2009-07-31 17:28:27 +02:00
|
|
|
/* Cell SPU GNU/Linux support -- shared library handling.
|
2010-01-01 08:32:07 +01:00
|
|
|
Copyright (C) 2009, 2010 Free Software Foundation, Inc.
|
2009-07-31 17:28:27 +02:00
|
|
|
|
|
|
|
Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
|
|
|
|
|
|
|
|
This file is part of GDB.
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
2009-12-20 12:51:30 +01:00
|
|
|
the Free Software Foundation; either version 3 of the License, or
|
2009-07-31 17:28:27 +02:00
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
2009-12-20 12:51:30 +01:00
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
2009-07-31 17:28:27 +02:00
|
|
|
|
|
|
|
#include "defs.h"
|
|
|
|
#include "gdbcore.h"
|
|
|
|
#include "gdb_string.h"
|
|
|
|
#include "gdb_assert.h"
|
|
|
|
#include "gdb_stat.h"
|
|
|
|
#include "arch-utils.h"
|
|
|
|
#include "bfd.h"
|
|
|
|
#include "symtab.h"
|
|
|
|
#include "solib.h"
|
|
|
|
#include "solib-svr4.h"
|
|
|
|
#include "solist.h"
|
|
|
|
#include "inferior.h"
|
|
|
|
#include "objfiles.h"
|
|
|
|
#include "observer.h"
|
|
|
|
#include "breakpoint.h"
|
|
|
|
#include "gdbthread.h"
|
|
|
|
|
|
|
|
#include "spu-tdep.h"
|
|
|
|
|
|
|
|
/* Highest SPE id (file handle) the inferior may have. */
|
|
|
|
#define MAX_SPE_FD 1024
|
|
|
|
|
|
|
|
/* Stand-alone SPE executable? */
|
|
|
|
#define spu_standalone_p() \
|
|
|
|
(symfile_objfile && symfile_objfile->obfd \
|
|
|
|
&& bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu)
|
|
|
|
|
|
|
|
|
|
|
|
/* Relocate main SPE executable. */
|
|
|
|
static void
|
|
|
|
spu_relocate_main_executable (int spufs_fd)
|
|
|
|
{
|
|
|
|
struct section_offsets *new_offsets;
|
|
|
|
int i;
|
|
|
|
|
2010-01-09 10:11:00 +01:00
|
|
|
if (symfile_objfile == NULL)
|
|
|
|
return;
|
2009-07-31 17:28:27 +02:00
|
|
|
|
2010-01-09 10:11:00 +01:00
|
|
|
new_offsets = alloca (symfile_objfile->num_sections
|
|
|
|
* sizeof (struct section_offsets));
|
2009-07-31 17:28:27 +02:00
|
|
|
|
2010-01-09 10:11:00 +01:00
|
|
|
for (i = 0; i < symfile_objfile->num_sections; i++)
|
|
|
|
new_offsets->offsets[i] = SPUADDR (spufs_fd, 0);
|
|
|
|
|
|
|
|
objfile_relocate (symfile_objfile, new_offsets);
|
2009-07-31 17:28:27 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
/* When running a stand-alone SPE executable, we may need to skip one more
|
|
|
|
exec event on startup, to get past the binfmt_misc loader. */
|
|
|
|
static void
|
|
|
|
spu_skip_standalone_loader (void)
|
|
|
|
{
|
|
|
|
if (target_has_execution && !current_inferior ()->attach_flag)
|
|
|
|
{
|
|
|
|
struct target_waitstatus ws;
|
|
|
|
|
|
|
|
/* Only some kernels report an extra SIGTRAP with the binfmt_misc
|
|
|
|
loader; others do not. In addition, if we have attached to an
|
|
|
|
already running inferior instead of starting a new one, we will
|
|
|
|
not see the extra SIGTRAP -- and we cannot readily distinguish
|
|
|
|
the two cases, in particular with the extended-remote target.
|
|
|
|
|
|
|
|
Thus we issue a single-step here. If no extra SIGTRAP was pending,
|
|
|
|
this will step past the first instruction of the stand-alone SPE
|
|
|
|
executable loader, but we don't care about that. */
|
|
|
|
|
|
|
|
inferior_thread ()->in_infcall = 1; /* Suppress MI messages. */
|
|
|
|
|
|
|
|
target_resume (inferior_ptid, 1, TARGET_SIGNAL_0);
|
|
|
|
target_wait (minus_one_ptid, &ws, 0);
|
|
|
|
set_executing (minus_one_ptid, 0);
|
|
|
|
|
|
|
|
inferior_thread ()->in_infcall = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Build a list of `struct so_list' objects describing the shared
|
|
|
|
objects currently loaded in the inferior. */
|
|
|
|
static struct so_list *
|
|
|
|
spu_current_sos (void)
|
|
|
|
{
|
|
|
|
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
|
|
|
|
struct so_list *head;
|
|
|
|
struct so_list **link_ptr;
|
|
|
|
|
|
|
|
char buf[MAX_SPE_FD * 4];
|
|
|
|
int i, size;
|
|
|
|
|
|
|
|
/* First, retrieve the SVR4 shared library list. */
|
|
|
|
head = svr4_so_ops.current_sos ();
|
|
|
|
|
|
|
|
/* Append our libraries to the end of the list. */
|
|
|
|
for (link_ptr = &head; *link_ptr; link_ptr = &(*link_ptr)->next)
|
|
|
|
;
|
|
|
|
|
|
|
|
/* Determine list of SPU ids. */
|
|
|
|
size = target_read (¤t_target, TARGET_OBJECT_SPU, NULL,
|
|
|
|
buf, 0, sizeof buf);
|
|
|
|
|
|
|
|
/* Do not add stand-alone SPE executable context as shared library,
|
|
|
|
but relocate main SPE executable objfile. */
|
|
|
|
if (spu_standalone_p ())
|
|
|
|
{
|
|
|
|
if (size == 4)
|
|
|
|
{
|
|
|
|
int fd = extract_unsigned_integer (buf, 4, byte_order);
|
|
|
|
spu_relocate_main_executable (fd);
|
|
|
|
|
|
|
|
/* Re-enable breakpoints after main SPU context was established;
|
|
|
|
see also comments in spu_solib_create_inferior_hook. */
|
|
|
|
enable_breakpoints_after_startup ();
|
|
|
|
}
|
|
|
|
|
|
|
|
return head;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Create an so_list entry for each SPU id. */
|
|
|
|
for (i = 0; i < size; i += 4)
|
|
|
|
{
|
|
|
|
int fd = extract_unsigned_integer (buf + i, 4, byte_order);
|
|
|
|
struct so_list *new;
|
|
|
|
|
|
|
|
unsigned long long addr;
|
|
|
|
char annex[32], id[100];
|
|
|
|
int len;
|
|
|
|
|
|
|
|
/* Read object ID. There's a race window where the inferior may have
|
|
|
|
already created the SPE context, but not installed the object-id
|
|
|
|
yet. Skip such entries; we'll be back for them later. */
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/object-id", fd);
|
|
|
|
len = target_read (¤t_target, TARGET_OBJECT_SPU, annex,
|
|
|
|
id, 0, sizeof id);
|
|
|
|
if (len <= 0 || len >= sizeof id)
|
|
|
|
continue;
|
|
|
|
id[len] = 0;
|
|
|
|
if (sscanf (id, "0x%llx", &addr) != 1 || !addr)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* Allocate so_list structure. */
|
|
|
|
new = XZALLOC (struct so_list);
|
|
|
|
|
|
|
|
/* Encode FD and object ID in path name. Choose the name so as not
|
|
|
|
to conflict with any (normal) SVR4 library path name. */
|
2010-04-06 00:18:53 +02:00
|
|
|
xsnprintf (new->so_name, sizeof new->so_name, "@%s <%d>",
|
|
|
|
hex_string (addr), fd);
|
2009-07-31 17:28:27 +02:00
|
|
|
strcpy (new->so_original_name, new->so_name);
|
|
|
|
|
|
|
|
*link_ptr = new;
|
|
|
|
link_ptr = &new->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
return head;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Free so_list information. */
|
|
|
|
static void
|
|
|
|
spu_free_so (struct so_list *so)
|
|
|
|
{
|
|
|
|
if (so->so_original_name[0] != '@')
|
|
|
|
svr4_so_ops.free_so (so);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Relocate section addresses. */
|
|
|
|
static void
|
|
|
|
spu_relocate_section_addresses (struct so_list *so,
|
|
|
|
struct target_section *sec)
|
|
|
|
{
|
|
|
|
if (so->so_original_name[0] != '@')
|
|
|
|
svr4_so_ops.relocate_section_addresses (so, sec);
|
|
|
|
else
|
|
|
|
{
|
|
|
|
unsigned long long addr;
|
|
|
|
int fd;
|
|
|
|
|
|
|
|
/* Set addr_low/high to just LS offset for display. */
|
|
|
|
if (so->addr_low == 0 && so->addr_high == 0
|
|
|
|
&& strcmp (sec->the_bfd_section->name, ".text") == 0)
|
|
|
|
{
|
|
|
|
so->addr_low = sec->addr;
|
|
|
|
so->addr_high = sec->endaddr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Decode object ID. */
|
|
|
|
if (sscanf (so->so_original_name, "@0x%llx <%d>", &addr, &fd) != 2)
|
|
|
|
internal_error (__FILE__, __LINE__, "bad object ID");
|
|
|
|
|
|
|
|
sec->addr = SPUADDR (fd, sec->addr);
|
|
|
|
sec->endaddr = SPUADDR (fd, sec->endaddr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* Inferior memory should contain an SPE executable image at location ADDR.
|
|
|
|
Allocate a BFD representing that executable. Return NULL on error. */
|
|
|
|
|
|
|
|
static void *
|
|
|
|
spu_bfd_iovec_open (bfd *nbfd, void *open_closure)
|
|
|
|
{
|
|
|
|
return open_closure;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
spu_bfd_iovec_close (bfd *nbfd, void *stream)
|
|
|
|
{
|
|
|
|
xfree (stream);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static file_ptr
|
|
|
|
spu_bfd_iovec_pread (bfd *abfd, void *stream, void *buf,
|
|
|
|
file_ptr nbytes, file_ptr offset)
|
|
|
|
{
|
|
|
|
CORE_ADDR addr = *(CORE_ADDR *)stream;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = target_read_memory (addr + offset, buf, nbytes);
|
|
|
|
if (ret != 0)
|
|
|
|
{
|
|
|
|
bfd_set_error (bfd_error_invalid_operation);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return nbytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int
|
|
|
|
spu_bfd_iovec_stat (bfd *abfd, void *stream, struct stat *sb)
|
|
|
|
{
|
|
|
|
/* We don't have an easy way of finding the size of embedded spu
|
|
|
|
images. We could parse the in-memory ELF header and section
|
|
|
|
table to find the extent of the last section but that seems
|
|
|
|
pointless when the size is needed only for checks of other
|
|
|
|
parsed values in dbxread.c. */
|
|
|
|
sb->st_size = INT_MAX;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bfd *
|
|
|
|
spu_bfd_fopen (char *name, CORE_ADDR addr)
|
|
|
|
{
|
|
|
|
bfd *nbfd;
|
|
|
|
|
|
|
|
CORE_ADDR *open_closure = xmalloc (sizeof (CORE_ADDR));
|
|
|
|
*open_closure = addr;
|
|
|
|
|
|
|
|
nbfd = bfd_openr_iovec (xstrdup (name), "elf32-spu",
|
|
|
|
spu_bfd_iovec_open, open_closure,
|
|
|
|
spu_bfd_iovec_pread, spu_bfd_iovec_close,
|
|
|
|
spu_bfd_iovec_stat);
|
|
|
|
if (!nbfd)
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
if (!bfd_check_format (nbfd, bfd_object))
|
|
|
|
{
|
|
|
|
bfd_close (nbfd);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return nbfd;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Open shared library BFD. */
|
|
|
|
static bfd *
|
|
|
|
spu_bfd_open (char *pathname)
|
|
|
|
{
|
|
|
|
char *original_name = strrchr (pathname, '@');
|
|
|
|
bfd *abfd;
|
|
|
|
asection *spu_name;
|
|
|
|
unsigned long long addr;
|
|
|
|
int fd;
|
|
|
|
|
|
|
|
/* Handle regular SVR4 libraries. */
|
|
|
|
if (!original_name)
|
|
|
|
return svr4_so_ops.bfd_open (pathname);
|
|
|
|
|
|
|
|
/* Decode object ID. */
|
|
|
|
if (sscanf (original_name, "@0x%llx <%d>", &addr, &fd) != 2)
|
|
|
|
internal_error (__FILE__, __LINE__, "bad object ID");
|
|
|
|
|
|
|
|
/* Open BFD representing SPE executable. */
|
|
|
|
abfd = spu_bfd_fopen (original_name, (CORE_ADDR) addr);
|
|
|
|
if (!abfd)
|
|
|
|
error (_("Cannot read SPE executable at %s"), original_name);
|
|
|
|
|
|
|
|
/* Retrieve SPU name note. */
|
|
|
|
spu_name = bfd_get_section_by_name (abfd, ".note.spu_name");
|
|
|
|
if (spu_name)
|
|
|
|
{
|
|
|
|
int sect_size = bfd_section_size (abfd, spu_name);
|
|
|
|
if (sect_size > 20)
|
|
|
|
{
|
|
|
|
char *buf = alloca (sect_size - 20 + strlen (original_name) + 1);
|
|
|
|
bfd_get_section_contents (abfd, spu_name, buf, 20, sect_size - 20);
|
|
|
|
buf[sect_size - 20] = '\0';
|
|
|
|
|
|
|
|
strcat (buf, original_name);
|
|
|
|
|
|
|
|
xfree ((char *)abfd->filename);
|
|
|
|
abfd->filename = xstrdup (buf);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return abfd;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Lookup global symbol in a SPE executable. */
|
|
|
|
static struct symbol *
|
|
|
|
spu_lookup_lib_symbol (const struct objfile *objfile,
|
|
|
|
const char *name,
|
|
|
|
const domain_enum domain)
|
|
|
|
{
|
|
|
|
if (bfd_get_arch (objfile->obfd) == bfd_arch_spu)
|
dwarf2_physname patchset:
Based on work from Daniel Jacobowitz <dan@codesourcery.com>
* c-typeprint.c (cp_type_print_method_args): For non-static methods,
print out const or volatile qualifiers, too.
(c_type_print_args): Add parameters show_artificial and language.
Skip artificial parameters when requested.
Use the appropriate language printer.
(c_type_print_varspec): Tell c_type_print_args to skip artificial
parameters and pass language_c.
* dwarf2read.c (die_list): New file global.
(struct partial_die_info): Update comments for name field.
(pdi_needs_namespace): Renamed to ...
(die_needs_namespace): ... this. Rewrite.
(dwarf2_linkage_name): Remove.
(add_partial_symbol): Do not predicate the call to
partial_die_full_name based on pdi_needs_namespace.
Remove call to cp_check_possible_namespace_symbols and associated
outdated comments.
(guess_structure_name): Do not inspect child subprogram DIEs.
(dwarf2_fullname): Update comments.
Use die_needs_namespace to assist in computing the name.
(read_func_scope): Use dwarf2_name to get the DIE's name.
Use dwarf2_physname to get the "linkage name" of the DIE.
(dwarf2_add_member_field): Use dwarf2_physname instead of
dwarf2_linkage_name.
(read_structure_type): For structs and classes, set TYPE_NAME, too.
(determine_class): Remove.
(read_partial_die): Ignore DW_AT_MIPS_linkage_name for all languages
except Ada.
(new_symbol): Unconditionally call dwarf2_name.
Compute the "linkage name" using dwarf2_physname.
Use dwarf2_name instead of dwarf2_full_name for enumerator DIEs.
When determining to scan for anonymous C++ namespaces, ignore
the linkage name.
(dwarf2_physname): New function.
(dwarf2_full_name): Move content to new function and call
that.
(dwarf2_compute_name): "New" function.
(_initialize_dwarf2_read): Initialize die_list.
* gnu-v3-eabi.c (gnu_v3_find_method_in): Remove unused variable
physname.
(gnu_v3_print_method_ptr): Use the physname for virtual methods
without a demangled name.
Print out type information for non-virtual methods.
* linespec.c (decode_line_1): Force ANY string using "::" (or
"." for java) to use decode_compound, and clean up any stray quoting.
If we found a file symtab, re-evaluate whether the remainder is_quoted.
(decode_compound): Stop consuming at an open parenthesis.
Keep template parameters.
Keep any overload information.
Keep keywords like "const".
Remove paren_pointer.
Move is_quoted check from set_flags to here.
Remove #if 0 code from 2000. Ten years is long enough.
(find_method): Before comparing symbol names, canonicalize the string
from the user.
If a specific overload is requested, find it. Otherwise throw an error.
(find_method_overload_end): New function.
(set_flags): Remove.
(decode_compound): Assume that parentheses are matched.
It's a lot easier.
* symtab.c (symbol_find_demangled_name): Add DMGL_VERBOSE flag
to cplus_demangle.
* linespec.c (decode_line_1): Keep important keywords like
"const" and "volatile".
* symtab.h (SYMBOL_CPLUS_DEMANGLED_NAME): Remove.
* typeprint.h (c_type_print_args): Add declaration.
* ui-file.c (do_ui_file_obsavestring): New function.
(ui_file_obsavestring): New function.
* ui-file.h (ui_file_obsavestring): Add declaration.
* valops.c (find_overload_match): Resolve the object to
a non-pointer type.
If the object is a data member, search the object for the member
and return with staticp set.
Use SYMBOL_NATURAL_NAME instead of SYMBOL_CPLUS_DEMANGLED_NAME.
Do not attempt to extract a function name from non-function types.
If the extracted function name and the original name are the same,
we don't have a C++ method.
From Jan Kratochvil <jan.kratochvil@redhat.com>:
* dwarf2read.c (new_symbol <DW_TAG_enumerator>): Call dwarf2_full_name.
* ada-lang.c (ada_lookup_symbol): Remove linkage_name parameters
and arguments from symbol lookups.
* ax-gdb.c (gen_expr): Likewise.
* cp-namespace.c (cp_lookup_symbol_nonlocal, lookup_namespace_scope,
cp_lookup_symbol_namespace, lookup_symbol_file, lookup_nested_type,
lookup_possible_namespace_symbol): Likewise.
* cp-support.c (read_in_psymtabs): Likewise.
* cp-support.h (cp_lookup_symbol_nonlocal): Likewise.
* language.h (la_lookup_symbol_nonlocal): Likewise.
* scm-valprint.c (scm_inferior_print): Likewise.
* solib-darwin.c (darwin_relocate_section_addresses): Likewise.
* solib-svr.c (elf_lookup_lib): Likewise.
* solib.c (show_auto_solib_add): Likewise.
* solist.h (lookup_lib_global, solib_global_lookup): Likewise.
* symmisc.c (maintenance_check_symtabs): Likewise.
* symtab.c (lookup_symbol_in_language, lookup_symbol_aux,
lookup_symbol_aux_local, lookup_symbol_aux_block,
lookup_symbol_from_objfile, lookup_symbol_aux_symtabs,
lookup_symbol_aux_psymtabs,basic_lookup_symbol_nonlocal,
lookup_symbol_static, lookup_symbol_global, symbol_matches_domain,
basic_lookup_transparent_type, find_main_psymtab,
lookup_block_symbol): Likewise.
* symtab.h (basic_lookp_symbol_nonlocal, lookup_symbol_static,
lookup_symbol_global, lookup_symbol_aux_block,
lookup_symbol_partial_symbol, lookup_block_symbol,
lookup_global_symbol, value_maybe_namespace_elt): Likewise.
2010-03-09 19:09:08 +01:00
|
|
|
return lookup_global_symbol_from_objfile (objfile, name, domain);
|
2009-07-31 17:28:27 +02:00
|
|
|
|
|
|
|
if (svr4_so_ops.lookup_lib_global_symbol != NULL)
|
dwarf2_physname patchset:
Based on work from Daniel Jacobowitz <dan@codesourcery.com>
* c-typeprint.c (cp_type_print_method_args): For non-static methods,
print out const or volatile qualifiers, too.
(c_type_print_args): Add parameters show_artificial and language.
Skip artificial parameters when requested.
Use the appropriate language printer.
(c_type_print_varspec): Tell c_type_print_args to skip artificial
parameters and pass language_c.
* dwarf2read.c (die_list): New file global.
(struct partial_die_info): Update comments for name field.
(pdi_needs_namespace): Renamed to ...
(die_needs_namespace): ... this. Rewrite.
(dwarf2_linkage_name): Remove.
(add_partial_symbol): Do not predicate the call to
partial_die_full_name based on pdi_needs_namespace.
Remove call to cp_check_possible_namespace_symbols and associated
outdated comments.
(guess_structure_name): Do not inspect child subprogram DIEs.
(dwarf2_fullname): Update comments.
Use die_needs_namespace to assist in computing the name.
(read_func_scope): Use dwarf2_name to get the DIE's name.
Use dwarf2_physname to get the "linkage name" of the DIE.
(dwarf2_add_member_field): Use dwarf2_physname instead of
dwarf2_linkage_name.
(read_structure_type): For structs and classes, set TYPE_NAME, too.
(determine_class): Remove.
(read_partial_die): Ignore DW_AT_MIPS_linkage_name for all languages
except Ada.
(new_symbol): Unconditionally call dwarf2_name.
Compute the "linkage name" using dwarf2_physname.
Use dwarf2_name instead of dwarf2_full_name for enumerator DIEs.
When determining to scan for anonymous C++ namespaces, ignore
the linkage name.
(dwarf2_physname): New function.
(dwarf2_full_name): Move content to new function and call
that.
(dwarf2_compute_name): "New" function.
(_initialize_dwarf2_read): Initialize die_list.
* gnu-v3-eabi.c (gnu_v3_find_method_in): Remove unused variable
physname.
(gnu_v3_print_method_ptr): Use the physname for virtual methods
without a demangled name.
Print out type information for non-virtual methods.
* linespec.c (decode_line_1): Force ANY string using "::" (or
"." for java) to use decode_compound, and clean up any stray quoting.
If we found a file symtab, re-evaluate whether the remainder is_quoted.
(decode_compound): Stop consuming at an open parenthesis.
Keep template parameters.
Keep any overload information.
Keep keywords like "const".
Remove paren_pointer.
Move is_quoted check from set_flags to here.
Remove #if 0 code from 2000. Ten years is long enough.
(find_method): Before comparing symbol names, canonicalize the string
from the user.
If a specific overload is requested, find it. Otherwise throw an error.
(find_method_overload_end): New function.
(set_flags): Remove.
(decode_compound): Assume that parentheses are matched.
It's a lot easier.
* symtab.c (symbol_find_demangled_name): Add DMGL_VERBOSE flag
to cplus_demangle.
* linespec.c (decode_line_1): Keep important keywords like
"const" and "volatile".
* symtab.h (SYMBOL_CPLUS_DEMANGLED_NAME): Remove.
* typeprint.h (c_type_print_args): Add declaration.
* ui-file.c (do_ui_file_obsavestring): New function.
(ui_file_obsavestring): New function.
* ui-file.h (ui_file_obsavestring): Add declaration.
* valops.c (find_overload_match): Resolve the object to
a non-pointer type.
If the object is a data member, search the object for the member
and return with staticp set.
Use SYMBOL_NATURAL_NAME instead of SYMBOL_CPLUS_DEMANGLED_NAME.
Do not attempt to extract a function name from non-function types.
If the extracted function name and the original name are the same,
we don't have a C++ method.
From Jan Kratochvil <jan.kratochvil@redhat.com>:
* dwarf2read.c (new_symbol <DW_TAG_enumerator>): Call dwarf2_full_name.
* ada-lang.c (ada_lookup_symbol): Remove linkage_name parameters
and arguments from symbol lookups.
* ax-gdb.c (gen_expr): Likewise.
* cp-namespace.c (cp_lookup_symbol_nonlocal, lookup_namespace_scope,
cp_lookup_symbol_namespace, lookup_symbol_file, lookup_nested_type,
lookup_possible_namespace_symbol): Likewise.
* cp-support.c (read_in_psymtabs): Likewise.
* cp-support.h (cp_lookup_symbol_nonlocal): Likewise.
* language.h (la_lookup_symbol_nonlocal): Likewise.
* scm-valprint.c (scm_inferior_print): Likewise.
* solib-darwin.c (darwin_relocate_section_addresses): Likewise.
* solib-svr.c (elf_lookup_lib): Likewise.
* solib.c (show_auto_solib_add): Likewise.
* solist.h (lookup_lib_global, solib_global_lookup): Likewise.
* symmisc.c (maintenance_check_symtabs): Likewise.
* symtab.c (lookup_symbol_in_language, lookup_symbol_aux,
lookup_symbol_aux_local, lookup_symbol_aux_block,
lookup_symbol_from_objfile, lookup_symbol_aux_symtabs,
lookup_symbol_aux_psymtabs,basic_lookup_symbol_nonlocal,
lookup_symbol_static, lookup_symbol_global, symbol_matches_domain,
basic_lookup_transparent_type, find_main_psymtab,
lookup_block_symbol): Likewise.
* symtab.h (basic_lookp_symbol_nonlocal, lookup_symbol_static,
lookup_symbol_global, lookup_symbol_aux_block,
lookup_symbol_partial_symbol, lookup_block_symbol,
lookup_global_symbol, value_maybe_namespace_elt): Likewise.
2010-03-09 19:09:08 +01:00
|
|
|
return svr4_so_ops.lookup_lib_global_symbol (objfile, name, domain);
|
2009-07-31 17:28:27 +02:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Enable shared library breakpoint. */
|
|
|
|
static int
|
|
|
|
spu_enable_break (struct objfile *objfile)
|
|
|
|
{
|
|
|
|
struct minimal_symbol *spe_event_sym = NULL;
|
|
|
|
|
|
|
|
/* The libspe library will call __spe_context_update_event whenever any
|
|
|
|
SPE context is allocated or destroyed. */
|
|
|
|
spe_event_sym = lookup_minimal_symbol ("__spe_context_update_event",
|
|
|
|
NULL, objfile);
|
|
|
|
|
|
|
|
/* Place a solib_event breakpoint on the symbol. */
|
|
|
|
if (spe_event_sym)
|
|
|
|
{
|
|
|
|
CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (spe_event_sym);
|
|
|
|
addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch, addr,
|
|
|
|
¤t_target);
|
|
|
|
create_solib_event_breakpoint (target_gdbarch, addr);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Create inferior hook. */
|
|
|
|
static void
|
2010-01-08 23:52:04 +01:00
|
|
|
spu_solib_create_inferior_hook (int from_tty)
|
2009-07-31 17:28:27 +02:00
|
|
|
{
|
|
|
|
/* Handle SPE stand-alone executables. */
|
|
|
|
if (spu_standalone_p ())
|
|
|
|
{
|
|
|
|
/* After an SPE stand-alone executable was loaded, we'll receive
|
|
|
|
an additional trap due to the binfmt_misc handler. Make sure
|
|
|
|
to skip that trap. */
|
|
|
|
spu_skip_standalone_loader ();
|
|
|
|
|
|
|
|
/* If the user established breakpoints before starting the inferior, GDB
|
|
|
|
would attempt to insert those now. This would fail because the SPU
|
|
|
|
context has not yet been created and the SPU executable has not yet
|
|
|
|
been loaded. To prevent such failures, we disable all user-created
|
|
|
|
breakpoints now; they will be re-enabled in spu_current_sos once the
|
|
|
|
main SPU context has been detected. */
|
|
|
|
disable_breakpoints_before_startup ();
|
|
|
|
|
|
|
|
/* A special case arises when re-starting an executable, because at
|
|
|
|
this point it still resides at the relocated address range that was
|
|
|
|
determined during its last execution. We need to undo the relocation
|
|
|
|
so that that multi-architecture target recognizes the stand-alone
|
|
|
|
initialization special case. */
|
|
|
|
spu_relocate_main_executable (-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Call SVR4 hook -- this will re-insert the SVR4 solib breakpoints. */
|
2010-01-08 23:52:04 +01:00
|
|
|
svr4_so_ops.solib_create_inferior_hook (from_tty);
|
2009-07-31 17:28:27 +02:00
|
|
|
|
|
|
|
/* If the inferior is statically linked against libspe, we need to install
|
|
|
|
our own solib breakpoint right now. Otherwise, it will be installed by
|
|
|
|
the solib_loaded observer below as soon as libspe is loaded. */
|
|
|
|
spu_enable_break (NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Install SPE "shared library" handling. This is called by -tdep code
|
|
|
|
that wants to support SPU as a secondary architecture. */
|
|
|
|
void
|
|
|
|
set_spu_solib_ops (struct gdbarch *gdbarch)
|
|
|
|
{
|
|
|
|
static struct target_so_ops spu_so_ops;
|
|
|
|
|
|
|
|
/* Initialize this lazily, to avoid an initialization order
|
|
|
|
dependency on solib-svr4.c's _initialize routine. */
|
|
|
|
if (spu_so_ops.current_sos == NULL)
|
|
|
|
{
|
|
|
|
spu_so_ops = svr4_so_ops;
|
|
|
|
spu_so_ops.solib_create_inferior_hook = spu_solib_create_inferior_hook;
|
|
|
|
spu_so_ops.relocate_section_addresses = spu_relocate_section_addresses;
|
|
|
|
spu_so_ops.free_so = spu_free_so;
|
|
|
|
spu_so_ops.current_sos = spu_current_sos;
|
|
|
|
spu_so_ops.bfd_open = spu_bfd_open;
|
|
|
|
spu_so_ops.lookup_lib_global_symbol = spu_lookup_lib_symbol;
|
|
|
|
}
|
|
|
|
|
|
|
|
set_solib_ops (gdbarch, &spu_so_ops);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Observer for the solib_loaded event. Used to install our breakpoint
|
|
|
|
if libspe is a shared library. */
|
|
|
|
static void
|
|
|
|
spu_solib_loaded (struct so_list *so)
|
|
|
|
{
|
|
|
|
if (strstr (so->so_original_name, "/libspe") != NULL)
|
|
|
|
{
|
2010-04-15 22:19:24 +02:00
|
|
|
solib_read_symbols (so, 0);
|
2009-07-31 17:28:27 +02:00
|
|
|
spu_enable_break (so->objfile);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
_initialize_spu_solib (void)
|
|
|
|
{
|
|
|
|
observer_attach_solib_loaded (spu_solib_loaded);
|
|
|
|
}
|
|
|
|
|