binutils-gdb/sim/m32r/m32r.c

414 lines
10 KiB
C
Raw Normal View History

/* m32r simulator support code
Copyright (C) 1996-2014 Free Software Foundation, Inc.
Contributed by Cygnus Support.
2003-12-11 12:33:44 +01:00
This file is part of GDB, the GNU debugger.
2003-12-11 12:33:44 +01:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
2003-12-11 12:33:44 +01:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#define WANT_CPU m32rbf
#define WANT_CPU_M32RBF
#include "sim-main.h"
#include "cgen-mem.h"
#include "cgen-ops.h"
/* Decode gdb ctrl register number. */
int
m32r_decode_gdb_ctrl_regnum (int gdb_regnum)
{
switch (gdb_regnum)
{
case PSW_REGNUM : return H_CR_PSW;
case CBR_REGNUM : return H_CR_CBR;
case SPI_REGNUM : return H_CR_SPI;
case SPU_REGNUM : return H_CR_SPU;
case BPC_REGNUM : return H_CR_BPC;
case BBPSW_REGNUM : return H_CR_BBPSW;
case BBPC_REGNUM : return H_CR_BBPC;
2003-12-11 12:33:44 +01:00
case EVB_REGNUM : return H_CR_CR5;
}
abort ();
}
/* The contents of BUF are in target byte order. */
int
m32rbf_fetch_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
{
if (rn < 16)
2003-12-11 12:33:44 +01:00
SETTWI (buf, m32rbf_h_gr_get (current_cpu, rn));
else
switch (rn)
{
case PSW_REGNUM :
case CBR_REGNUM :
case SPI_REGNUM :
case SPU_REGNUM :
case BPC_REGNUM :
case BBPSW_REGNUM :
case BBPC_REGNUM :
2003-12-11 12:33:44 +01:00
SETTWI (buf, m32rbf_h_cr_get (current_cpu,
m32r_decode_gdb_ctrl_regnum (rn)));
break;
case PC_REGNUM :
2003-12-11 12:33:44 +01:00
SETTWI (buf, m32rbf_h_pc_get (current_cpu));
break;
case ACCL_REGNUM :
2003-12-11 12:33:44 +01:00
SETTWI (buf, GETLODI (m32rbf_h_accum_get (current_cpu)));
break;
case ACCH_REGNUM :
2003-12-11 12:33:44 +01:00
SETTWI (buf, GETHIDI (m32rbf_h_accum_get (current_cpu)));
break;
default :
return 0;
}
return -1; /*FIXME*/
}
/* The contents of BUF are in target byte order. */
int
m32rbf_store_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
{
if (rn < 16)
2003-12-11 12:33:44 +01:00
m32rbf_h_gr_set (current_cpu, rn, GETTWI (buf));
else
switch (rn)
{
case PSW_REGNUM :
case CBR_REGNUM :
case SPI_REGNUM :
case SPU_REGNUM :
case BPC_REGNUM :
case BBPSW_REGNUM :
case BBPC_REGNUM :
2003-12-11 12:33:44 +01:00
m32rbf_h_cr_set (current_cpu,
m32r_decode_gdb_ctrl_regnum (rn),
GETTWI (buf));
break;
case PC_REGNUM :
2003-12-11 12:33:44 +01:00
m32rbf_h_pc_set (current_cpu, GETTWI (buf));
break;
case ACCL_REGNUM :
{
2003-12-11 12:33:44 +01:00
DI val = m32rbf_h_accum_get (current_cpu);
SETLODI (val, GETTWI (buf));
2003-12-11 12:33:44 +01:00
m32rbf_h_accum_set (current_cpu, val);
break;
}
case ACCH_REGNUM :
{
2003-12-11 12:33:44 +01:00
DI val = m32rbf_h_accum_get (current_cpu);
SETHIDI (val, GETTWI (buf));
2003-12-11 12:33:44 +01:00
m32rbf_h_accum_set (current_cpu, val);
break;
}
default :
return 0;
}
return -1; /*FIXME*/
}
USI
m32rbf_h_cr_get_handler (SIM_CPU *current_cpu, UINT cr)
{
switch (cr)
{
case H_CR_PSW : /* psw */
return (((CPU (h_bpsw) & 0xc1) << 8)
| ((CPU (h_psw) & 0xc0) << 0)
| GET_H_COND ());
case H_CR_BBPSW : /* backup backup psw */
return CPU (h_bbpsw) & 0xc1;
case H_CR_CBR : /* condition bit */
return GET_H_COND ();
case H_CR_SPI : /* interrupt stack pointer */
if (! GET_H_SM ())
return CPU (h_gr[H_GR_SP]);
else
return CPU (h_cr[H_CR_SPI]);
case H_CR_SPU : /* user stack pointer */
if (GET_H_SM ())
return CPU (h_gr[H_GR_SP]);
else
return CPU (h_cr[H_CR_SPU]);
case H_CR_BPC : /* backup pc */
return CPU (h_cr[H_CR_BPC]) & 0xfffffffe;
case H_CR_BBPC : /* backup backup pc */
return CPU (h_cr[H_CR_BBPC]) & 0xfffffffe;
case 4 : /* ??? unspecified, but apparently available */
case 5 : /* ??? unspecified, but apparently available */
return CPU (h_cr[cr]);
default :
return 0;
}
}
void
m32rbf_h_cr_set_handler (SIM_CPU *current_cpu, UINT cr, USI newval)
{
switch (cr)
{
case H_CR_PSW : /* psw */
{
int old_sm = (CPU (h_psw) & 0x80) != 0;
int new_sm = (newval & 0x80) != 0;
CPU (h_bpsw) = (newval >> 8) & 0xff;
CPU (h_psw) = newval & 0xff;
SET_H_COND (newval & 1);
/* When switching stack modes, update the registers. */
if (old_sm != new_sm)
{
if (old_sm)
{
/* Switching user -> system. */
CPU (h_cr[H_CR_SPU]) = CPU (h_gr[H_GR_SP]);
CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPI]);
}
else
{
/* Switching system -> user. */
CPU (h_cr[H_CR_SPI]) = CPU (h_gr[H_GR_SP]);
CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPU]);
}
}
break;
}
case H_CR_BBPSW : /* backup backup psw */
CPU (h_bbpsw) = newval & 0xff;
break;
case H_CR_CBR : /* condition bit */
SET_H_COND (newval & 1);
break;
case H_CR_SPI : /* interrupt stack pointer */
if (! GET_H_SM ())
CPU (h_gr[H_GR_SP]) = newval;
else
CPU (h_cr[H_CR_SPI]) = newval;
break;
case H_CR_SPU : /* user stack pointer */
if (GET_H_SM ())
CPU (h_gr[H_GR_SP]) = newval;
else
CPU (h_cr[H_CR_SPU]) = newval;
break;
case H_CR_BPC : /* backup pc */
CPU (h_cr[H_CR_BPC]) = newval;
break;
case H_CR_BBPC : /* backup backup pc */
CPU (h_cr[H_CR_BBPC]) = newval;
break;
case 4 : /* ??? unspecified, but apparently available */
case 5 : /* ??? unspecified, but apparently available */
CPU (h_cr[cr]) = newval;
break;
default :
/* ignore */
break;
}
}
/* Cover fns to access h-psw. */
UQI
m32rbf_h_psw_get_handler (SIM_CPU *current_cpu)
{
return (CPU (h_psw) & 0xfe) | (CPU (h_cond) & 1);
}
void
m32rbf_h_psw_set_handler (SIM_CPU *current_cpu, UQI newval)
{
CPU (h_psw) = newval;
CPU (h_cond) = newval & 1;
}
/* Cover fns to access h-accum. */
DI
m32rbf_h_accum_get_handler (SIM_CPU *current_cpu)
{
/* Sign extend the top 8 bits. */
DI r;
#if 1
r = ANDDI (CPU (h_accum), MAKEDI (0xffffff, 0xffffffff));
r = XORDI (r, MAKEDI (0x800000, 0));
r = SUBDI (r, MAKEDI (0x800000, 0));
#else
SI hi,lo;
r = CPU (h_accum);
hi = GETHIDI (r);
lo = GETLODI (r);
hi = ((hi & 0xffffff) ^ 0x800000) - 0x800000;
r = MAKEDI (hi, lo);
#endif
return r;
}
void
m32rbf_h_accum_set_handler (SIM_CPU *current_cpu, DI newval)
{
CPU (h_accum) = newval;
}
#if WITH_PROFILE_MODEL_P
/* FIXME: Some of these should be inline or macros. Later. */
/* Initialize cycle counting for an insn.
FIRST_P is non-zero if this is the first insn in a set of parallel
insns. */
void
m32rbf_model_insn_before (SIM_CPU *cpu, int first_p)
{
M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
mp->cti_stall = 0;
mp->load_stall = 0;
if (first_p)
{
mp->load_regs_pending = 0;
mp->biggest_cycles = 0;
}
}
/* Record the cycles computed for an insn.
LAST_P is non-zero if this is the last insn in a set of parallel insns,
and we update the total cycle count.
CYCLES is the cycle count of the insn. */
void
m32rbf_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
{
PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
unsigned long total = cycles + mp->cti_stall + mp->load_stall;
if (last_p)
{
unsigned long biggest = total > mp->biggest_cycles ? total : mp->biggest_cycles;
PROFILE_MODEL_TOTAL_CYCLES (p) += biggest;
PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
}
else
{
/* Here we take advantage of the fact that !last_p -> first_p. */
mp->biggest_cycles = total;
PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
}
/* Branch and load stall counts are recorded independently of the
total cycle count. */
PROFILE_MODEL_CTI_STALL_CYCLES (p) += mp->cti_stall;
PROFILE_MODEL_LOAD_STALL_CYCLES (p) += mp->load_stall;
mp->load_regs = mp->load_regs_pending;
}
static INLINE void
check_load_stall (SIM_CPU *cpu, int regno)
{
UINT h_gr = CPU_M32R_MISC_PROFILE (cpu)->load_regs;
if (regno != -1
&& (h_gr & (1 << regno)) != 0)
{
CPU_M32R_MISC_PROFILE (cpu)->load_stall += 2;
if (TRACE_INSN_P (cpu))
cgen_trace_printf (cpu, " ; Load stall of 2 cycles.");
}
}
int
m32rbf_model_m32r_d_u_exec (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT sr, INT sr2, INT dr)
{
check_load_stall (cpu, sr);
check_load_stall (cpu, sr2);
return idesc->timing->units[unit_num].done;
}
int
m32rbf_model_m32r_d_u_cmp (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT src1, INT src2)
{
check_load_stall (cpu, src1);
check_load_stall (cpu, src2);
return idesc->timing->units[unit_num].done;
}
int
m32rbf_model_m32r_d_u_mac (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT src1, INT src2)
{
check_load_stall (cpu, src1);
check_load_stall (cpu, src2);
return idesc->timing->units[unit_num].done;
}
int
m32rbf_model_m32r_d_u_cti (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT sr)
{
PROFILE_DATA *profile = CPU_PROFILE_DATA (cpu);
int taken_p = (referenced & (1 << 1)) != 0;
check_load_stall (cpu, sr);
if (taken_p)
{
CPU_M32R_MISC_PROFILE (cpu)->cti_stall += 2;
PROFILE_MODEL_TAKEN_COUNT (profile) += 1;
}
else
PROFILE_MODEL_UNTAKEN_COUNT (profile) += 1;
return idesc->timing->units[unit_num].done;
}
int
m32rbf_model_m32r_d_u_load (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT sr, INT dr)
{
CPU_M32R_MISC_PROFILE (cpu)->load_regs_pending |= (1 << dr);
check_load_stall (cpu, sr);
return idesc->timing->units[unit_num].done;
}
int
m32rbf_model_m32r_d_u_store (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced,
INT src1, INT src2)
{
check_load_stall (cpu, src1);
check_load_stall (cpu, src2);
return idesc->timing->units[unit_num].done;
}
int
m32rbf_model_test_u_exec (SIM_CPU *cpu, const IDESC *idesc,
int unit_num, int referenced)
{
return idesc->timing->units[unit_num].done;
}
#endif /* WITH_PROFILE_MODEL_P */