t mip_size = CalcImageSize( pic->type, width, height, 1 );
const uint32_t texel_block_size = R_VkImageFormatTexelBlockSize(format);
const vk_staging_image_args_t staging_args = {
.image = tex->vk.image.image,
.region = (VkBufferImageCopy) {
.bufferOffset = 0,
.bufferRowLength = 0,
.bufferImageHeight = 0,
.imageSubresource = (VkImageSubresourceLayers){
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = mip,
.baseArrayLayer = layer,
.layerCount = 1,
},
.imageExtent = (VkExtent3D){
.width = width,
.height = height,
.depth = 1,
},
},
.layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.size = mip_size,
.alignment = texel_block_size,
};
const vk_staging_region_t staging = R_VkStagingLockForImage(staging_args);
ASSERT(staging.ptr);
memcpy(staging.ptr, buf, mip_size);
tex->total_size += mip_size;
// Build mip in place for the next mip level
if ( mip < mipCount - 1 )
{
BuildMipMap( buf, width, height, 1, tex->flags );
}
R_VkStagingUnlock(staging.handle);
}
}
// TODO Don't change layout here. Alternatively:
// I. Attach layout metadata to the image, and request its change next time it is used.
// II. Build-in layout transfer to staging commit and do it there on commit.
const VkCommandBuffer cmdbuf = R_VkStagingCommit()->cmdbuf;
// 5.2 image:layout:DST -> image:layout:SAMPLED
// 5.2.1 transitionToLayout(DST -> SHADER_READ_ONLY)
image_barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
image_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
image_barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
image_barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
image_barrier.subresourceRange = (VkImageSubresourceRange){
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = mipCount,
.baseArrayLayer = 0,
.layerCount = num_layers,
};
vkCmdPipelineBarrier(cmdbuf,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, // FIXME incorrect, we also use them in compute and potentially ray tracing shaders
0, 0, NULL, 0, NULL, 1, &image_barrier);
}
// TODO how should we approach this:
// - per-texture desc sets can be inconvenient if texture is used in different incompatible contexts
// - update descriptor sets in batch?
if (vk_desc.next_free < MAX_TEXTURES-2) {
const int index = tex - vk_textures;
const VkDescriptorSet ds = vk_desc.sets[vk_desc.next_free++];
const VkDescriptorSet ds_unorm =
(colorspace_hint == kColorspaceGamma && tex->vk.image.view_unorm != VK_NULL_HANDLE)
? vk_desc.sets[vk_desc.next_free++] : VK_NULL_HANDLE;
const VkDescriptorImageInfo dii = {
.imageView = tex->vk.image.view,
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
.sampler = pickSamplerForFlags( tex->flags ),
};
const VkDescriptorImageInfo dii_unorm = {
.imageView = tex->vk.image.view_unorm,
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
.sampler = dii.sampler,
};
VkWriteDescriptorSet wds[2] = { {
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = &dii,
.dstSet = ds,
}, {
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = &dii_unorm,
.dstSet = ds_unorm,
}};
vkUpdateDescriptorSets(vk_core.device, ds_unorm != VK_NULL_HANDLE ? 2 : 1 , wds, 0, NULL);
// FIXME handle cubemaps properly w/o this garbage. they should be the same as regular textures.
if (num_layers == 1) {
tglob.dii_all_textures[index] = dii;
}
tex->vk.descriptor_unorm = ds_unorm != VK_NULL_HANDLE ? ds_unorm : ds;
}
else
{
tex->vk.descriptor_unorm = VK_NULL_HANDLE;
}
g_textures.stats.size_total += tex->total_size;
g_textures.stats.count++;
return true;
}
///////////// Render API funcs /////////////
// Texture tools
int VK_FindTexture( const char *name )
{
vk_texture_t *tex;
if( !Common_CheckTexName( name ))
return 0;
// see if already loaded
if(( tex = Common_TextureForName( name )))
return (tex - vk_textures);
return 0;
}
const char* VK_TextureName( unsigned int texnum )
{
ASSERT( texnum >= 0 && texnum < MAX_TEXTURES );
return vk_textures[texnum].name;
}
const byte* VK_TextureData( unsigned int texnum )
{
PRINT_NOT_IMPLEMENTED_ARGS("texnum=%d", texnum);
// We don't store original texture data
// TODO do we need to?
return NULL;
}
static qboolean loadKtx2Raw( vk_texture_t *tex, const rgbdata_t* pic ) {
const byte *const data = pic->buffer;
const int size = pic->size;
const ktx_header_t* header;
const ktx_index_t* index;
const ktx_level_t* levels;
header = (const ktx_header_t*)(data + KTX_IDENTIFIER_SIZE);
index = (const ktx_index_t*)(data + KTX_IDENTIFIER_SIZE + sizeof(ktx_header_t));
levels = (const ktx_level_t*)(data + KTX_IDENTIFIER_SIZE + sizeof(ktx_header_t) + sizeof(ktx_index_t));
DEBUG(" header:");
#define X(field) DEBUG(" " # field "=%d", header->field);
DEBUG(" vkFormat = %s(%d)", R_VkFormatName(header->vkFormat), header->vkFormat);
X(typeSize)
X(pixelWidth)
X(pixelHeight)
X(pixelDepth)
X(layerCount)
X(faceCount)
X(levelCount)
X(supercompressionScheme)
#undef X
DEBUG(" index:");
#define X(field) DEBUG(" " # field "=%llu", (unsigned long long)index->field);
X(dfdByteOffset)
X(dfdByteLength)
X(kvdByteOffset)
X(kvdByteLength)
X(sgdByteOffset)
X(sgdByteLength)
#undef X
for (int mip = 0; mip < header->levelCount; ++mip) {
const ktx_level_t* const level = levels + mip;
DEBUG(" level[%d]:", mip);
DEBUG(" byteOffset=%llu", (unsigned long long)level->byteOffset);
DEBUG(" byteLength=%llu", (unsigned long long)level->byteLength);
DEBUG(" uncompressedByteLength=%llu", (unsigned long long)level->uncompressedByteLength);
}
// FIXME check that format is supported
// FIXME layers == 0
// FIXME has_alpha
// FIXME no supercompressionScheme
// 1. Create image
{
const r_vk_image_create_t create = {
.debug_name = tex->name,
.width = header->pixelWidth,
.height = header->pixelHeight,
.mips = header->levelCount,
.layers = 1, // TODO or 6 for cubemap; header->faceCount
.format = header->vkFormat,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
// FIXME find out if there's alpha
.flags = 0,
};
tex->vk.image = R_VkImageCreate(&create);
}
// 2. Prep cmdbuf, barrier, etc
{
VkImageMemoryBarrier image_barrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.image = tex->vk.image.image,
.srcAccessMask = 0,
.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.subresourceRange = (VkImageSubresourceRange) {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = header->levelCount,
.baseArrayLayer = 0,
.layerCount = 1, // TODO cubemap
}
};
{
// cmdbuf may become invalidated in locks in the loops below
const VkCommandBuffer cmdbuf = R_VkStagingGetCommandBuffer();
vkCmdPipelineBarrier(cmdbuf,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0, 0, NULL, 0, NULL, 1, &image_barrier);
}
// 3. For levels
// 3.1 upload
for (int mip = 0; mip < header->levelCount; ++mip) {
const ktx_level_t* const level = levels + mip;
const uint32_t width = Q_max(1, header->pixelWidth >> mip);
const uint32_t height = Q_max(1, header->pixelHeight >> mip);
const size_t mip_size = level->byteLength;
const uint32_t texel_block_size = R_VkImageFormatTexelBlockSize(header->vkFormat);
const void* const image_data = data + level->byteOffset;
const vk_staging_image_args_t staging_args = {
.image = tex->vk.image.image,
.region = (VkBufferImageCopy) {
.bufferOffset = 0,
.bufferRowLength = 0,
.bufferImageHeight = 0,
.imageSubresource = (VkImageSubresourceLayers){
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = mip,
.baseArrayLayer = 0, // TODO cubemap
.layerCount = 1,
},
.imageExtent = (VkExtent3D){
.width = width,
.height = height,
.depth = 1,
},
},
.layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.size = mip_size,
.alignment = texel_block_size,
};
{
const vk_staging_region_t staging = R_VkStagingLockForImage(staging_args);
ASSERT(staging.ptr);
memcpy(staging.ptr, image_data, mip_size);
tex->total_size += mip_size;
R_VkStagingUnlock(staging.handle);
}
} // for levels
{
// TODO Don't change layout here. Alternatively:
// I. Attach layout metadata to the image, and request its change next time it is used.
// II. Build-in layout transfer to staging commit and do it there on commit.
const VkCommandBuffer cmdbuf = R_VkStagingCommit()->cmdbuf;
// 5.2 image:layout:DST -> image:layout:SAMPLED
// 5.2.1 transitionToLayout(DST -> SHADER_READ_ONLY)
image_barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
image_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
image_barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
image_barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
image_barrier.subresourceRange = (VkImageSubresourceRange){
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = header->levelCount,
.baseArrayLayer = 0,
.layerCount = 1, // TODO cubemap
};
vkCmdPipelineBarrier(cmdbuf,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, // FIXME incorrect, we also use them in compute and potentially ray tracing shaders
0, 0, NULL, 0, NULL, 1, &image_barrier);
}
}
// KTX2 textures are inaccessible from trad renderer (for now)
tex->vk.descriptor_unorm = VK_NULL_HANDLE;
// TODO how should we approach this:
// - per-texture desc sets can be inconvenient if texture is used in different incompatible contexts
// - update descriptor sets in batch?
if (vk_desc.next_free != MAX_TEXTURES) {
const int num_layers = 1; // TODO cubemap
const int index = tex - vk_textures;
VkDescriptorImageInfo dii_tmp;
// FIXME handle cubemaps properly w/o this garbage. they should be the same as regular textures.
VkDescriptorImageInfo *const dii_tex = (num_layers == 1) ? tglob.dii_all_textures + index : &dii_tmp;
*dii_tex = (VkDescriptorImageInfo){
.imageView = tex->vk.image.view,
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
.sampler = pickSamplerForFlags( tex->flags ),
};
const VkWriteDescriptorSet wds[] = { {
.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.pImageInfo = dii_tex,
.dstSet = vk_desc.sets[vk_desc.next_free++],
}};
vkUpdateDescriptorSets(vk_core.device, ARRAYSIZE(wds), wds, 0, NULL);
}
g_textures.stats.size_total += tex->total_size;
g_textures.stats.count++;
tex->width = header->pixelWidth;
tex->height = header->pixelHeight;
return true;
}
static int loadTextureInternal( const char *name, const byte *buf, size_t size, int flags, colorspace_hint_e colorspace_hint ) {
if( !Common_CheckTexName( name ))
return 0;
// see if already loaded
{
const vk_texture_t *const tex = Common_TextureForName( name );
if( tex )
return (tex - vk_textures);
}
uint picFlags = 0;
if( FBitSet( flags, TF_NOFLIP_TGA ))
SetBits( picFlags, IL_DONTFLIP_TGA );
if( FBitSet( flags, TF_KEEP_SOURCE ) && !FBitSet( flags, TF_EXPAND_SOURCE ))
SetBits( picFlags, IL_KEEP_8BIT );
// set some image flags
gEngine.Image_SetForceFlags( picFlags );
rgbdata_t *const pic = gEngine.FS_LoadImage( name, buf, size );
if( !pic ) return 0; // couldn't loading image
// allocate the new one
vk_texture_t* const tex = Common_AllocTexture( name, flags );
// upload texture
VK_ProcessImage( tex, pic );
if( !uploadTexture( tex, &pic, 1, false, colorspace_hint ))
{
memset( tex, 0, sizeof( vk_texture_t ));
gEngine.FS_FreeImage( pic ); // release source texture
return 0;
}
tex->width = pic->width;
tex->height = pic->height;
gEngine.FS_FreeImage( pic ); // release source texture
// NOTE: always return texnum as index in array or engine will stop work !!!
return tex - vk_textures;
}
int VK_LoadTextureExternal( const char *name, const byte *buf, size_t size, int flags ) {
return loadTextureInternal(name, buf, size, flags, kColorspaceGamma);
}
int R_VkLoadTexture( const char *filename, colorspace_hint_e colorspace, qboolean force_reload) {
vk_texture_t *tex;
if( !Common_CheckTexName( filename ))
return 0;
if (force_reload) {
// free if already loaded
// TODO consider leaving intact if loading failed
if(( tex = Common_TextureForName( filename ))) {
VK_FreeTexture( tex - vk_textures );
}
}
return loadTextureInternal( filename, NULL, 0, 0, colorspace );
}
int VK_CreateTexture( const char *name, int width, int height, const void *buffer, texFlags_t flags )
{
PRINT_NOT_IMPLEMENTED_ARGS("name=%s width=%d height=%d buffer=%p flags=%08x", name, width, height, buffer, flags);
return 0;
}
int VK_LoadTextureArray( const char **names, int flags )
{
PRINT_NOT_IMPLEMENTED();
return 0;
}
int VK_CreateTextureArray( const char *name, int width, int height, int depth, const void *buffer, texFlags_t flags )
{
PRINT_NOT_IMPLEMENTED_ARGS("name=%s width=%d height=%d buffer=%p flags=%08x", name, width, height, buffer, flags);
return 0;
}
void VK_FreeTexture( unsigned int texnum ) {
vk_texture_t *tex;
vk_texture_t **prev;
vk_texture_t *cur;
if( texnum <= 0 ) return;
tex = vk_textures + texnum;
ASSERT( tex != NULL );
// already freed?
if( !tex->vk.image.image ) return;
// debug
if( !tex->name[0] )
{
ERR("VK_FreeTexture: trying to free unnamed texture with index %u", texnum );
return;
}
// remove from hash table
prev = &vk_texturesHashTable[tex->hashValue];
while( 1 )
{
cur = *prev;
if( !cur ) break;
if( cur == tex )
{
*prev = cur->nextHash;
break;
}
prev = &cur->nextHash;
}
/*
// release source
if( tex->original )
gEngine.FS_FreeImage( tex->original );
*/
// Need to make sure that there are no references to this texture anywhere.
// It might have been added to staging and then immediately deleted, leaving references to its vkimage
// in the staging command buffer. See https://github.com/w23/xash3d-fwgs/issues/464
R_VkStagingFlushSync();
XVK_CHECK(vkDeviceWaitIdle(vk_core.device));
R_VkImageDestroy(&tex->vk.image);
g_textures.stats.size_total -= tex->total_size;
g_textures.stats.count--;
memset(tex, 0, sizeof(*tex));
tglob.dii_all_textures[texnum] = (VkDescriptorImageInfo){
.imageView = vk_textures[tglob.defaultTexture].vk.image.view,
.imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
.sampler = tglob.default_sampler_fixme,
};
}
static int loadTextureFromBuffers( const char *name, rgbdata_t *const *const pic, int pic_count, texFlags_t flags, qboolean update ) {
vk_texture_t *tex;
if( !Common_CheckTexName( name ))
return 0;
// see if already loaded
if(( tex = Common_TextureForName( name )) && !update )
return (tex - vk_textures);
// couldn't loading image
if( !pic ) return 0;
if( update )
{
if( tex == NULL )
gEngine.Host_Error( "VK_LoadTextureFromBuffer: couldn't find texture %s for update\n", name );
SetBits( tex->flags, flags );
}
else
{
// allocate the new one
tex = Common_AllocTexture( name, flags );
}
for (int i = 0; i < pic_count; ++i)
VK_ProcessImage( tex, pic[i] );
if( !uploadTexture( tex, pic, pic_count, false, kColorspaceGamma ))
{
memset( tex, 0, sizeof( vk_texture_t ));
return 0;
}
return (tex - vk_textures);
}
int VK_LoadTextureFromBuffer( const char *name, rgbdata_t *pic, texFlags_t flags, qboolean update ) {
return loadTextureFromBuffers(name, &pic, 1, flags, update);
}
int XVK_TextureLookupF( const char *fmt, ...) {
int tex_id = 0;
char buffer[1024];
va_list argptr;
va_start( argptr, fmt );
vsnprintf( buffer, sizeof buffer, fmt, argptr );
va_end( argptr );
tex_id = VK_FindTexture(buffer);
//DEBUG("Looked up texture %s -> %d", buffer, tex_id);
return tex_id;
}
static void unloadSkybox( void ) {
if (tglob.skybox_cube.vk.image.image) {
R_VkImageDestroy(&tglob.skybox_cube.vk.image);
g_textures.stats.size_total -= tglob.skybox_cube.total_size;
g_textures.stats.count--;
memset(&tglob.skybox_cube, 0, sizeof(tglob.skybox_cube));
}
tglob.fCustomSkybox = false;
}
static struct {
const char *suffix;
uint flags;
} g_skybox_info[6] = {
{"rt", IMAGE_ROT_90},
{"lf", IMAGE_FLIP_Y | IMAGE_ROT_90 | IMAGE_FLIP_X},
{"bk", IMAGE_FLIP_Y},
{"ft", IMAGE_FLIP_X},
{"up", IMAGE_ROT_90},
{"dn", IMAGE_ROT_90},
};
#define SKYBOX_MISSED 0
#define SKYBOX_HLSTYLE 1
#define SKYBOX_Q1STYLE 2
static int CheckSkybox( const char *name )
{
const char *skybox_ext[] = { "png", "dds", "tga", "bmp" };
int i, j, num_checked_sides;
char sidename[MAX_VA_STRING];
// search for skybox images
for( i = 0; i < ARRAYSIZE(skybox_ext); i++ )
{
num_checked_sides = 0;
for( j = 0; j < 6; j++ )
{
// build side name
Q_snprintf( sidename, sizeof( sidename ), "%s%s.%s", name, g_skybox_info[j].suffix, skybox_ext[i] );
if( gEngine.fsapi->FileExists( sidename, false ))
num_checked_sides++;
}
if( num_checked_sides == 6 )
return SKYBOX_HLSTYLE; // image exists
for( j = 0; j < 6; j++ )
{
// build side name
Q_snprintf( sidename, sizeof( sidename ), "%s_%s.%s", name, g_skybox_info[j].suffix, skybox_ext[i] );
if( gEngine.fsapi->FileExists( sidename, false ))
num_checked_sides++;
}
if( num_checked_sides == 6 )
return SKYBOX_Q1STYLE; // images exists
}
return SKYBOX_MISSED;
}
static qboolean loadSkybox( const char *prefix, int style ) {
rgbdata_t *sides[6];
qboolean success = false;
int i;
// release old skybox
unloadSkybox();
DEBUG( "SKY: " );
for( i = 0; i < 6; i++ ) {
char sidename[MAX_STRING];
if( style == SKYBOX_HLSTYLE )
Q_snprintf( sidename, sizeof( sidename ), "%s%s", prefix, g_skybox_info[i].suffix );
else Q_snprintf( sidename, sizeof( sidename ), "%s_%s", prefix, g_skybox_info[i].suffix );
sides[i] = gEngine.FS_LoadImage( sidename, NULL, 0);
if (!sides[i] || !sides[i]->buffer)
break;
{
uint img_flags = g_skybox_info[i].flags;
// we need to expand image into RGBA buffer
if( sides[i]->type == PF_INDEXED_24 || sides[i]->type == PF_INDEXED_32 )
img_flags |= IMAGE_FORCE_RGBA;
gEngine.Image_Process( &sides[i], 0, 0, img_flags, 0.f );
}
DEBUG( "%s%s%s", prefix, g_skybox_info[i].suffix, i != 5 ? ", " : ". " );
}
if( i != 6 )
goto cleanup;
if( !Common_CheckTexName( prefix ))
goto cleanup;
Q_strncpy( tglob.skybox_cube.name, prefix, sizeof( tglob.skybox_cube.name ));
success = uploadTexture(&tglob.skybox_cube, sides, 6, true, kColorspaceGamma);
cleanup:
for (int j = 0; j < i; ++j)
gEngine.FS_FreeImage( sides[j] ); // release source texture
if (success) {
tglob.fCustomSkybox = true;
DEBUG( "Skybox done" );
} else {
tglob.skybox_cube.name[0] = '\0';
ERR( "Skybox failed" );
unloadSkybox();
}
return success;
}
static const char *skybox_default = "desert";
static const char *skybox_prefixes[] = { "pbr/env/%s", "gfx/env/%s" };
void XVK_SetupSky( const char *skyboxname ) {
if( !COM_CheckString( skyboxname ))
{
unloadSkybox();
return; // clear old skybox
}
for (int i = 0; i < ARRAYSIZE(skybox_prefixes); ++i) {
char loadname[MAX_STRING];
int style, len;
Q_snprintf( loadname, sizeof( loadname ), skybox_prefixes[i], skyboxname );
COM_StripExtension( loadname );
// kill the underline suffix to find them manually later
len = Q_strlen( loadname );
if( loadname[len - 1] == '_' )
loadname[len - 1] = '\0';
style = CheckSkybox( loadname );
if (loadSkybox(loadname, style))
return;
}
if (Q_stricmp(skyboxname, skybox_default) != 0) {
WARN("missed or incomplete skybox '%s'", skyboxname);
XVK_SetupSky( "desert" ); // force to default
}
}
int XVK_FindTextureNamedLike( const char *texture_name ) {
const model_t *map = gEngine.pfnGetModelByIndex( 1 );
string texname;
// Try texture name as-is first
int tex_id = XVK_TextureLookupF("%s", texture_name);
// Try bsp name
if (!tex_id)
tex_id = XVK_TextureLookupF("#%s:%s.mip", map->name, texture_name);
if (!tex_id) {
const char *wad = g_map_entities.wadlist;
for (; *wad;) {
const char *const wad_end = Q_strchr(wad, ';');
tex_id = XVK_TextureLookupF("%.*s/%s.mip", wad_end - wad, wad, texture_name);
if (tex_id)
break;
wad = wad_end + 1;
}
}
return tex_id ? tex_id : -1;
}
int XVK_CreateDummyTexture( const char *name ) {
// emo-texture from quake1
rgbdata_t *pic = Common_FakeImage( 16, 16, 1, IMAGE_HAS_COLOR );
for( int y = 0; y < 16; y++ )
{
for( int x = 0; x < 16; x++ )
{
if(( y < 8 ) ^ ( x < 8 ))
((uint *)pic->buffer)[y*16+x] = 0xFFFF00FF;
else ((uint *)pic->buffer)[y*16+x] = 0xFF000000;
}
}
return VK_LoadTextureInternal(name, pic, TF_NOMIPMAP);
}