binutils-gdb/gdb/testsuite/gdb.base/coredump-filter.exp

230 lines
7.5 KiB
Plaintext
Raw Normal View History

# Copyright 2015-2017 Free Software Foundation, Inc.
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
standard_testfile
# This test is Linux-only.
if ![istarget *-*-linux*] then {
untested "coredump-filter.exp"
return -1
}
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
if { [prepare_for_testing "failed to prepare" $testfile $srcfile debug] } {
return -1
}
if { ![runto_main] } {
untested "could not run to main"
return -1
}
gdb_breakpoint [gdb_get_line_number "break-here"]
gdb_continue_to_breakpoint "break-here" ".* break-here .*"
proc do_save_core { filter_flag core dump_excluded } {
verbose -log "writing $filter_flag to /proc/<inferior pid>/coredump_filter"
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
gdb_test "p set_coredump_filter ($filter_flag)" " = 0"
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
# Enable dumping of excluded mappings (i.e. VM_DONTDUMP).
if { $dump_excluded == 1 } {
gdb_test_no_output "set dump-excluded-mappings on"
}
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
# Generate a corefile.
gdb_gcore_cmd "$core" "save corefile"
# Restore original status.
if { $dump_excluded == 1 } {
gdb_test_no_output "set dump-excluded-mappings off"
}
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
}
proc do_load_and_test_core { core var working_var working_value dump_excluded } {
global hex decimal coredump_var_addr
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
set core_loaded [gdb_core_cmd "$core" "load core"]
if { $core_loaded == -1 } {
fail "loading $core"
return
}
# Access the memory the addresses point to.
if { $dump_excluded == 0 } {
gdb_test "print/x *(char *) $coredump_var_addr($var)" "\(\\\$$decimal = <error: \)?Cannot access memory at address $hex\(>\)?" \
"printing $var when core is loaded (should not work)"
gdb_test "print/x *(char *) $coredump_var_addr($working_var)" " = $working_value.*" \
"print/x *$working_var ( = $working_value)"
} else {
# Check if VM_DONTDUMP mappings are present in the core file.
gdb_test "print/x *(char *) $coredump_var_addr($var)" " = $working_value.*" \
"print/x *$var ( = $working_value)"
}
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
}
# We do not do file-backed mappings in the test program, but it is
# important to test this anyway. One way of performing the test is to
# load GDB with a corefile but without a binary, and then ask for the
# disassemble of a function (i.e., the binary's .text section). GDB
# should fail in this case. However, it must succeed if the binary is
# provided along with the corefile. This is what we test here.
proc test_disasm { core address should_fail } {
global testfile hex
# Restart GDB without loading the binary.
with_test_prefix "no binary" {
gdb_exit
gdb_start
set core_loaded [gdb_core_cmd "$core" "load core"]
if { $core_loaded == -1 } {
fail "loading $core"
return
}
if { $should_fail == 1 } {
gdb_test "x/i \$pc" "=> $hex:\tCannot access memory at address $hex" \
"disassemble function with corefile and without a binary"
} else {
gdb_test "x/i \$pc" "=> $hex:\t\[^C\].*" \
"disassemble function with corefile and without a binary"
}
}
with_test_prefix "with binary" {
clean_restart $testfile
set core_loaded [gdb_core_cmd "$core" "load core"]
if { $core_loaded == -1 } {
fail "loading $core"
return
}
gdb_test "disassemble $address" "Dump of assembler code for function.*" \
"disassemble function with corefile and with a binary"
}
}
set non_private_anon_core [standard_output_file non-private-anon.gcore]
set non_shared_anon_core [standard_output_file non-shared-anon.gcore]
# A corefile without {private,shared} {anonymous,file-backed} pages
set non_private_shared_anon_file_core [standard_output_file non-private-shared-anon-file.gcore]
set dont_dump_core [standard_output_file dont-dump.gcore]
set dump_excluded_core [standard_output_file dump-excluded.gcore]
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
# We will generate a few corefiles.
#
# This list is composed by sub-lists, and their elements are (in
# order):
#
# - name of the test
# - hexadecimal value to be put in the /proc/PID/coredump_filter file
# - name of the variable that contains the name of the corefile to be
# generated (including the initial $).
# - name of the variable in the C source code that points to the
# memory mapping that will NOT be present in the corefile.
# - name of a variable in the C source code that points to a memory
# mapping that WILL be present in the corefile
# - corresponding value expected for the above variable
# - whether to include mappings marked as VM_DONTDUMP in the
# corefile (1) or not (0).
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
#
# This list refers to the corefiles generated by MAP_ANONYMOUS in the
# test program.
set all_anon_corefiles { { "non-Private-Anonymous" "0x7e" \
$non_private_anon_core \
"private_anon" \
"shared_anon" "0x22" "0" }
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
{ "non-Shared-Anonymous" "0x7d" \
$non_shared_anon_core "shared_anon" \
"private_anon" "0x11" "0" }
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
{ "DoNotDump" "0x33" \
$dont_dump_core "dont_dump" \
"shared_anon" "0x22" "0" }
{ "DoNotDump-DumpExcluded" "0x33" \
$dump_excluded_core "dont_dump" \
"shared_anon" "0x55" "1" } }
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
# If corefile loading is not supported, we do not even try to run the
# tests.
set core_supported [gdb_gcore_cmd "$non_private_anon_core" "save a corefile"]
if { !$core_supported } {
untested "corefile generation is not supported"
return -1
}
gdb_test_multiple "info inferiors" "getting inferior pid" {
-re "process $decimal.*\r\n$gdb_prompt $" {
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
}
-re "Remote target.*$gdb_prompt $" {
# If the target does not provide PID information (like usermode QEMU),
# just bail out as the rest of the test may rely on it, giving spurious
# failures.
return -1
}
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
}
# Get the main function's address.
set main_addr ""
gdb_test_multiple "print/x &main" "getting main's address" {
-re "$decimal = \($hex\)\r\n$gdb_prompt $" {
set main_addr $expect_out(1,string)
}
}
# Obtain the address of each variable that will be checked on each
# case.
unset -nocomplain coredump_var_addr
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
foreach item $all_anon_corefiles {
foreach name [list [lindex $item 3] [lindex $item 4]] {
set test "print/x $name"
gdb_test_multiple $test $test {
-re " = \($hex\)\r\n$gdb_prompt $" {
set coredump_var_addr($name) $expect_out(1,string)
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
}
}
}
}
# Generate corefiles for the "anon" case.
foreach item $all_anon_corefiles {
with_test_prefix "saving corefile for [lindex $item 0]" {
do_save_core [lindex $item 1] [subst [lindex $item 2]] [lindex $item 6]
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
}
}
with_test_prefix "saving corefile for non-Private-Shared-Anon-File" {
do_save_core "0x60" $non_private_shared_anon_file_core "0"
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
}
clean_restart $testfile
foreach item $all_anon_corefiles {
with_test_prefix "loading and testing corefile for [lindex $item 0]" {
do_load_and_test_core [subst [lindex $item 2]] [lindex $item 3] \
[lindex $item 4] [lindex $item 5] [lindex $item 6]
Implement support for checking /proc/PID/coredump_filter This patch, as the subject says, extends GDB so that it is able to use the contents of the file /proc/PID/coredump_filter when generating a corefile. This file contains a bit mask that is a representation of the different types of memory mappings in the Linux kernel; the user can choose to dump or not dump a certain type of memory mapping by enabling/disabling the respective bit in the bit mask. Currently, here is what is supported: bit 0 Dump anonymous private mappings. bit 1 Dump anonymous shared mappings. bit 2 Dump file-backed private mappings. bit 3 Dump file-backed shared mappings. bit 4 (since Linux 2.6.24) Dump ELF headers. bit 5 (since Linux 2.6.28) Dump private huge pages. bit 6 (since Linux 2.6.28) Dump shared huge pages. (This table has been taken from core(5), but you can also read about it on Documentation/filesystems/proc.txt inside the Linux kernel source tree). The default value for this file, used by the Linux kernel, is 0x33, which means that bits 0, 1, 4 and 5 are enabled. This is also the default for GDB implemented in this patch, FWIW. Well, reading the file is obviously trivial. The hard part, mind you, is how to determine the types of the memory mappings. For that, I extended the code of gdb/linux-tdep.c:linux_find_memory_regions_full and made it rely *much more* on the information gathered from /proc/<PID>/smaps. This file contains a "verbose dump" of the inferior's memory mappings, and we were not using as much information as we could from it. If you want to read more about this file, take a look at the proc(5) manpage (I will also write a blog post soon about everything I had to learn to get this patch done, and when I it is ready I will post it here). With Oleg Nesterov's help, we could improve the current algorithm for determining whether a memory mapping is anonymous/file-backed, private/shared. GDB now also respects the MADV_DONTDUMP flag and does not dump the memory mapping marked as so, and will always dump "[vsyscall]" or "[vdso]" mappings (just like the Linux kernel). In a nutshell, what the new code is doing is: - If the mapping is associated to a file whose name ends with " (deleted)", or if the file is "/dev/zero", or if it is "/SYSV%08x" (shared memory), or if there is no file associated with it, or if the AnonHugePages: or the Anonymous: fields in the /proc/PID/smaps have contents, then GDB considers this mapping to be anonymous. There is a special case in this, though: if the memory mapping is a file-backed one, but *also* contains "Anonymous:" or "AnonHugePages:" pages, then GDB considers this mapping to be *both* anonymous and file-backed, just like the Linux kernel does. What that means is simple: this mapping will be dumped if the user requested anonymous mappings *or* if the user requested file-backed mappings to be present in the corefile. It is worth mentioning that, from all those checks described above, the most fragile is the one to see if the file name ends with " (deleted)". This does not necessarily mean that the mapping is anonymous, because the deleted file associated with the mapping may have been a hard link to another file, for example. The Linux kernel checks to see if "i_nlink == 0", but GDB cannot easily do this check (as it has been discussed, GDB would need to run as root, and would need to check the contents of the /proc/PID/map_files/ directory in order to determine whether the deleted was a hardlink or not). Therefore, we made a compromise here, and we assume that if the file name ends with " (deleted)", then the mapping is indeed anonymous. FWIW, this is something the Linux kernel could do better: expose this information in a more direct way. - If we see the flag "sh" in the VmFlags: field (in /proc/PID/smaps), then certainly the memory mapping is shared (VM_SHARED). If we have access to the VmFlags, and we don't see the "sh" there, then certainly the mapping is private. However, older Linux kernels (see the code for more details) do not have the VmFlags field; in that case, we use another heuristic: if we see 'p' in the permission flags, then we assume that the mapping is private, even though the presence of the 's' flag there would mean VM_MAYSHARE, which means the mapping could still be private. This should work OK enough, however. Finally, it is worth mentioning that I added a new command, 'set use-coredump-filter on/off'. When it is 'on', it will read the coredump_filter' file (if it exists) and use its value; otherwise, it will use the default value mentioned above (0x33) to decide which memory mappings to dump. gdb/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> Jan Kratochvil <jan.kratochvil@redhat.com> Oleg Nesterov <oleg@redhat.com> PR corefiles/16092 * linux-tdep.c: Include 'gdbcmd.h' and 'gdb_regex.h'. New enum identifying the various options of the coredump_filter file. (struct smaps_vmflags): New struct. (use_coredump_filter): New variable. (decode_vmflags): New function. (mapping_is_anonymous_p): Likewise. (dump_mapping_p): Likewise. (linux_find_memory_regions_full): New variables 'coredumpfilter_name', 'coredumpfilterdata', 'pid', 'filterflags'. Removed variable 'modified'. Read /proc/<PID>/smaps file; improve parsing of its information. Implement memory mapping filtering based on its contents. (show_use_coredump_filter): New function. (_initialize_linux_tdep): New command 'set use-coredump-filter'. * NEWS: Mention the possibility of using the '/proc/PID/coredump_filter' file when generating a corefile. Mention new command 'set use-coredump-filter'. gdb/doc/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.texinfo (gcore): Mention new command 'set use-coredump-filter'. (set use-coredump-filter): Document new command. gdb/testsuite/ChangeLog: 2015-03-31 Sergio Durigan Junior <sergiodj@redhat.com> PR corefiles/16092 * gdb.base/coredump-filter.c: New file. * gdb.base/coredump-filter.exp: Likewise.
2015-04-01 01:32:34 +02:00
}
with_test_prefix "disassembling function main for [lindex $item 0]" {
test_disasm [subst [lindex $item 2]] $main_addr 0
}
}
with_test_prefix "loading and testing corefile for non-Private-Shared-Anon-File" {
test_disasm $non_private_shared_anon_file_core $main_addr 1
}