binutils-gdb/gdb/v850-tdep.c

1199 lines
35 KiB
C
Raw Normal View History

/* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
Copyright 1996, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
1999-07-07 20:19:36 +00:00
This file is part of GDB.
1999-07-07 20:19:36 +00:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
1999-07-07 20:19:36 +00:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
1999-07-07 20:19:36 +00:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "obstack.h"
#include "target.h"
#include "value.h"
#include "bfd.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "symfile.h"
#include "arch-utils.h"
#include "regcache.h"
#include "symtab.h"
struct gdbarch_tdep
{
/* gdbarch target dependent data here. Currently unused for v850. */
};
/* Extra info which is saved in each frame_info. */
struct frame_extra_info
{
};
enum {
E_R0_REGNUM,
E_R1_REGNUM,
E_R2_REGNUM, E_SAVE1_START_REGNUM = E_R2_REGNUM, E_SAVE1_END_REGNUM = E_R2_REGNUM,
E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
E_R4_REGNUM,
E_R5_REGNUM,
E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
E_R7_REGNUM,
E_R8_REGNUM,
E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
E_R12_REGNUM,
E_R13_REGNUM,
E_R14_REGNUM,
E_R15_REGNUM,
E_R16_REGNUM,
E_R17_REGNUM,
E_R18_REGNUM,
E_R19_REGNUM,
E_R20_REGNUM, E_SAVE2_START_REGNUM = E_R20_REGNUM,
E_R21_REGNUM,
E_R22_REGNUM,
E_R23_REGNUM,
E_R24_REGNUM,
E_R25_REGNUM,
E_R26_REGNUM,
E_R27_REGNUM,
E_R28_REGNUM,
E_R29_REGNUM, E_SAVE2_END_REGNUM = E_R29_REGNUM, E_FP_RAW_REGNUM = E_R29_REGNUM,
E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
E_R31_REGNUM, E_SAVE3_START_REGNUM = E_R31_REGNUM, E_SAVE3_END_REGNUM = E_R31_REGNUM, E_RP_REGNUM = E_R31_REGNUM,
E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
E_R33_REGNUM,
E_R34_REGNUM,
E_R35_REGNUM,
E_R36_REGNUM,
E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
E_R38_REGNUM,
E_R39_REGNUM,
E_R40_REGNUM,
E_R41_REGNUM,
E_R42_REGNUM,
E_R43_REGNUM,
E_R44_REGNUM,
E_R45_REGNUM,
E_R46_REGNUM,
E_R47_REGNUM,
E_R48_REGNUM,
E_R49_REGNUM,
E_R50_REGNUM,
E_R51_REGNUM,
E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
E_R53_REGNUM,
E_R54_REGNUM,
E_R55_REGNUM,
E_R56_REGNUM,
E_R57_REGNUM,
E_R58_REGNUM,
E_R59_REGNUM,
E_R60_REGNUM,
E_R61_REGNUM,
E_R62_REGNUM,
E_R63_REGNUM,
E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
E_R65_REGNUM, E_FP_REGNUM = E_R65_REGNUM,
E_NUM_REGS
};
enum
{
v850_reg_size = 4
};
/* Size of all registers as a whole. */
enum
{
E_ALL_REGS_SIZE = (E_NUM_REGS) * v850_reg_size
};
static LONGEST call_dummy_nil[] = {0};
static char *v850_generic_reg_names[] =
{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
"sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
"sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
"pc", "fp"
};
static char *v850e_reg_names[] =
{
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
"sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
"ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
"sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
"pc", "fp"
};
char **v850_register_names = v850_generic_reg_names;
struct
1999-07-07 20:19:36 +00:00
{
char **regnames;
int mach;
}
v850_processor_type_table[] =
{
1999-07-07 20:19:36 +00:00
{
v850_generic_reg_names, bfd_mach_v850
}
,
{
v850e_reg_names, bfd_mach_v850e
}
,
{
v850e_reg_names, bfd_mach_v850ea
}
,
{
NULL, 0
}
};
/* Info gleaned from scanning a function's prologue. */
struct pifsr /* Info about one saved reg */
1999-07-07 20:19:36 +00:00
{
int framereg; /* Frame reg (SP or FP) */
int offset; /* Offset from framereg */
int cur_frameoffset; /* Current frameoffset */
int reg; /* Saved register number */
};
struct prologue_info
1999-07-07 20:19:36 +00:00
{
int framereg;
int frameoffset;
int start_function;
struct pifsr *pifsrs;
};
2000-05-28 01:12:42 +00:00
static CORE_ADDR v850_scan_prologue (CORE_ADDR pc, struct prologue_info *fs);
/* Function: v850_register_name
Returns the name of the v850/v850e register N. */
static char *
v850_register_name (int regnum)
{
if (regnum < 0 || regnum >= E_NUM_REGS)
internal_error (__FILE__, __LINE__,
"v850_register_name: illegal register number %d",
regnum);
else
return v850_register_names[regnum];
}
/* Function: v850_register_byte
Returns the byte position in the register cache for register N. */
static int
v850_register_byte (int regnum)
{
if (regnum < 0 || regnum >= E_NUM_REGS)
internal_error (__FILE__, __LINE__,
"v850_register_byte: illegal register number %d",
regnum);
else
return regnum * v850_reg_size;
}
/* Function: v850_register_raw_size
Returns the number of bytes occupied by the register on the target. */
static int
v850_register_raw_size (int regnum)
{
if (regnum < 0 || regnum >= E_NUM_REGS)
internal_error (__FILE__, __LINE__,
"v850_register_raw_size: illegal register number %d",
regnum);
/* Only the PC has 4 Byte, all other registers 2 Byte. */
else
return v850_reg_size;
}
/* Function: v850_register_virtual_size
Returns the number of bytes occupied by the register as represented
internally by gdb. */
static int
v850_register_virtual_size (int regnum)
{
return v850_register_raw_size (regnum);
}
/* Function: v850_reg_virtual_type
Returns the default type for register N. */
static struct type *
v850_reg_virtual_type (int regnum)
{
if (regnum < 0 || regnum >= E_NUM_REGS)
internal_error (__FILE__, __LINE__,
"v850_register_virtual_type: illegal register number %d",
regnum);
else if (regnum == E_PC_REGNUM)
return builtin_type_uint32;
else
return builtin_type_int32;
}
/* Should call_function allocate stack space for a struct return? */
int
2000-07-30 01:48:28 +00:00
v850_use_struct_convention (int gcc_p, struct type *type)
{
return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 4);
}
1999-07-07 20:19:36 +00:00
/* Structure for mapping bits in register lists to register numbers. */
1999-07-07 20:19:36 +00:00
struct reg_list
{
long mask;
int regno;
};
/* Helper function for v850_scan_prologue to handle prepare instruction. */
static void
1999-07-07 20:19:36 +00:00
handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
struct prologue_info *pi, struct pifsr **pifsr_ptr)
{
CORE_ADDR current_pc = *current_pc_ptr;
struct pifsr *pifsr = *pifsr_ptr;
long next = insn2 & 0xffff;
long list12 = ((insn & 1) << 16) + (next & 0xffe0);
long offset = (insn & 0x3e) << 1;
1999-07-07 20:19:36 +00:00
static struct reg_list reg_table[] =
{
1999-07-07 20:19:36 +00:00
{0x00800, 20}, /* r20 */
{0x00400, 21}, /* r21 */
{0x00200, 22}, /* r22 */
{0x00100, 23}, /* r23 */
{0x08000, 24}, /* r24 */
{0x04000, 25}, /* r25 */
{0x02000, 26}, /* r26 */
{0x01000, 27}, /* r27 */
{0x00080, 28}, /* r28 */
{0x00040, 29}, /* r29 */
{0x10000, 30}, /* ep */
{0x00020, 31}, /* lp */
{0, 0} /* end of table */
};
int i;
1999-07-07 20:19:36 +00:00
if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
current_pc += 2;
else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
current_pc += 2;
else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
current_pc += 4;
/* Calculate the total size of the saved registers, and add it
it to the immediate value used to adjust SP. */
for (i = 0; reg_table[i].mask != 0; i++)
if (list12 & reg_table[i].mask)
offset += v850_register_raw_size (reg_table[i].regno);
pi->frameoffset -= offset;
/* Calculate the offsets of the registers relative to the value
the SP will have after the registers have been pushed and the
imm5 value has been subtracted from it. */
if (pifsr)
{
for (i = 0; reg_table[i].mask != 0; i++)
{
if (list12 & reg_table[i].mask)
{
int reg = reg_table[i].regno;
offset -= v850_register_raw_size (reg);
pifsr->reg = reg;
pifsr->offset = offset;
pifsr->cur_frameoffset = pi->frameoffset;
1999-07-07 20:19:36 +00:00
#ifdef DEBUG
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
1999-07-07 20:19:36 +00:00
#endif
pifsr++;
}
}
}
#ifdef DEBUG
printf_filtered ("\tfound ctret after regsave func");
#endif
/* Set result parameters. */
*current_pc_ptr = current_pc;
*pifsr_ptr = pifsr;
}
/* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
FIXME: the SR bit of the register list is not supported; must check
that the compiler does not ever generate this bit. */
static void
handle_pushm (int insn, int insn2, struct prologue_info *pi,
1999-07-07 20:19:36 +00:00
struct pifsr **pifsr_ptr)
{
struct pifsr *pifsr = *pifsr_ptr;
long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
long offset = 0;
1999-07-07 20:19:36 +00:00
static struct reg_list pushml_reg_table[] =
{
{0x80000, E_PS_REGNUM}, /* PSW */
1999-07-07 20:19:36 +00:00
{0x40000, 1}, /* r1 */
{0x20000, 2}, /* r2 */
{0x10000, 3}, /* r3 */
{0x00800, 4}, /* r4 */
{0x00400, 5}, /* r5 */
{0x00200, 6}, /* r6 */
{0x00100, 7}, /* r7 */
{0x08000, 8}, /* r8 */
{0x04000, 9}, /* r9 */
{0x02000, 10}, /* r10 */
{0x01000, 11}, /* r11 */
{0x00080, 12}, /* r12 */
{0x00040, 13}, /* r13 */
{0x00020, 14}, /* r14 */
{0x00010, 15}, /* r15 */
{0, 0} /* end of table */
};
1999-07-07 20:19:36 +00:00
static struct reg_list pushmh_reg_table[] =
{
1999-07-07 20:19:36 +00:00
{0x80000, 16}, /* r16 */
{0x40000, 17}, /* r17 */
{0x20000, 18}, /* r18 */
{0x10000, 19}, /* r19 */
{0x00800, 20}, /* r20 */
{0x00400, 21}, /* r21 */
{0x00200, 22}, /* r22 */
{0x00100, 23}, /* r23 */
{0x08000, 24}, /* r24 */
{0x04000, 25}, /* r25 */
{0x02000, 26}, /* r26 */
{0x01000, 27}, /* r27 */
{0x00080, 28}, /* r28 */
{0x00040, 29}, /* r29 */
{0x00010, 30}, /* r30 */
{0x00020, 31}, /* r31 */
{0, 0} /* end of table */
};
struct reg_list *reg_table;
int i;
/* Is this a pushml or a pushmh? */
if ((insn2 & 7) == 1)
reg_table = pushml_reg_table;
else
reg_table = pushmh_reg_table;
/* Calculate the total size of the saved registers, and add it
it to the immediate value used to adjust SP. */
for (i = 0; reg_table[i].mask != 0; i++)
if (list12 & reg_table[i].mask)
offset += v850_register_raw_size (reg_table[i].regno);
pi->frameoffset -= offset;
/* Calculate the offsets of the registers relative to the value
the SP will have after the registers have been pushed and the
imm5 value is subtracted from it. */
if (pifsr)
{
for (i = 0; reg_table[i].mask != 0; i++)
{
if (list12 & reg_table[i].mask)
{
int reg = reg_table[i].regno;
offset -= v850_register_raw_size (reg);
pifsr->reg = reg;
pifsr->offset = offset;
pifsr->cur_frameoffset = pi->frameoffset;
1999-07-07 20:19:36 +00:00
#ifdef DEBUG
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
1999-07-07 20:19:36 +00:00
#endif
pifsr++;
}
}
}
#ifdef DEBUG
printf_filtered ("\tfound ctret after regsave func");
#endif
/* Set result parameters. */
*pifsr_ptr = pifsr;
}
1999-07-07 20:19:36 +00:00
/* Function: scan_prologue
Scan the prologue of the function that contains PC, and record what
we find in PI. Returns the pc after the prologue. Note that the
addresses saved in frame->saved_regs are just frame relative (negative
offsets from the frame pointer). This is because we don't know the
actual value of the frame pointer yet. In some circumstances, the
frame pointer can't be determined till after we have scanned the
prologue. */
static CORE_ADDR
2000-07-30 01:48:28 +00:00
v850_scan_prologue (CORE_ADDR pc, struct prologue_info *pi)
{
CORE_ADDR func_addr, prologue_end, current_pc;
struct pifsr *pifsr, *pifsr_tmp;
int fp_used;
int ep_used;
int reg;
CORE_ADDR save_pc, save_end;
int regsave_func_p;
int r12_tmp;
/* First, figure out the bounds of the prologue so that we can limit the
search to something reasonable. */
if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
{
struct symtab_and_line sal;
sal = find_pc_line (func_addr, 0);
if (func_addr == entry_point_address ())
pi->start_function = 1;
else
pi->start_function = 0;
#if 0
if (sal.line == 0)
prologue_end = pc;
else
prologue_end = sal.end;
#else
prologue_end = pc;
#endif
}
else
{ /* We're in the boondocks */
func_addr = pc - 100;
prologue_end = pc;
}
prologue_end = min (prologue_end, pc);
/* Now, search the prologue looking for instructions that setup fp, save
rp, adjust sp and such. We also record the frame offset of any saved
1999-07-07 20:19:36 +00:00
registers. */
pi->frameoffset = 0;
pi->framereg = E_SP_REGNUM;
fp_used = 0;
ep_used = 0;
pifsr = pi->pifsrs;
regsave_func_p = 0;
save_pc = 0;
save_end = 0;
r12_tmp = 0;
#ifdef DEBUG
printf_filtered ("Current_pc = 0x%.8lx, prologue_end = 0x%.8lx\n",
1999-07-07 20:19:36 +00:00
(long) func_addr, (long) prologue_end);
#endif
1999-07-07 20:19:36 +00:00
for (current_pc = func_addr; current_pc < prologue_end;)
{
int insn;
int insn2 = -1; /* dummy value */
#ifdef DEBUG
1999-07-07 20:19:36 +00:00
printf_filtered ("0x%.8lx ", (long) current_pc);
TARGET_PRINT_INSN (current_pc, &tm_print_insn_info);
#endif
insn = read_memory_unsigned_integer (current_pc, 2);
current_pc += 2;
1999-07-07 20:19:36 +00:00
if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
{
insn2 = read_memory_unsigned_integer (current_pc, 2);
current_pc += 2;
}
if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
{ /* jarl <func>,10 */
1999-07-07 20:19:36 +00:00
long low_disp = insn2 & ~(long) 1;
long disp = (((((insn & 0x3f) << 16) + low_disp)
1999-07-07 20:19:36 +00:00
& ~(long) 1) ^ 0x00200000) - 0x00200000;
save_pc = current_pc;
save_end = prologue_end;
regsave_func_p = 1;
current_pc += disp - 4;
prologue_end = (current_pc
+ (2 * 3) /* moves to/from ep */
1999-07-07 20:19:36 +00:00
+ 4 /* addi <const>,sp,sp */
+ 2 /* jmp [r10] */
+ (2 * 12) /* sst.w to save r2, r20-r29, r31 */
+ 20); /* slop area */
#ifdef DEBUG
printf_filtered ("\tfound jarl <func>,r10, disp = %ld, low_disp = %ld, new pc = 0x%.8lx\n",
1999-07-07 20:19:36 +00:00
disp, low_disp, (long) current_pc + 2);
#endif
continue;
}
else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
{ /* callt <imm6> */
long ctbp = read_register (E_CTBP_REGNUM);
long adr = ctbp + ((insn & 0x3f) << 1);
save_pc = current_pc;
save_end = prologue_end;
regsave_func_p = 1;
current_pc = ctbp + (read_memory_unsigned_integer (adr, 2) & 0xffff);
prologue_end = (current_pc
+ (2 * 3) /* prepare list2,imm5,sp/imm */
1999-07-07 20:19:36 +00:00
+ 4 /* ctret */
+ 20); /* slop area */
#ifdef DEBUG
printf_filtered ("\tfound callt, ctbp = 0x%.8lx, adr = %.8lx, new pc = 0x%.8lx\n",
1999-07-07 20:19:36 +00:00
ctbp, adr, (long) current_pc);
#endif
continue;
}
else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
{
handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
continue;
}
else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
{ /* ctret after processing register save function */
current_pc = save_pc;
prologue_end = save_end;
regsave_func_p = 0;
#ifdef DEBUG
printf_filtered ("\tfound ctret after regsave func");
#endif
continue;
}
else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
{ /* pushml, pushmh */
handle_pushm (insn, insn2, pi, &pifsr);
continue;
}
else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
{ /* jmp after processing register save function */
current_pc = save_pc;
prologue_end = save_end;
regsave_func_p = 0;
#ifdef DEBUG
printf_filtered ("\tfound jmp after regsave func");
#endif
continue;
}
else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
|| (insn & 0xffe0) == 0x0060 /* jmp */
|| (insn & 0x0780) == 0x0580) /* branch */
{
#ifdef DEBUG
printf_filtered ("\n");
#endif
1999-07-07 20:19:36 +00:00
break; /* Ran into end of prologue */
}
else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240)) /* add <imm>,sp */
pi->frameoffset += ((insn & 0x1f) ^ 0x10) - 0x10;
else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM)) /* addi <imm>,sp,sp */
pi->frameoffset += insn2;
else if (insn == ((E_FP_RAW_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) /* mov sp,fp */
{
fp_used = 1;
pi->framereg = E_FP_RAW_REGNUM;
}
else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM)) /* movhi hi(const),r0,r12 */
r12_tmp = insn2 << 16;
else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM)) /* movea lo(const),r12,r12 */
r12_tmp += insn2;
else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp) /* add r12,sp */
pi->frameoffset = r12_tmp;
else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM)) /* mov sp,ep */
ep_used = 1;
else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM)) /* mov r1,ep */
ep_used = 0;
else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM) /* st.w <reg>,<offset>[sp] */
|| (fp_used
&& (insn & 0x07ff) == (0x0760 | E_FP_RAW_REGNUM))) /* st.w <reg>,<offset>[fp] */
&& pifsr
&& (((reg = (insn >> 11) & 0x1f) >= E_SAVE1_START_REGNUM && reg <= E_SAVE1_END_REGNUM)
|| (reg >= E_SAVE2_START_REGNUM && reg <= E_SAVE2_END_REGNUM)
|| (reg >= E_SAVE3_START_REGNUM && reg <= E_SAVE3_END_REGNUM)))
{
pifsr->reg = reg;
pifsr->offset = insn2 & ~1;
pifsr->cur_frameoffset = pi->frameoffset;
#ifdef DEBUG
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
#endif
pifsr++;
}
1999-07-07 20:19:36 +00:00
else if (ep_used /* sst.w <reg>,<offset>[ep] */
&& ((insn & 0x0781) == 0x0501)
&& pifsr
&& (((reg = (insn >> 11) & 0x1f) >= E_SAVE1_START_REGNUM && reg <= E_SAVE1_END_REGNUM)
|| (reg >= E_SAVE2_START_REGNUM && reg <= E_SAVE2_END_REGNUM)
|| (reg >= E_SAVE3_START_REGNUM && reg <= E_SAVE3_END_REGNUM)))
{
pifsr->reg = reg;
pifsr->offset = (insn & 0x007e) << 1;
pifsr->cur_frameoffset = pi->frameoffset;
#ifdef DEBUG
printf_filtered ("\tSaved register r%d, offset %d", reg, pifsr->offset);
#endif
pifsr++;
}
#ifdef DEBUG
printf_filtered ("\n");
#endif
}
if (pifsr)
pifsr->framereg = 0; /* Tie off last entry */
/* Fix up any offsets to the final offset. If a frame pointer was created, use it
instead of the stack pointer. */
for (pifsr_tmp = pi->pifsrs; pifsr_tmp && pifsr_tmp != pifsr; pifsr_tmp++)
{
pifsr_tmp->offset -= pi->frameoffset - pifsr_tmp->cur_frameoffset;
pifsr_tmp->framereg = pi->framereg;
#ifdef DEBUG
printf_filtered ("Saved register r%d, offset = %d, framereg = r%d\n",
1999-07-07 20:19:36 +00:00
pifsr_tmp->reg, pifsr_tmp->offset, pifsr_tmp->framereg);
#endif
}
#ifdef DEBUG
printf_filtered ("Framereg = r%d, frameoffset = %d\n", pi->framereg, pi->frameoffset);
#endif
return current_pc;
}
/* Function: find_callers_reg
Find REGNUM on the stack. Otherwise, it's in an active register.
One thing we might want to do here is to check REGNUM against the
clobber mask, and somehow flag it as invalid if it isn't saved on
the stack somewhere. This would provide a graceful failure mode
when trying to get the value of caller-saves registers for an inner
frame. */
CORE_ADDR
v850_find_callers_reg (struct frame_info *fi, int regnum)
{
for (; fi; fi = fi->next)
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return generic_read_register_dummy (fi->pc, fi->frame, regnum);
else if (fi->saved_regs[regnum] != 0)
return read_memory_unsigned_integer (fi->saved_regs[regnum],
v850_register_raw_size (regnum));
return read_register (regnum);
}
/* Function: frame_chain
Figure out the frame prior to FI. Unfortunately, this involves
scanning the prologue of the caller, which will also be done
shortly by v850_init_extra_frame_info. For the dummy frame, we
just return the stack pointer that was in use at the time the
function call was made. */
CORE_ADDR
2000-07-30 01:48:28 +00:00
v850_frame_chain (struct frame_info *fi)
{
struct prologue_info pi;
CORE_ADDR callers_pc, fp;
/* First, find out who called us */
callers_pc = FRAME_SAVED_PC (fi);
/* If caller is a call-dummy, then our FP bears no relation to his FP! */
fp = v850_find_callers_reg (fi, E_FP_RAW_REGNUM);
1999-07-07 20:19:36 +00:00
if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
return fp; /* caller is call-dummy: return oldest value of FP */
/* Caller is NOT a call-dummy, so everything else should just work.
Even if THIS frame is a call-dummy! */
pi.pifsrs = NULL;
v850_scan_prologue (callers_pc, &pi);
if (pi.start_function)
return 0; /* Don't chain beyond the start function */
if (pi.framereg == E_FP_RAW_REGNUM)
return v850_find_callers_reg (fi, pi.framereg);
return fi->frame - pi.frameoffset;
}
/* Function: skip_prologue
Return the address of the first code past the prologue of the function. */
CORE_ADDR
2000-07-30 01:48:28 +00:00
v850_skip_prologue (CORE_ADDR pc)
{
CORE_ADDR func_addr, func_end;
/* See what the symbol table says */
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
{
struct symtab_and_line sal;
sal = find_pc_line (func_addr, 0);
if (sal.line != 0 && sal.end < func_end)
return sal.end;
else
/* Either there's no line info, or the line after the prologue is after
the end of the function. In this case, there probably isn't a
prologue. */
return pc;
}
/* We can't find the start of this function, so there's nothing we can do. */
return pc;
}
/* Function: pop_frame
This routine gets called when either the user uses the `return'
command, or the call dummy breakpoint gets hit. */
void
v850_pop_frame (void)
{
struct frame_info *frame = get_current_frame ();
int regnum;
1999-07-07 20:19:36 +00:00
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
generic_pop_dummy_frame ();
else
{
write_register (E_PC_REGNUM, FRAME_SAVED_PC (frame));
for (regnum = 0; regnum < E_NUM_REGS; regnum++)
if (frame->saved_regs[regnum] != 0)
write_register (regnum,
read_memory_unsigned_integer (frame->saved_regs[regnum],
v850_register_raw_size (regnum)));
write_register (E_SP_REGNUM, FRAME_FP (frame));
}
flush_cached_frames ();
}
/* Function: push_arguments
Setup arguments and RP for a call to the target. First four args
go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
are passed by reference. 64 bit quantities (doubles and long
longs) may be split between the regs and the stack. When calling a
function that returns a struct, a pointer to the struct is passed
in as a secret first argument (always in R6).
Stack space for the args has NOT been allocated: that job is up to us.
1999-07-07 20:19:36 +00:00
*/
CORE_ADDR
2001-07-15 20:10:02 +00:00
v850_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
int argreg;
int argnum;
int len = 0;
int stack_offset;
/* First, just for safety, make sure stack is aligned */
sp &= ~3;
/* Now make space on the stack for the args. */
for (argnum = 0; argnum < nargs; argnum++)
1999-07-07 20:19:36 +00:00
len += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
sp -= len; /* possibly over-allocating, but it works... */
/* (you might think we could allocate 16 bytes */
/* less, but the ABI seems to use it all! ) */
argreg = E_ARG0_REGNUM;
/* the struct_return pointer occupies the first parameter-passing reg */
if (struct_return)
1999-07-07 20:19:36 +00:00
write_register (argreg++, struct_addr);
stack_offset = 16;
/* The offset onto the stack at which we will start copying parameters
(after the registers are used up) begins at 16 rather than at zero.
I don't really know why, that's just the way it seems to work. */
/* Now load as many as possible of the first arguments into
registers, and push the rest onto the stack. There are 16 bytes
in four registers available. Loop thru args from first to last. */
for (argnum = 0; argnum < nargs; argnum++)
{
int len;
char *val;
char valbuf[v850_register_raw_size (E_ARG0_REGNUM)];
if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
&& TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
{
store_address (valbuf, 4, VALUE_ADDRESS (*args));
len = 4;
val = valbuf;
}
else
{
len = TYPE_LENGTH (VALUE_TYPE (*args));
1999-07-07 20:19:36 +00:00
val = (char *) VALUE_CONTENTS (*args);
}
while (len > 0)
if (argreg <= E_ARGLAST_REGNUM)
{
CORE_ADDR regval;
regval = extract_address (val, v850_register_raw_size (argreg));
write_register (argreg, regval);
len -= v850_register_raw_size (argreg);
val += v850_register_raw_size (argreg);
argreg++;
}
else
{
write_memory (sp + stack_offset, val, 4);
len -= 4;
val += 4;
stack_offset += 4;
}
args++;
}
return sp;
}
/* Function: push_return_address (pc)
Set up the return address for the inferior function call.
Needed for targets where we don't actually execute a JSR/BSR instruction */
1999-07-07 20:19:36 +00:00
CORE_ADDR
2000-07-30 01:48:28 +00:00
v850_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
write_register (E_RP_REGNUM, CALL_DUMMY_ADDRESS ());
return sp;
}
1999-07-07 20:19:36 +00:00
/* Function: frame_saved_pc
Find the caller of this frame. We do this by seeing if E_RP_REGNUM
is saved in the stack anywhere, otherwise we get it from the
registers. If the inner frame is a dummy frame, return its PC
instead of RP, because that's where "caller" of the dummy-frame
will be found. */
CORE_ADDR
2000-07-30 01:48:28 +00:00
v850_frame_saved_pc (struct frame_info *fi)
{
1999-07-07 20:19:36 +00:00
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return generic_read_register_dummy (fi->pc, fi->frame, E_PC_REGNUM);
else
return v850_find_callers_reg (fi, E_RP_REGNUM);
}
/* Function: fix_call_dummy
Pokes the callee function's address into the CALL_DUMMY assembly stub.
Assumes that the CALL_DUMMY looks like this:
1999-07-07 20:19:36 +00:00
jarl <offset24>, r31
trap
*/
void
2000-07-30 01:48:28 +00:00
v850_fix_call_dummy (char *dummy, CORE_ADDR sp, CORE_ADDR fun, int nargs,
2001-07-15 20:10:02 +00:00
struct value **args, struct type *type, int gcc_p)
{
long offset24;
offset24 = (long) fun - (long) entry_point_address ();
offset24 &= 0x3fffff;
offset24 |= 0xff800000; /* jarl <offset24>, r31 */
1999-07-07 20:19:36 +00:00
store_unsigned_integer ((unsigned int *) &dummy[2], 2, offset24 & 0xffff);
store_unsigned_integer ((unsigned int *) &dummy[0], 2, offset24 >> 16);
}
static CORE_ADDR
v850_saved_pc_after_call (struct frame_info *ignore)
{
return read_register (E_RP_REGNUM);
}
static void
v850_extract_return_value (struct type *type, char *regbuf, char *valbuf)
{
memcpy (valbuf, regbuf + v850_register_byte (E_V0_REGNUM),
TYPE_LENGTH (type));
}
const static unsigned char *
v850_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
static unsigned char breakpoint[] = { 0x85, 0x05 };
*lenptr = sizeof (breakpoint);
return breakpoint;
}
static CORE_ADDR
v850_extract_struct_value_address (char *regbuf)
{
return extract_address (regbuf + v850_register_byte (E_V0_REGNUM),
v850_register_raw_size (E_V0_REGNUM));
}
static void
v850_store_return_value (struct type *type, char *valbuf)
{
write_register_bytes(v850_register_byte (E_V0_REGNUM), valbuf,
TYPE_LENGTH (type));
}
static void
v850_frame_init_saved_regs (struct frame_info *fi)
{
struct prologue_info pi;
struct pifsr pifsrs[E_NUM_REGS + 1], *pifsr;
CORE_ADDR func_addr, func_end;
if (!fi->saved_regs)
{
frame_saved_regs_zalloc (fi);
/* The call dummy doesn't save any registers on the stack, so we
can return now. */
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return;
/* Find the beginning of this function, so we can analyze its
prologue. */
if (find_pc_partial_function (fi->pc, NULL, &func_addr, &func_end))
{
pi.pifsrs = pifsrs;
v850_scan_prologue (fi->pc, &pi);
if (!fi->next && pi.framereg == E_SP_REGNUM)
fi->frame = read_register (pi.framereg) - pi.frameoffset;
for (pifsr = pifsrs; pifsr->framereg; pifsr++)
{
fi->saved_regs[pifsr->reg] = pifsr->offset + fi->frame;
if (pifsr->framereg == E_SP_REGNUM)
fi->saved_regs[pifsr->reg] += pi.frameoffset;
}
}
/* Else we're out of luck (can't debug completely stripped code).
FIXME. */
}
}
/* Function: init_extra_frame_info
Setup the frame's frame pointer, pc, and frame addresses for saved
registers. Most of the work is done in scan_prologue().
Note that when we are called for the last frame (currently active frame),
that fi->pc and fi->frame will already be setup. However, fi->frame will
be valid only if this routine uses FP. For previous frames, fi-frame will
always be correct (since that is derived from v850_frame_chain ()).
We can be called with the PC in the call dummy under two circumstances.
First, during normal backtracing, second, while figuring out the frame
pointer just prior to calling the target function (see run_stack_dummy). */
static void
v850_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
struct prologue_info pi;
if (fi->next)
fi->pc = FRAME_SAVED_PC (fi->next);
v850_frame_init_saved_regs (fi);
}
static void
v850_store_struct_return (CORE_ADDR a, CORE_ADDR b)
{
}
static CORE_ADDR
v850_target_read_fp (void)
{
return read_register (E_FP_RAW_REGNUM);
}
static struct gdbarch *
v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
static LONGEST call_dummy_words[1] = { 0 };
struct gdbarch_tdep *tdep = NULL;
struct gdbarch *gdbarch;
int i;
/* find a candidate among the list of pre-declared architectures. */
arches = gdbarch_list_lookup_by_info (arches, &info);
if (arches != NULL)
return (arches->gdbarch);
#if 0
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
#endif
/* Change the register names based on the current machine type. */
if (info.bfd_arch_info->arch != bfd_arch_v850)
return 0;
gdbarch = gdbarch_alloc (&info, 0);
for (i = 0; v850_processor_type_table[i].regnames != NULL; i++)
{
if (v850_processor_type_table[i].mach == info.bfd_arch_info->mach)
{
v850_register_names = v850_processor_type_table[i].regnames;
tm_print_insn_info.mach = info.bfd_arch_info->mach;
break;
}
}
/*
* Basic register fields and methods.
*/
set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
set_gdbarch_num_pseudo_regs (gdbarch, 0);
set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
set_gdbarch_fp_regnum (gdbarch, E_FP_REGNUM);
set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
set_gdbarch_register_name (gdbarch, v850_register_name);
set_gdbarch_register_size (gdbarch, v850_reg_size);
set_gdbarch_register_bytes (gdbarch, E_ALL_REGS_SIZE);
set_gdbarch_register_byte (gdbarch, v850_register_byte);
set_gdbarch_register_raw_size (gdbarch, v850_register_raw_size);
set_gdbarch_max_register_raw_size (gdbarch, v850_reg_size);
set_gdbarch_register_virtual_size (gdbarch, v850_register_raw_size);
set_gdbarch_max_register_virtual_size (gdbarch, v850_reg_size);
set_gdbarch_register_virtual_type (gdbarch, v850_reg_virtual_type);
set_gdbarch_read_fp (gdbarch, v850_target_read_fp);
/*
* Frame Info
*/
set_gdbarch_init_extra_frame_info (gdbarch, v850_init_extra_frame_info);
set_gdbarch_frame_init_saved_regs (gdbarch, v850_frame_init_saved_regs);
set_gdbarch_frame_chain (gdbarch, v850_frame_chain);
set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
set_gdbarch_saved_pc_after_call (gdbarch, v850_saved_pc_after_call);
set_gdbarch_frame_saved_pc (gdbarch, v850_frame_saved_pc);
set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
set_gdbarch_frame_args_address (gdbarch, default_frame_address);
set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
/*
* Miscelany
*/
/* Stack grows up. */
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
/* PC stops zero byte after a trap instruction
(which means: exactly on trap instruction). */
set_gdbarch_decr_pc_after_break (gdbarch, 0);
/* This value is almost never non-zero... */
set_gdbarch_function_start_offset (gdbarch, 0);
/* This value is almost never non-zero... */
set_gdbarch_frame_args_skip (gdbarch, 0);
/* OK to default this value to 'unknown'. */
set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
/* W/o prototype, coerce float args to double. */
set_gdbarch_coerce_float_to_double (gdbarch, standard_coerce_float_to_double);
/*
* Call Dummies
*
* These values and methods are used when gdb calls a target function. */
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
set_gdbarch_push_return_address (gdbarch, v850_push_return_address);
set_gdbarch_extract_return_value (gdbarch, v850_extract_return_value);
set_gdbarch_push_arguments (gdbarch, v850_push_arguments);
set_gdbarch_pop_frame (gdbarch, v850_pop_frame);
set_gdbarch_store_struct_return (gdbarch, v850_store_struct_return);
set_gdbarch_store_return_value (gdbarch, v850_store_return_value);
set_gdbarch_extract_struct_value_address (gdbarch, v850_extract_struct_value_address);
set_gdbarch_use_struct_convention (gdbarch, v850_use_struct_convention);
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
set_gdbarch_call_dummy_length (gdbarch, 0);
set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
set_gdbarch_call_dummy_p (gdbarch, 1);
set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
/* set_gdbarch_call_dummy_stack_adjust */
set_gdbarch_fix_call_dummy (gdbarch, v850_fix_call_dummy);
set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
return gdbarch;
}
void
2000-07-30 01:48:28 +00:00
_initialize_v850_tdep (void)
{
tm_print_insn = print_insn_v850;
register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
}