binutils-gdb/gdb/monitor.c

2387 lines
62 KiB
C
Raw Normal View History

/* Remote debugging interface for boot monitors, for GDB.
2002-01-19 04:32:43 +01:00
Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002 Free Software Foundation, Inc.
Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
Resurrected from the ashes by Stu Grossman.
1999-07-07 22:19:36 +02:00
This file is part of GDB.
1999-07-07 22:19:36 +02:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
1999-07-07 22:19:36 +02:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
1999-07-07 22:19:36 +02:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* This file was derived from various remote-* modules. It is a collection
of generic support functions so GDB can talk directly to a ROM based
monitor. This saves use from having to hack an exception based handler
into existence, and makes for quick porting.
This module talks to a debug monitor called 'MONITOR', which
We communicate with MONITOR via either a direct serial line, or a TCP
(or possibly TELNET) stream to a terminal multiplexor,
which in turn talks to the target board. */
/* FIXME 32x64: This code assumes that registers and addresses are at
most 32 bits long. If they can be larger, you will need to declare
values as LONGEST and use %llx or some such to print values when
building commands to send to the monitor. Since we don't know of
any actual 64-bit targets with ROM monitors that use this code,
it's not an issue right now. -sts 4/18/96 */
#include "defs.h"
#include "gdbcore.h"
#include "target.h"
#include <signal.h>
#include <ctype.h>
#include "gdb_string.h"
#include <sys/types.h>
#include "command.h"
#include "serial.h"
#include "monitor.h"
#include "gdbcmd.h"
#include "inferior.h"
#include "gdb_regex.h"
#include "srec.h"
#include "regcache.h"
static char *dev_name;
static struct target_ops *targ_ops;
2000-05-28 03:12:42 +02:00
static void monitor_vsprintf (char *sndbuf, char *pattern, va_list args);
2000-05-28 03:12:42 +02:00
static int readchar (int timeout);
2000-05-28 03:12:42 +02:00
static void monitor_fetch_register (int regno);
static void monitor_store_register (int regno);
1999-10-12 06:37:53 +02:00
static void monitor_printable_string (char *newstr, char *oldstr, int len);
static void monitor_error (char *function, char *message, CORE_ADDR memaddr, int len, char *string, int final_char);
2000-05-28 03:12:42 +02:00
static void monitor_detach (char *args, int from_tty);
2001-05-04 06:15:33 +02:00
static void monitor_resume (ptid_t ptid, int step, enum target_signal sig);
2000-05-28 03:12:42 +02:00
static void monitor_interrupt (int signo);
static void monitor_interrupt_twice (int signo);
static void monitor_interrupt_query (void);
static void monitor_wait_cleanup (void *old_timeout);
2001-05-04 06:15:33 +02:00
static ptid_t monitor_wait (ptid_t ptid, struct target_waitstatus *status);
2000-05-28 03:12:42 +02:00
static void monitor_fetch_registers (int regno);
static void monitor_store_registers (int regno);
static void monitor_prepare_to_store (void);
static int monitor_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
* exec.c (xfer_memory): Add attrib argument. * infptrace.c (child_xfer_memory): Likewise. * monitor.c (monitor_xfer_memory): Likewise. * remote-adapt.c (adapt_xfer_inferior_memory): Likewise. * remote-array.c (array_xfer_memory): Likewise. * remote-bug.c (bug_xfer_memory): Likewise. * remote-e7000.c (e7000_xfer_inferior_memory): Likewise. * remote-eb.c (eb_xfer_inferior_memory): Likewise. * remote-es.c (es1800_xfer_inferior_memory): Likewise. * remote-mips.c (mips_xfer_memory): Likewise. * remote-mm.c (mm_xfer_inferior_memory): Likewise. * remote-nindy.c (nindy_xfer_inferior_memory): Likewise. * remote-os9k.c (rombug_xfer_inferior_memory): Likewise. * remote-rdi.c (arm_rdi_xfer_memory): Likewise. * remote-rdp.c (remote_rdp_xfer_inferior_memory): Likewise. * remote-sds.c (sds_xfer_memory): Likewise. * remote-sim.c (gdbsim_xfer_inferior_memory): Likewise. * remote-st.c (st2000_xfer_inferior_memory): Likewise. * remote-udi.c (udi_xfer_inferior_memory): Likewise. * remote-vx.c (vx_xfer_memory): Likewise. * remote.c (remote_xfer_memory): Likewise. * target.c (debug_to_xfer_memory, do_xfer_memory): Likewise. * target.h (child_xfer_memory, do_xfer_memory, xfer_memory): Likewise. * target.h (#include "memattr.h"): Added. (target_ops.to_xfer_memory): Add attrib argument. * wince.c (_initialize_inftarg): Removed call to set_dcache_state. * dcache.h (set_dcache_state): Removed declaration. * dcache.c (set_dcache_state): Removed definition * dcache.c: Update module comment, as dcache is now enabled and disabled with memory region attributes instead of by the global variable "remotecache". Add comment describing the interaction between dcache and memory region attributes. (dcache_xfer_memory): Add comment describing benefits of moving cache writeback to a higher level. (dcache_struct): Removed cache_has_stuff field. This was used to record whether the cache had been accessed in order to invalidate it when it was disabled. However, this is not needed because the cache is write through and the code that enables, disables, and deletes memory regions invalidate the cache. Add comment which suggests that we could be more selective and only invalidate those cache lines containing data from those memory regions. (dcache_invalidate): Updated. (dcache_xfer_memory): Updated. (dcache_alloc): Don't abort() if dcache_enabled_p is clear. (dcache_xfer_memory): Removed code that called do_xfer_memory() to perform a uncached transfer if dcache_enabled_p was clear. This function is now only called if caching is enabled for the memory region. (dcache_info): Always print cache info. * target.c (do_xfer_memory): Add attrib argument. (target_xfer_memory, target_xfer_memory_partial): Break transfer into chunks defined by memory regions, pass region attributes to do_xfer_memory(). * dcache.c (dcache_read_line, dcache_write_line): Likewise. * Makefile.in (SFILES): Add memattr.c. (COMMON_OBS): Add memattr.o. (dcache.o): Add target.h to dependencies. * memattr.c: New file. * memattr.h: Likewise.
2001-01-23 23:48:56 +01:00
int write,
struct mem_attrib *attrib,
struct target_ops *target);
2000-05-28 03:12:42 +02:00
static void monitor_files_info (struct target_ops *ops);
static int monitor_insert_breakpoint (CORE_ADDR addr, char *shadow);
static int monitor_remove_breakpoint (CORE_ADDR addr, char *shadow);
static void monitor_kill (void);
static void monitor_load (char *file, int from_tty);
static void monitor_mourn_inferior (void);
static void monitor_stop (void);
static int monitor_read_memory (CORE_ADDR addr, char *myaddr, int len);
static int monitor_write_memory (CORE_ADDR addr, char *myaddr, int len);
static int monitor_write_memory_bytes (CORE_ADDR addr, char *myaddr, int len);
static int monitor_write_memory_block (CORE_ADDR memaddr,
char *myaddr, int len);
static int monitor_expect_regexp (struct re_pattern_buffer *pat,
char *buf, int buflen);
static void monitor_dump_regs (void);
#if 0
2000-05-28 03:12:42 +02:00
static int from_hex (int a);
static unsigned long get_hex_word (void);
#endif
2000-05-28 03:12:42 +02:00
static void parse_register_dump (char *, int);
static struct monitor_ops *current_monitor;
static int hashmark; /* flag set by "set hash" */
static int timeout = 30;
static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
1999-07-07 22:19:36 +02:00
static void (*ofunc) (); /* Old SIGINT signal handler */
1999-05-19 21:58:41 +02:00
static CORE_ADDR *breakaddr;
/* Descriptor for I/O to remote machine. Initialize it to NULL so
that monitor_open knows that we don't have a file open when the
program starts. */
static struct serial *monitor_desc = NULL;
/* Pointer to regexp pattern matching data */
static struct re_pattern_buffer register_pattern;
static char register_fastmap[256];
static struct re_pattern_buffer getmem_resp_delim_pattern;
static char getmem_resp_delim_fastmap[256];
static struct re_pattern_buffer setmem_resp_delim_pattern;
static char setmem_resp_delim_fastmap[256];
static struct re_pattern_buffer setreg_resp_delim_pattern;
static char setreg_resp_delim_fastmap[256];
static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
monitor_wait wakes up. */
1999-07-07 22:19:36 +02:00
static int first_time = 0; /* is this the first time we're executing after
gaving created the child proccess? */
1999-09-09 02:02:17 +02:00
#define TARGET_BUF_SIZE 2048
1999-10-12 06:37:53 +02:00
/* Monitor specific debugging information. Typically only useful to
the developer of a new monitor interface. */
1999-10-12 06:37:53 +02:00
static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
static int monitor_debug_p = 0;
/* NOTE: This file alternates between monitor_debug_p and remote_debug
when determining if debug information is printed. Perhaphs this
could be simplified. */
static void
monitor_debug (const char *fmt, ...)
{
if (monitor_debug_p)
{
va_list args;
va_start (args, fmt);
vfprintf_filtered (gdb_stdlog, fmt, args);
va_end (args);
}
}
/* Convert a string into a printable representation, Return # byte in
the new string. When LEN is >0 it specifies the size of the
string. Otherwize strlen(oldstr) is used. */
static void
monitor_printable_string (char *newstr, char *oldstr, int len)
{
int ch;
1999-10-12 06:37:53 +02:00
int i;
if (len <= 0)
len = strlen (oldstr);
1999-10-12 06:37:53 +02:00
for (i = 0; i < len; i++)
{
1999-10-12 06:37:53 +02:00
ch = oldstr[i];
switch (ch)
1999-07-07 22:19:36 +02:00
{
default:
if (isprint (ch))
*newstr++ = ch;
else
{
sprintf (newstr, "\\x%02x", ch & 0xff);
newstr += 4;
}
break;
1999-07-07 22:19:36 +02:00
case '\\':
*newstr++ = '\\';
*newstr++ = '\\';
break;
case '\b':
*newstr++ = '\\';
*newstr++ = 'b';
break;
case '\f':
*newstr++ = '\\';
*newstr++ = 't';
break;
case '\n':
*newstr++ = '\\';
*newstr++ = 'n';
break;
case '\r':
*newstr++ = '\\';
*newstr++ = 'r';
break;
case '\t':
*newstr++ = '\\';
*newstr++ = 't';
break;
case '\v':
*newstr++ = '\\';
*newstr++ = 'v';
break;
}
}
*newstr++ = '\0';
}
/* Print monitor errors with a string, converting the string to printable
representation. */
static void
1999-10-12 06:37:53 +02:00
monitor_error (char *function, char *message,
CORE_ADDR memaddr, int len, char *string, int final_char)
{
1999-07-07 22:19:36 +02:00
int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
char *safe_string = alloca ((real_len * 4) + 1);
1999-10-12 06:37:53 +02:00
monitor_printable_string (safe_string, string, real_len);
if (final_char)
1999-10-12 06:37:53 +02:00
error ("%s (0x%s): %s: %s%c", function, paddr_nz (memaddr), message, safe_string, final_char);
else
1999-10-12 06:37:53 +02:00
error ("%s (0x%s): %s: %s", function, paddr_nz (memaddr), message, safe_string);
}
/* Convert hex digit A to a number. */
static int
2000-07-30 03:48:28 +02:00
fromhex (int a)
{
if (a >= '0' && a <= '9')
return a - '0';
else if (a >= 'a' && a <= 'f')
return a - 'a' + 10;
1999-07-07 22:19:36 +02:00
else if (a >= 'A' && a <= 'F')
return a - 'A' + 10;
else
1999-07-07 22:19:36 +02:00
error ("Invalid hex digit %d", a);
}
/* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
This function exists to get around the problem that many host platforms
don't have a printf that can print 64-bit addresses. The %A format
specification is recognized as a special case, and causes the argument
to be printed as a 64-bit hexadecimal address.
Only format specifiers of the form "[0-9]*[a-z]" are recognized.
If it is a '%s' format, the argument is a string; otherwise the
argument is assumed to be a long integer.
%% is also turned into a single %.
1999-07-07 22:19:36 +02:00
*/
static void
2000-07-30 03:48:28 +02:00
monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
{
char format[10];
char fmt;
char *p;
int i;
long arg_int;
CORE_ADDR arg_addr;
char *arg_string;
for (p = pattern; *p; p++)
{
if (*p == '%')
{
/* Copy the format specifier to a separate buffer. */
format[0] = *p++;
for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
i++, p++)
format[i] = *p;
format[i] = fmt = *p;
1999-07-07 22:19:36 +02:00
format[i + 1] = '\0';
/* Fetch the next argument and print it. */
switch (fmt)
{
case '%':
strcpy (sndbuf, "%");
break;
case 'A':
arg_addr = va_arg (args, CORE_ADDR);
strcpy (sndbuf, paddr_nz (arg_addr));
break;
case 's':
arg_string = va_arg (args, char *);
sprintf (sndbuf, format, arg_string);
break;
default:
arg_int = va_arg (args, long);
sprintf (sndbuf, format, arg_int);
break;
}
sndbuf += strlen (sndbuf);
}
else
*sndbuf++ = *p;
}
*sndbuf = '\0';
}
/* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
Works just like printf. */
void
1999-07-07 22:19:36 +02:00
monitor_printf_noecho (char *pattern,...)
{
va_list args;
char sndbuf[2000];
int len;
va_start (args, pattern);
monitor_vsprintf (sndbuf, pattern, args);
len = strlen (sndbuf);
if (len + 1 > sizeof sndbuf)
internal_error (__FILE__, __LINE__, "failed internal consistency check");
1999-10-12 06:37:53 +02:00
if (monitor_debug_p)
{
char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
1999-10-12 06:37:53 +02:00
monitor_printable_string (safe_string, sndbuf, 0);
fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
}
1999-07-07 22:19:36 +02:00
monitor_write (sndbuf, len);
}
/* monitor_printf -- Send data to monitor and check the echo. Works just like
printf. */
void
1999-07-07 22:19:36 +02:00
monitor_printf (char *pattern,...)
{
va_list args;
char sndbuf[2000];
int len;
va_start (args, pattern);
monitor_vsprintf (sndbuf, pattern, args);
len = strlen (sndbuf);
if (len + 1 > sizeof sndbuf)
internal_error (__FILE__, __LINE__, "failed internal consistency check");
1999-10-12 06:37:53 +02:00
if (monitor_debug_p)
{
char *safe_string = (char *) alloca ((len * 4) + 1);
1999-10-12 06:37:53 +02:00
monitor_printable_string (safe_string, sndbuf, 0);
fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
}
monitor_write (sndbuf, len);
/* We used to expect that the next immediate output was the characters we
just output, but sometimes some extra junk appeared before the characters
we expected, like an extra prompt, or a portmaster sending telnet negotiations.
So, just start searching for what we sent, and skip anything unknown. */
1999-10-12 06:37:53 +02:00
monitor_debug ("ExpectEcho\n");
monitor_expect (sndbuf, (char *) 0, 0);
}
/* Write characters to the remote system. */
void
2000-07-30 03:48:28 +02:00
monitor_write (char *buf, int buflen)
{
if (serial_write (monitor_desc, buf, buflen))
fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
safe_strerror (errno));
}
/* Read a binary character from the remote system, doing all the fancy
timeout stuff, but without interpreting the character in any way,
and without printing remote debug information. */
int
2000-07-30 03:48:28 +02:00
monitor_readchar (void)
{
int c;
int looping;
do
{
looping = 0;
c = serial_readchar (monitor_desc, timeout);
if (c >= 0)
1999-07-07 22:19:36 +02:00
c &= 0xff; /* don't lose bit 7 */
}
while (looping);
if (c >= 0)
return c;
if (c == SERIAL_TIMEOUT)
1999-07-07 22:19:36 +02:00
error ("Timeout reading from remote system.");
perror_with_name ("remote-monitor");
}
/* Read a character from the remote system, doing all the fancy
timeout stuff. */
static int
2000-07-30 03:48:28 +02:00
readchar (int timeout)
{
int c;
1999-07-07 22:19:36 +02:00
static enum
{
last_random, last_nl, last_cr, last_crnl
}
state = last_random;
int looping;
do
{
looping = 0;
c = serial_readchar (monitor_desc, timeout);
if (c >= 0)
{
c &= 0x7f;
/* This seems to interfere with proper function of the
input stream */
1999-10-12 06:37:53 +02:00
if (monitor_debug_p || remote_debug)
{
char buf[2];
buf[0] = c;
buf[1] = '\0';
puts_debug ("read -->", buf, "<--");
}
1999-07-07 22:19:36 +02:00
}
/* Canonicialize \n\r combinations into one \r */
if ((current_monitor->flags & MO_HANDLE_NL) != 0)
{
if ((c == '\r' && state == last_nl)
|| (c == '\n' && state == last_cr))
{
state = last_crnl;
looping = 1;
}
else if (c == '\r')
state = last_cr;
else if (c != '\n')
state = last_random;
else
{
state = last_nl;
c = '\r';
}
}
}
while (looping);
if (c >= 0)
return c;
if (c == SERIAL_TIMEOUT)
1999-04-26 20:34:20 +02:00
#if 0
/* I fail to see how detaching here can be useful */
if (in_monitor_wait) /* Watchdog went off */
{
target_mourn_inferior ();
error ("GDB serial timeout has expired. Target detached.\n");
}
else
#endif
error ("Timeout reading from remote system.");
perror_with_name ("remote-monitor");
}
/* Scan input from the remote system, until STRING is found. If BUF is non-
zero, then collect input until we have collected either STRING or BUFLEN-1
chars. In either case we terminate BUF with a 0. If input overflows BUF
because STRING can't be found, return -1, else return number of chars in BUF
(minus the terminating NUL). Note that in the non-overflow case, STRING
will be at the end of BUF. */
int
2000-07-30 03:48:28 +02:00
monitor_expect (char *string, char *buf, int buflen)
{
char *p = string;
int obuflen = buflen;
int c;
extern struct target_ops *targ_ops;
1999-10-12 06:37:53 +02:00
if (monitor_debug_p)
{
char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
1999-10-12 06:37:53 +02:00
monitor_printable_string (safe_string, string, 0);
fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
}
immediate_quit++;
while (1)
{
if (buf)
{
if (buflen < 2)
{
*buf = '\000';
immediate_quit--;
return -1;
}
c = readchar (timeout);
if (c == '\000')
continue;
*buf++ = c;
buflen--;
}
else
c = readchar (timeout);
/* Don't expect any ^C sent to be echoed */
1999-07-07 22:19:36 +02:00
if (*p == '\003' || c == *p)
{
p++;
if (*p == '\0')
{
immediate_quit--;
if (buf)
{
*buf++ = '\000';
return obuflen - buflen;
}
else
return 0;
}
}
else if ((c == '\021' || c == '\023') &&
(STREQ (targ_ops->to_shortname, "m32r")
|| STREQ (targ_ops->to_shortname, "mon2000")))
1999-07-07 22:19:36 +02:00
{ /* m32r monitor emits random DC1/DC3 chars */
continue;
}
else
{
1999-08-03 01:48:37 +02:00
/* We got a character that doesn't match the string. We need to
back up p, but how far? If we're looking for "..howdy" and the
monitor sends "...howdy"? There's certainly a match in there,
but when we receive the third ".", we won't find it if we just
restart the matching at the beginning of the string.
This is a Boyer-Moore kind of situation. We want to reset P to
the end of the longest prefix of STRING that is a suffix of
what we've read so far. In the example above, that would be
".." --- the longest prefix of "..howdy" that is a suffix of
"...". This longest prefix could be the empty string, if C
is nowhere to be found in STRING.
If this longest prefix is not the empty string, it must contain
C, so let's search from the end of STRING for instances of C,
and see if the portion of STRING before that is a suffix of
what we read before C. Actually, we can search backwards from
p, since we know no prefix can be longer than that.
Note that we can use STRING itself, along with C, as a record
of what we've received so far. :) */
int i;
for (i = (p - string) - 1; i >= 0; i--)
if (string[i] == c)
{
/* Is this prefix a suffix of what we've read so far?
In other words, does
string[0 .. i-1] == string[p - i, p - 1]? */
if (! memcmp (string, p - i, i))
{
p = string + i + 1;
break;
}
}
if (i < 0)
p = string;
}
}
}
/* Search for a regexp. */
static int
2000-07-30 03:48:28 +02:00
monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
{
char *mybuf;
char *p;
1999-10-12 06:37:53 +02:00
monitor_debug ("MON Expecting regexp\n");
if (buf)
mybuf = buf;
else
{
1999-09-09 02:02:17 +02:00
mybuf = alloca (TARGET_BUF_SIZE);
buflen = TARGET_BUF_SIZE;
}
p = mybuf;
while (1)
{
int retval;
if (p - mybuf >= buflen)
{ /* Buffer about to overflow */
/* On overflow, we copy the upper half of the buffer to the lower half. Not
great, but it usually works... */
memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
p = mybuf + buflen / 2;
}
*p++ = readchar (timeout);
retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
if (retval >= 0)
return 1;
}
}
/* Keep discarding input until we see the MONITOR prompt.
The convention for dealing with the prompt is that you
o give your command
o *then* wait for the prompt.
Thus the last thing that a procedure does with the serial line will
be an monitor_expect_prompt(). Exception: monitor_resume does not
wait for the prompt, because the terminal is being handed over to
the inferior. However, the next thing which happens after that is
a monitor_wait which does wait for the prompt. Note that this
includes abnormal exit, e.g. error(). This is necessary to prevent
getting into states from which we can't recover. */
int
2000-07-30 03:48:28 +02:00
monitor_expect_prompt (char *buf, int buflen)
{
1999-10-12 06:37:53 +02:00
monitor_debug ("MON Expecting prompt\n");
return monitor_expect (current_monitor->prompt, buf, buflen);
}
/* Get N 32-bit words from remote, each preceded by a space, and put
them in registers starting at REGNO. */
#if 0
static unsigned long
2000-07-30 03:48:28 +02:00
get_hex_word (void)
{
unsigned long val;
int i;
int ch;
do
ch = readchar (timeout);
1999-07-07 22:19:36 +02:00
while (isspace (ch));
val = from_hex (ch);
for (i = 7; i >= 1; i--)
{
ch = readchar (timeout);
if (!isxdigit (ch))
break;
val = (val << 4) | from_hex (ch);
}
return val;
}
#endif
static void
2000-07-30 03:48:28 +02:00
compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
char *fastmap)
{
int tmp;
const char *val;
compiled_pattern->fastmap = fastmap;
tmp = re_set_syntax (RE_SYNTAX_EMACS);
val = re_compile_pattern (pattern,
strlen (pattern),
compiled_pattern);
re_set_syntax (tmp);
if (val)
error ("compile_pattern: Can't compile pattern string `%s': %s!", pattern, val);
if (fastmap)
re_compile_fastmap (compiled_pattern);
}
/* Open a connection to a remote debugger. NAME is the filename used
for communication. */
void
2000-07-30 03:48:28 +02:00
monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
{
char *name;
char **p;
if (mon_ops->magic != MONITOR_OPS_MAGIC)
error ("Magic number of monitor_ops struct wrong.");
targ_ops = mon_ops->target;
name = targ_ops->to_shortname;
if (!args)
error ("Use `target %s DEVICE-NAME' to use a serial port, or \n\
`target %s HOST-NAME:PORT-NUMBER' to use a network connection.", name, name);
target_preopen (from_tty);
/* Setup pattern for register dump */
if (mon_ops->register_pattern)
compile_pattern (mon_ops->register_pattern, &register_pattern,
register_fastmap);
if (mon_ops->getmem.resp_delim)
compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
getmem_resp_delim_fastmap);
if (mon_ops->setmem.resp_delim)
compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
setmem_resp_delim_fastmap);
if (mon_ops->setreg.resp_delim)
compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
setreg_resp_delim_fastmap);
unpush_target (targ_ops);
if (dev_name)
2000-12-15 02:01:51 +01:00
xfree (dev_name);
2001-01-31 02:24:03 +01:00
dev_name = xstrdup (args);
monitor_desc = serial_open (dev_name);
if (!monitor_desc)
perror_with_name (dev_name);
if (baud_rate != -1)
{
if (serial_setbaudrate (monitor_desc, baud_rate))
{
serial_close (monitor_desc);
perror_with_name (dev_name);
}
}
1999-07-07 22:19:36 +02:00
serial_raw (monitor_desc);
serial_flush_input (monitor_desc);
/* some systems only work with 2 stop bits */
serial_setstopbits (monitor_desc, mon_ops->stopbits);
current_monitor = mon_ops;
/* See if we can wake up the monitor. First, try sending a stop sequence,
then send the init strings. Last, remove all breakpoints. */
if (current_monitor->stop)
{
monitor_stop ();
if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
1999-07-07 22:19:36 +02:00
{
1999-10-12 06:37:53 +02:00
monitor_debug ("EXP Open echo\n");
1999-07-07 22:19:36 +02:00
monitor_expect_prompt (NULL, 0);
}
}
/* wake up the monitor and see if it's alive */
for (p = mon_ops->init; *p != NULL; p++)
{
/* Some of the characters we send may not be echoed,
1999-07-07 22:19:36 +02:00
but we hope to get a prompt at the end of it all. */
if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
1999-07-07 22:19:36 +02:00
monitor_printf (*p);
else
1999-07-07 22:19:36 +02:00
monitor_printf_noecho (*p);
monitor_expect_prompt (NULL, 0);
}
serial_flush_input (monitor_desc);
1999-05-19 21:58:41 +02:00
/* Alloc breakpoints */
if (mon_ops->set_break != NULL)
{
if (mon_ops->num_breakpoints == 0)
mon_ops->num_breakpoints = 8;
breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
}
/* Remove all breakpoints */
if (mon_ops->clr_all_break)
{
monitor_printf (mon_ops->clr_all_break);
monitor_expect_prompt (NULL, 0);
}
if (from_tty)
printf_unfiltered ("Remote target %s connected to %s\n", name, dev_name);
push_target (targ_ops);
2001-05-04 06:15:33 +02:00
inferior_ptid = pid_to_ptid (42000); /* Make run command think we are busy... */
/* Give monitor_wait something to read */
monitor_printf (current_monitor->line_term);
start_remote ();
}
/* Close out all files and local state before this target loses
control. */
void
2000-07-30 03:48:28 +02:00
monitor_close (int quitting)
{
if (monitor_desc)
serial_close (monitor_desc);
1999-05-19 21:58:41 +02:00
/* Free breakpoint memory */
if (breakaddr != NULL)
{
2000-12-15 02:01:51 +01:00
xfree (breakaddr);
1999-05-19 21:58:41 +02:00
breakaddr = NULL;
}
monitor_desc = NULL;
}
/* Terminate the open connection to the remote debugger. Use this
when you want to detach and do something else with your gdb. */
static void
2000-07-30 03:48:28 +02:00
monitor_detach (char *args, int from_tty)
{
pop_target (); /* calls monitor_close to do the real work */
if (from_tty)
printf_unfiltered ("Ending remote %s debugging\n", target_shortname);
}
/* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
char *
2000-07-30 03:48:28 +02:00
monitor_supply_register (int regno, char *valstr)
{
1999-09-09 02:02:17 +02:00
ULONGEST val;
unsigned char regbuf[MAX_REGISTER_RAW_SIZE];
char *p;
1999-11-17 03:31:06 +01:00
val = 0;
1999-09-09 02:02:17 +02:00
p = valstr;
while (p && *p != '\0')
{
if (*p == '\r' || *p == '\n')
{
while (*p != '\0')
p++;
break;
}
if (isspace (*p))
{
p++;
continue;
}
if (!isxdigit (*p) && *p != 'x')
{
break;
}
val <<= 4;
val += fromhex (*p++);
}
1999-10-12 06:37:53 +02:00
monitor_debug ("Supplying Register %d %s\n", regno, valstr);
if (val == 0 && valstr == p)
error ("monitor_supply_register (%d): bad value from monitor: %s.",
regno, valstr);
/* supply register stores in target byte order, so swap here */
store_unsigned_integer (regbuf, REGISTER_RAW_SIZE (regno), val);
supply_register (regno, regbuf);
return p;
}
/* Tell the remote machine to resume. */
static void
2001-05-04 06:15:33 +02:00
monitor_resume (ptid_t ptid, int step, enum target_signal sig)
{
/* Some monitors require a different command when starting a program */
1999-10-12 06:37:53 +02:00
monitor_debug ("MON resume\n");
if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
{
first_time = 0;
monitor_printf ("run\r");
if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
1999-07-07 22:19:36 +02:00
dump_reg_flag = 1;
return;
}
if (step)
monitor_printf (current_monitor->step);
else
{
if (current_monitor->continue_hook)
1999-07-07 22:19:36 +02:00
(*current_monitor->continue_hook) ();
else
monitor_printf (current_monitor->cont);
if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
dump_reg_flag = 1;
}
}
/* Parse the output of a register dump command. A monitor specific
regexp is used to extract individual register descriptions of the
form REG=VAL. Each description is split up into a name and a value
string which are passed down to monitor specific code. */
static void
2000-07-30 03:48:28 +02:00
parse_register_dump (char *buf, int len)
{
1999-10-12 06:37:53 +02:00
monitor_debug ("MON Parsing register dump\n");
while (1)
{
int regnamelen, vallen;
char *regname, *val;
/* Element 0 points to start of register name, and element 1
1999-07-07 22:19:36 +02:00
points to the start of the register value. */
struct re_registers register_strings;
memset (&register_strings, 0, sizeof (struct re_registers));
if (re_search (&register_pattern, buf, len, 0, len,
&register_strings) == -1)
break;
regnamelen = register_strings.end[1] - register_strings.start[1];
regname = buf + register_strings.start[1];
vallen = register_strings.end[2] - register_strings.start[2];
val = buf + register_strings.start[2];
current_monitor->supply_register (regname, regnamelen, val, vallen);
buf += register_strings.end[0];
len -= register_strings.end[0];
}
}
/* Send ^C to target to halt it. Target will respond, and send us a
packet. */
static void
2000-07-30 03:48:28 +02:00
monitor_interrupt (int signo)
{
/* If this doesn't work, try more severe steps. */
signal (signo, monitor_interrupt_twice);
1999-07-07 22:19:36 +02:00
1999-10-12 06:37:53 +02:00
if (monitor_debug_p || remote_debug)
fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
target_stop ();
}
/* The user typed ^C twice. */
static void
2000-07-30 03:48:28 +02:00
monitor_interrupt_twice (int signo)
{
signal (signo, ofunc);
1999-07-07 22:19:36 +02:00
monitor_interrupt_query ();
signal (signo, monitor_interrupt);
}
/* Ask the user what to do when an interrupt is received. */
static void
2000-07-30 03:48:28 +02:00
monitor_interrupt_query (void)
{
target_terminal_ours ();
if (query ("Interrupted while waiting for the program.\n\
Give up (and stop debugging it)? "))
{
target_mourn_inferior ();
throw_exception (RETURN_QUIT);
}
target_terminal_inferior ();
}
static void
2000-07-30 03:48:28 +02:00
monitor_wait_cleanup (void *old_timeout)
{
1999-07-07 22:19:36 +02:00
timeout = *(int *) old_timeout;
signal (SIGINT, ofunc);
in_monitor_wait = 0;
}
1999-07-07 22:19:36 +02:00
void
monitor_wait_filter (char *buf,
int bufmax,
int *ext_resp_len,
struct target_waitstatus *status
)
{
1999-07-07 22:19:36 +02:00
int resp_len;
do
{
resp_len = monitor_expect_prompt (buf, bufmax);
1999-07-07 22:19:36 +02:00
*ext_resp_len = resp_len;
if (resp_len <= 0)
fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
}
while (resp_len < 0);
/* Print any output characters that were preceded by ^O. */
/* FIXME - This would be great as a user settabgle flag */
1999-10-12 06:37:53 +02:00
if (monitor_debug_p || remote_debug
|| current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
{
int i;
for (i = 0; i < resp_len - 1; i++)
if (buf[i] == 0x0f)
putchar_unfiltered (buf[++i]);
}
}
/* Wait until the remote machine stops, then return, storing status in
status just as `wait' would. */
2001-05-04 06:15:33 +02:00
static ptid_t
monitor_wait (ptid_t ptid, struct target_waitstatus *status)
{
int old_timeout = timeout;
1999-09-09 02:02:17 +02:00
char buf[TARGET_BUF_SIZE];
int resp_len;
struct cleanup *old_chain;
status->kind = TARGET_WAITKIND_EXITED;
status->value.integer = 0;
old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1999-10-12 06:37:53 +02:00
monitor_debug ("MON wait\n");
1999-04-26 20:34:20 +02:00
#if 0
1999-07-07 22:19:36 +02:00
/* This is somthing other than a maintenance command */
in_monitor_wait = 1;
timeout = watchdog > 0 ? watchdog : -1;
#else
1999-10-12 06:37:53 +02:00
timeout = -1; /* Don't time out -- user program is running. */
#endif
ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
if (current_monitor->wait_filter)
1999-07-07 22:19:36 +02:00
(*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
else
monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
#if 0 /* Transferred to monitor wait filter */
do
{
resp_len = monitor_expect_prompt (buf, sizeof (buf));
if (resp_len <= 0)
fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
}
while (resp_len < 0);
/* Print any output characters that were preceded by ^O. */
/* FIXME - This would be great as a user settabgle flag */
1999-10-12 06:37:53 +02:00
if (monitor_debug_p || remote_debug
|| current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
{
int i;
for (i = 0; i < resp_len - 1; i++)
if (buf[i] == 0x0f)
putchar_unfiltered (buf[++i]);
}
1999-07-07 22:19:36 +02:00
#endif
signal (SIGINT, ofunc);
timeout = old_timeout;
#if 0
if (dump_reg_flag && current_monitor->dump_registers)
{
dump_reg_flag = 0;
monitor_printf (current_monitor->dump_registers);
resp_len = monitor_expect_prompt (buf, sizeof (buf));
}
if (current_monitor->register_pattern)
parse_register_dump (buf, resp_len);
#else
1999-10-12 06:37:53 +02:00
monitor_debug ("Wait fetching registers after stop\n");
1999-07-07 22:19:36 +02:00
monitor_dump_regs ();
#endif
status->kind = TARGET_WAITKIND_STOPPED;
status->value.sig = TARGET_SIGNAL_TRAP;
discard_cleanups (old_chain);
in_monitor_wait = 0;
2001-05-04 06:15:33 +02:00
return inferior_ptid;
}
/* Fetch register REGNO, or all registers if REGNO is -1. Returns
errno value. */
static void
2000-07-30 03:48:28 +02:00
monitor_fetch_register (int regno)
{
char *name;
char *zerobuf;
char *regbuf;
int i;
regbuf = alloca (MAX_REGISTER_RAW_SIZE * 2 + 1);
zerobuf = alloca (MAX_REGISTER_RAW_SIZE);
memset (zerobuf, 0, MAX_REGISTER_RAW_SIZE);
name = current_monitor->regnames[regno];
1999-10-12 06:37:53 +02:00
monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1999-10-12 06:37:53 +02:00
if (!name || (*name == '\0'))
1999-04-26 20:34:20 +02:00
{
1999-10-12 06:37:53 +02:00
monitor_debug ("No register known for %d\n", regno);
supply_register (regno, zerobuf);
return;
}
/* send the register examine command */
monitor_printf (current_monitor->getreg.cmd, name);
/* If RESP_DELIM is specified, we search for that as a leading
delimiter for the register value. Otherwise, we just start
searching from the start of the buf. */
if (current_monitor->getreg.resp_delim)
{
1999-10-12 06:37:53 +02:00
monitor_debug ("EXP getreg.resp_delim\n");
monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
/* Handle case of first 32 registers listed in pairs. */
if (current_monitor->flags & MO_32_REGS_PAIRED
1999-04-26 20:34:20 +02:00
&& (regno & 1) != 0 && regno < 32)
1999-07-07 22:19:36 +02:00
{
1999-10-12 06:37:53 +02:00
monitor_debug ("EXP getreg.resp_delim\n");
monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
}
}
/* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1999-07-07 22:19:36 +02:00
if (current_monitor->flags & MO_HEX_PREFIX)
{
int c;
c = readchar (timeout);
while (c == ' ')
c = readchar (timeout);
if ((c == '0') && ((c = readchar (timeout)) == 'x'))
;
else
1999-07-07 22:19:36 +02:00
error ("Bad value returned from monitor while fetching register %x.",
regno);
}
/* Read upto the maximum number of hex digits for this register, skipping
spaces, but stop reading if something else is seen. Some monitors
like to drop leading zeros. */
for (i = 0; i < REGISTER_RAW_SIZE (regno) * 2; i++)
{
int c;
c = readchar (timeout);
while (c == ' ')
c = readchar (timeout);
if (!isxdigit (c))
break;
regbuf[i] = c;
}
regbuf[i] = '\000'; /* terminate the number */
1999-10-12 06:37:53 +02:00
monitor_debug ("REGVAL '%s'\n", regbuf);
/* If TERM is present, we wait for that to show up. Also, (if TERM
is present), we will send TERM_CMD if that is present. In any
case, we collect all of the output into buf, and then wait for
the normal prompt. */
if (current_monitor->getreg.term)
{
1999-10-12 06:37:53 +02:00
monitor_debug ("EXP getreg.term\n");
monitor_expect (current_monitor->getreg.term, NULL, 0); /* get response */
}
if (current_monitor->getreg.term_cmd)
1999-07-07 22:19:36 +02:00
{
1999-10-12 06:37:53 +02:00
monitor_debug ("EMIT getreg.term.cmd\n");
monitor_printf (current_monitor->getreg.term_cmd);
}
1999-07-07 22:19:36 +02:00
if (!current_monitor->getreg.term || /* Already expected or */
current_monitor->getreg.term_cmd) /* ack expected */
monitor_expect_prompt (NULL, 0); /* get response */
monitor_supply_register (regno, regbuf);
}
/* Sometimes, it takes several commands to dump the registers */
/* This is a primitive for use by variations of monitor interfaces in
case they need to compose the operation.
1999-07-07 22:19:36 +02:00
*/
int
monitor_dump_reg_block (char *block_cmd)
{
1999-09-09 02:02:17 +02:00
char buf[TARGET_BUF_SIZE];
int resp_len;
monitor_printf (block_cmd);
resp_len = monitor_expect_prompt (buf, sizeof (buf));
parse_register_dump (buf, resp_len);
1999-07-07 22:19:36 +02:00
return 1;
}
/* Read the remote registers into the block regs. */
/* Call the specific function if it has been provided */
static void
2000-07-30 03:48:28 +02:00
monitor_dump_regs (void)
{
1999-09-09 02:02:17 +02:00
char buf[TARGET_BUF_SIZE];
int resp_len;
if (current_monitor->dumpregs)
1999-07-07 22:19:36 +02:00
(*(current_monitor->dumpregs)) (); /* call supplied function */
else if (current_monitor->dump_registers) /* default version */
{
monitor_printf (current_monitor->dump_registers);
resp_len = monitor_expect_prompt (buf, sizeof (buf));
parse_register_dump (buf, resp_len);
}
else
internal_error (__FILE__, __LINE__, "failed internal consistency check"); /* Need some way to read registers */
}
static void
2000-07-30 03:48:28 +02:00
monitor_fetch_registers (int regno)
{
1999-10-12 06:37:53 +02:00
monitor_debug ("MON fetchregs\n");
1999-07-07 22:19:36 +02:00
if (current_monitor->getreg.cmd)
{
if (regno >= 0)
{
monitor_fetch_register (regno);
return;
}
for (regno = 0; regno < NUM_REGS; regno++)
monitor_fetch_register (regno);
}
1999-07-07 22:19:36 +02:00
else
{
monitor_dump_regs ();
}
}
/* Store register REGNO, or all if REGNO == 0. Return errno value. */
static void
2000-07-30 03:48:28 +02:00
monitor_store_register (int regno)
{
char *name;
1999-09-09 02:02:17 +02:00
ULONGEST val;
name = current_monitor->regnames[regno];
if (!name || (*name == '\0'))
1999-07-07 22:19:36 +02:00
{
1999-10-12 06:37:53 +02:00
monitor_debug ("MON Cannot store unknown register\n");
return;
}
val = read_register (regno);
monitor_debug ("MON storeg %d %s\n", regno,
phex (val, REGISTER_RAW_SIZE (regno)));
/* send the register deposit command */
1999-10-12 06:37:53 +02:00
if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
monitor_printf (current_monitor->setreg.cmd, val, name);
else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
monitor_printf (current_monitor->setreg.cmd, name);
else
monitor_printf (current_monitor->setreg.cmd, name, val);
if (current_monitor->setreg.resp_delim)
{
monitor_debug ("EXP setreg.resp_delim\n");
monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
if (current_monitor->flags & MO_SETREG_INTERACTIVE)
monitor_printf ("%s\r", paddr_nz (val));
}
if (current_monitor->setreg.term)
1999-07-07 22:19:36 +02:00
{
1999-10-12 06:37:53 +02:00
monitor_debug ("EXP setreg.term\n");
monitor_expect (current_monitor->setreg.term, NULL, 0);
if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1999-10-12 06:37:53 +02:00
monitor_printf ("%s\r", paddr_nz (val));
monitor_expect_prompt (NULL, 0);
}
else
monitor_expect_prompt (NULL, 0);
1999-07-07 22:19:36 +02:00
if (current_monitor->setreg.term_cmd) /* Mode exit required */
{
1999-10-12 06:37:53 +02:00
monitor_debug ("EXP setreg_termcmd\n");
1999-07-07 22:19:36 +02:00
monitor_printf ("%s", current_monitor->setreg.term_cmd);
monitor_expect_prompt (NULL, 0);
}
1999-07-07 22:19:36 +02:00
} /* monitor_store_register */
/* Store the remote registers. */
static void
2000-07-30 03:48:28 +02:00
monitor_store_registers (int regno)
{
if (regno >= 0)
{
monitor_store_register (regno);
return;
}
for (regno = 0; regno < NUM_REGS; regno++)
monitor_store_register (regno);
}
/* Get ready to modify the registers array. On machines which store
individual registers, this doesn't need to do anything. On machines
which store all the registers in one fell swoop, this makes sure
that registers contains all the registers from the program being
debugged. */
static void
2000-07-30 03:48:28 +02:00
monitor_prepare_to_store (void)
{
/* Do nothing, since we can store individual regs */
}
static void
2000-07-30 03:48:28 +02:00
monitor_files_info (struct target_ops *ops)
{
printf_unfiltered ("\tAttached to %s at %d baud.\n", dev_name, baud_rate);
}
static int
2000-07-30 03:48:28 +02:00
monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
{
1999-07-07 22:19:36 +02:00
unsigned int val, hostval;
char *cmd;
int i;
1999-10-12 06:37:53 +02:00
monitor_debug ("MON write %d %s\n", len, paddr (memaddr));
1999-10-12 06:37:53 +02:00
if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
memaddr = ADDR_BITS_REMOVE (memaddr);
/* Use memory fill command for leading 0 bytes. */
if (current_monitor->fill)
{
for (i = 0; i < len; i++)
if (myaddr[i] != 0)
break;
if (i > 4) /* More than 4 zeros is worth doing */
{
1999-10-12 06:37:53 +02:00
monitor_debug ("MON FILL %d\n", i);
if (current_monitor->flags & MO_FILL_USES_ADDR)
1999-07-07 22:19:36 +02:00
monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
else
monitor_printf (current_monitor->fill, memaddr, i, 0);
monitor_expect_prompt (NULL, 0);
return i;
}
}
#if 0
/* Can't actually use long longs if VAL is an int (nice idea, though). */
if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
{
len = 8;
cmd = current_monitor->setmem.cmdll;
}
else
#endif
if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
{
len = 4;
cmd = current_monitor->setmem.cmdl;
}
else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
{
len = 2;
cmd = current_monitor->setmem.cmdw;
}
else
{
len = 1;
cmd = current_monitor->setmem.cmdb;
}
val = extract_unsigned_integer (myaddr, len);
1999-07-07 22:19:36 +02:00
if (len == 4)
1999-07-07 22:19:36 +02:00
{
hostval = *(unsigned int *) myaddr;
1999-10-12 06:37:53 +02:00
monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
}
if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
monitor_printf_noecho (cmd, memaddr, val);
else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
{
monitor_printf_noecho (cmd, memaddr);
if (current_monitor->setmem.resp_delim)
{
monitor_debug ("EXP setmem.resp_delim");
monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
monitor_printf ("%x\r", val);
}
if (current_monitor->setmem.term)
1999-07-07 22:19:36 +02:00
{
1999-10-12 06:37:53 +02:00
monitor_debug ("EXP setmem.term");
monitor_expect (current_monitor->setmem.term, NULL, 0);
monitor_printf ("%x\r", val);
}
if (current_monitor->setmem.term_cmd)
1999-07-07 22:19:36 +02:00
{ /* Emit this to get out of the memory editing state */
monitor_printf ("%s", current_monitor->setmem.term_cmd);
/* Drop through to expecting a prompt */
}
}
else
monitor_printf (cmd, memaddr, val);
monitor_expect_prompt (NULL, 0);
return len;
}
static int
2000-07-30 03:48:28 +02:00
monitor_write_even_block (CORE_ADDR memaddr, char *myaddr, int len)
{
1999-07-07 22:19:36 +02:00
unsigned int val;
int written = 0;;
/* Enter the sub mode */
1999-07-07 22:19:36 +02:00
monitor_printf (current_monitor->setmem.cmdl, memaddr);
monitor_expect_prompt (NULL, 0);
while (len)
{
1999-07-07 22:19:36 +02:00
val = extract_unsigned_integer (myaddr, 4); /* REALLY */
monitor_printf ("%x\r", val);
myaddr += 4;
memaddr += 4;
written += 4;
1999-10-12 06:37:53 +02:00
monitor_debug (" @ %s\n", paddr (memaddr));
/* If we wanted to, here we could validate the address */
1999-10-12 06:37:53 +02:00
monitor_expect_prompt (NULL, 0);
}
/* Now exit the sub mode */
monitor_printf (current_monitor->getreg.term_cmd);
1999-07-07 22:19:36 +02:00
monitor_expect_prompt (NULL, 0);
return written;
}
1999-07-07 22:19:36 +02:00
static int
2000-07-30 03:48:28 +02:00
monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
{
1999-07-07 22:19:36 +02:00
unsigned char val;
int written = 0;
if (len == 0)
return 0;
/* Enter the sub mode */
1999-07-07 22:19:36 +02:00
monitor_printf (current_monitor->setmem.cmdb, memaddr);
monitor_expect_prompt (NULL, 0);
while (len)
{
1999-07-07 22:19:36 +02:00
val = *myaddr;
monitor_printf ("%x\r", val);
myaddr++;
memaddr++;
written++;
/* If we wanted to, here we could validate the address */
1999-07-07 22:19:36 +02:00
monitor_expect_prompt (NULL, 0);
len--;
}
/* Now exit the sub mode */
monitor_printf (current_monitor->getreg.term_cmd);
1999-07-07 22:19:36 +02:00
monitor_expect_prompt (NULL, 0);
return written;
}
static void
1999-07-07 22:19:36 +02:00
longlongendswap (unsigned char *a)
{
1999-07-07 22:19:36 +02:00
int i, j;
unsigned char x;
i = 0;
j = 7;
while (i < 4)
1999-07-07 22:19:36 +02:00
{
x = *(a + i);
*(a + i) = *(a + j);
*(a + j) = x;
i++, j--;
}
}
/* Format 32 chars of long long value, advance the pointer */
1999-07-07 22:19:36 +02:00
static char *hexlate = "0123456789abcdef";
static char *
longlong_hexchars (unsigned long long value,
char *outbuff)
{
1999-07-07 22:19:36 +02:00
if (value == 0)
{
*outbuff++ = '0';
return outbuff;
}
else
1999-07-07 22:19:36 +02:00
{
static unsigned char disbuf[8]; /* disassembly buffer */
unsigned char *scan, *limit; /* loop controls */
unsigned char c, nib;
int leadzero = 1;
scan = disbuf;
limit = scan + 8;
{
unsigned long long *dp;
dp = (unsigned long long *) scan;
*dp = value;
}
1999-07-07 22:19:36 +02:00
longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
while (scan < limit)
1999-04-26 20:34:20 +02:00
{
1999-07-07 22:19:36 +02:00
c = *scan++; /* a byte of our long long value */
if (leadzero)
1999-04-26 20:34:20 +02:00
{
if (c == 0)
continue;
else
1999-07-07 22:19:36 +02:00
leadzero = 0; /* henceforth we print even zeroes */
1999-04-26 20:34:20 +02:00
}
1999-07-07 22:19:36 +02:00
nib = c >> 4; /* high nibble bits */
1999-04-26 20:34:20 +02:00
*outbuff++ = hexlate[nib];
1999-07-07 22:19:36 +02:00
nib = c & 0x0f; /* low nibble bits */
1999-04-26 20:34:20 +02:00
*outbuff++ = hexlate[nib];
}
1999-07-07 22:19:36 +02:00
return outbuff;
}
1999-07-07 22:19:36 +02:00
} /* longlong_hexchars */
/* I am only going to call this when writing virtual byte streams.
Which possably entails endian conversions
1999-07-07 22:19:36 +02:00
*/
static int
2000-07-30 03:48:28 +02:00
monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
{
1999-07-07 22:19:36 +02:00
static char hexstage[20]; /* At least 16 digits required, plus null */
char *endstring;
long long *llptr;
long long value;
int written = 0;
llptr = (unsigned long long *) myaddr;
if (len == 0)
return 0;
monitor_printf (current_monitor->setmem.cmdll, memaddr);
monitor_expect_prompt (NULL, 0);
while (len >= 8)
{
value = *llptr;
endstring = longlong_hexchars (*llptr, hexstage);
*endstring = '\0'; /* NUll terminate for printf */
monitor_printf ("%s\r", hexstage);
llptr++;
memaddr += 8;
written += 8;
/* If we wanted to, here we could validate the address */
1999-07-07 22:19:36 +02:00
monitor_expect_prompt (NULL, 0);
len -= 8;
}
/* Now exit the sub mode */
monitor_printf (current_monitor->getreg.term_cmd);
1999-07-07 22:19:36 +02:00
monitor_expect_prompt (NULL, 0);
return written;
} /* */
/* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
/* This is for the large blocks of memory which may occur in downloading.
And for monitors which use interactive entry,
And for monitors which do not have other downloading methods.
Without this, we will end up calling monitor_write_memory many times
and do the entry and exit of the sub mode many times
This currently assumes...
1999-07-07 22:19:36 +02:00
MO_SETMEM_INTERACTIVE
! MO_NO_ECHO_ON_SETMEM
To use this, the you have to patch the monitor_cmds block with
this function. Otherwise, its not tuned up for use by all
monitor variations.
*/
1999-07-07 22:19:36 +02:00
static int
2000-07-30 03:48:28 +02:00
monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
{
1999-07-07 22:19:36 +02:00
int written;
written = 0;
/* FIXME: This would be a good place to put the zero test */
1999-07-07 22:19:36 +02:00
#if 1
if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1999-07-07 22:19:36 +02:00
{
return monitor_write_memory_longlongs (memaddr, myaddr, len);
}
#endif
#if 0
if (len > 4)
{
1999-07-07 22:19:36 +02:00
int sublen;
written = monitor_write_even_block (memaddr, myaddr, len);
/* Adjust calling parameters by written amount */
1999-07-07 22:19:36 +02:00
memaddr += written;
myaddr += written;
len -= written;
}
#endif
1999-07-07 22:19:36 +02:00
written = monitor_write_memory_bytes (memaddr, myaddr, len);
return written;
}
/* This is an alternate form of monitor_read_memory which is used for monitors
which can only read a single byte/word/etc. at a time. */
static int
2000-07-30 03:48:28 +02:00
monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
{
unsigned int val;
1999-07-07 22:19:36 +02:00
char membuf[sizeof (int) * 2 + 1];
char *p;
char *cmd;
1999-10-12 06:37:53 +02:00
monitor_debug ("MON read single\n");
#if 0
/* Can't actually use long longs (nice idea, though). In fact, the
call to strtoul below will fail if it tries to convert a value
that's too big to fit in a long. */
if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
{
len = 8;
cmd = current_monitor->getmem.cmdll;
}
else
#endif
if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
{
len = 4;
cmd = current_monitor->getmem.cmdl;
}
else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
{
len = 2;
cmd = current_monitor->getmem.cmdw;
}
else
{
len = 1;
cmd = current_monitor->getmem.cmdb;
}
/* Send the examine command. */
monitor_printf (cmd, memaddr);
/* If RESP_DELIM is specified, we search for that as a leading
delimiter for the memory value. Otherwise, we just start
searching from the start of the buf. */
if (current_monitor->getmem.resp_delim)
1999-07-07 22:19:36 +02:00
{
1999-10-12 06:37:53 +02:00
monitor_debug ("EXP getmem.resp_delim\n");
monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
}
/* Now, read the appropriate number of hex digits for this loc,
skipping spaces. */
/* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1999-07-07 22:19:36 +02:00
if (current_monitor->flags & MO_HEX_PREFIX)
{
int c;
c = readchar (timeout);
while (c == ' ')
c = readchar (timeout);
if ((c == '0') && ((c = readchar (timeout)) == 'x'))
;
else
1999-10-12 06:37:53 +02:00
monitor_error ("monitor_read_memory_single",
"bad response from monitor",
memaddr, 0, NULL, 0);
}
{
int i;
for (i = 0; i < len * 2; i++)
{
int c;
while (1)
{
c = readchar (timeout);
if (isxdigit (c))
break;
if (c == ' ')
continue;
monitor_error ("monitor_read_memory_single",
"bad response from monitor",
memaddr, i, membuf, 0);
}
membuf[i] = c;
}
membuf[i] = '\000'; /* terminate the number */
}
/* If TERM is present, we wait for that to show up. Also, (if TERM is
present), we will send TERM_CMD if that is present. In any case, we collect
all of the output into buf, and then wait for the normal prompt. */
if (current_monitor->getmem.term)
{
1999-07-07 22:19:36 +02:00
monitor_expect (current_monitor->getmem.term, NULL, 0); /* get response */
if (current_monitor->getmem.term_cmd)
{
monitor_printf (current_monitor->getmem.term_cmd);
monitor_expect_prompt (NULL, 0);
}
}
else
1999-07-07 22:19:36 +02:00
monitor_expect_prompt (NULL, 0); /* get response */
p = membuf;
val = strtoul (membuf, &p, 16);
if (val == 0 && membuf == p)
1999-10-12 06:37:53 +02:00
monitor_error ("monitor_read_memory_single",
"bad value from monitor",
memaddr, 0, membuf, 0);
/* supply register stores in target byte order, so swap here */
store_unsigned_integer (myaddr, len, val);
return len;
}
/* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
memory at MEMADDR. Returns length moved. Currently, we do no more
than 16 bytes at a time. */
static int
2000-07-30 03:48:28 +02:00
monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
{
unsigned int val;
char buf[512];
char *p, *p1;
int resp_len;
int i;
CORE_ADDR dumpaddr;
if (len <= 0)
{
1999-10-12 06:37:53 +02:00
monitor_debug ("Zero length call to monitor_read_memory\n");
return 0;
}
1999-10-12 06:37:53 +02:00
monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
paddr_nz (memaddr), (long) myaddr, len);
if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
memaddr = ADDR_BITS_REMOVE (memaddr);
if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
return monitor_read_memory_single (memaddr, myaddr, len);
len = min (len, 16);
/* Some dumpers align the first data with the preceeding 16
byte boundary. Some print blanks and start at the
requested boundary. EXACT_DUMPADDR
1999-07-07 22:19:36 +02:00
*/
dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1999-07-07 22:19:36 +02:00
? memaddr : memaddr & ~0x0f;
/* See if xfer would cross a 16 byte boundary. If so, clip it. */
if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
len = ((memaddr + len) & ~0xf) - memaddr;
/* send the memory examine command */
if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1999-04-26 20:34:20 +02:00
monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
else
monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
/* If TERM is present, we wait for that to show up. Also, (if TERM
is present), we will send TERM_CMD if that is present. In any
case, we collect all of the output into buf, and then wait for
the normal prompt. */
if (current_monitor->getmem.term)
{
1999-07-07 22:19:36 +02:00
resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* get response */
if (resp_len <= 0)
1999-10-12 06:37:53 +02:00
monitor_error ("monitor_read_memory",
"excessive response from monitor",
memaddr, resp_len, buf, 0);
if (current_monitor->getmem.term_cmd)
{
serial_write (monitor_desc, current_monitor->getmem.term_cmd,
strlen (current_monitor->getmem.term_cmd));
monitor_expect_prompt (NULL, 0);
}
}
else
1999-07-07 22:19:36 +02:00
resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
p = buf;
/* If RESP_DELIM is specified, we search for that as a leading
delimiter for the values. Otherwise, we just start searching
from the start of the buf. */
if (current_monitor->getmem.resp_delim)
{
int retval, tmp;
struct re_registers resp_strings;
1999-10-12 06:37:53 +02:00
monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
memset (&resp_strings, 0, sizeof (struct re_registers));
tmp = strlen (p);
retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
&resp_strings);
if (retval < 0)
1999-10-12 06:37:53 +02:00
monitor_error ("monitor_read_memory",
"bad response from monitor",
memaddr, resp_len, buf, 0);
p += resp_strings.end[0];
#if 0
p = strstr (p, current_monitor->getmem.resp_delim);
if (!p)
1999-10-12 06:37:53 +02:00
monitor_error ("monitor_read_memory",
"bad response from monitor",
memaddr, resp_len, buf, 0);
p += strlen (current_monitor->getmem.resp_delim);
#endif
}
1999-10-12 06:37:53 +02:00
monitor_debug ("MON scanning %d ,%lx '%s'\n", len, (long) p, p);
if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
{
1999-07-07 22:19:36 +02:00
char c;
int fetched = 0;
i = len;
1999-07-07 22:19:36 +02:00
c = *p;
1999-07-07 22:19:36 +02:00
while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
{
if (isxdigit (c))
{
if ((dumpaddr >= memaddr) && (i > 0))
{
val = fromhex (c) * 16 + fromhex (*(p + 1));
*myaddr++ = val;
1999-10-12 06:37:53 +02:00
if (monitor_debug_p || remote_debug)
fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
--i;
1999-07-07 22:19:36 +02:00
fetched++;
}
++dumpaddr;
++p;
}
1999-07-07 22:19:36 +02:00
++p; /* skip a blank or other non hex char */
c = *p;
}
1999-07-07 22:19:36 +02:00
if (fetched == 0)
error ("Failed to read via monitor");
1999-10-12 06:37:53 +02:00
if (monitor_debug_p || remote_debug)
fprintf_unfiltered (gdb_stdlog, "\n");
1999-07-07 22:19:36 +02:00
return fetched; /* Return the number of bytes actually read */
}
1999-10-12 06:37:53 +02:00
monitor_debug ("MON scanning bytes\n");
for (i = len; i > 0; i--)
{
/* Skip non-hex chars, but bomb on end of string and newlines */
while (1)
{
if (isxdigit (*p))
break;
if (*p == '\000' || *p == '\n' || *p == '\r')
1999-10-12 06:37:53 +02:00
monitor_error ("monitor_read_memory",
"badly terminated response from monitor",
memaddr, resp_len, buf, 0);
p++;
}
val = strtoul (p, &p1, 16);
if (val == 0 && p == p1)
1999-10-12 06:37:53 +02:00
monitor_error ("monitor_read_memory",
"bad value from monitor",
memaddr, resp_len, buf, 0);
*myaddr++ = val;
if (i == 1)
break;
p = p1;
}
return len;
}
2000-09-24 06:42:12 +02:00
/* Transfer LEN bytes between target address MEMADDR and GDB address
MYADDR. Returns 0 for success, errno code for failure. TARGET is
unused. */
static int
2000-09-24 06:42:12 +02:00
monitor_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
2002-01-19 04:32:43 +01:00
struct mem_attrib *attrib, struct target_ops *target)
{
* TODO: Note abstraction layer violation where "ocd reset" command must invalidate the dcache, and how this might be fixed. * monitor.c (#include "dcache.h"): Removed. (remote_dcache): Removed. (monitor_open): Removed code that created local dcache. (flush_monitor_dcache): Removed (unused function). (monitor_resume): Removed call to dcache_invd(). (monitor_load): Likewise. (monitor_xfer_memory): Changed to call monitor_write_memory(), monitor_write_memory_block(), and monitor_read_memory() instead of dcache_xfer_memory(). * monitor.h (flush_monitor_dcache): Removed (unused function). * ocd.c (#include "dcache.h"): Removed. (ocd_dcache): Removed. (ocd_open): Removed code that created local dcache. (ocd_resume): Removed call to dcache_invd(). (ocd_xfer_memory): Changed to call ocd_write_bytes() and ocd_read_bytes() instead of dcache_xfer_memory(). (bdm_reset_command): Invalidate target dcache. * remote-bug.c (bug_load): Remove call to dcache_invd(). (bug_resume): Likewise. (bug_settings): Remove dcache, readfunc, and writefunc fields from initializer. (bug_xfer_memory): Changed to call bug_read_memory() and bug_write_memory() instead of dcache_xfer_memory(). * remote-nindy.c (#include "dcache.h"): Removed. (nindy_dcache): Removed. (nindy_open): Removed code that created local dcache. (nindy_resume): Removed call to dcache_invd(). (nindy_load): Likewise. (nindy_xfer_inferior_memory): Changed to call ninMemPut() and ninMemGet() instead of dcache_xfer_memory(). * remote-sds.c (#include "dcache.h"): Removed. (sds_dcache): Removed. (sds_open): Removed code that created local dcache. (sds_resume): Removed call to dcache_invd(). (sds_xfer_memory): Changed to call sds_write_bytes() and sds_read_bytes() instead of dcache_xfer_memory(). * remote-utils.c (gr_open): Removed code that created local dcache. * remote-utils.h (#include "dcache.h"): Removed. (struct gr_settings): Removed dcache, readfunc, and writefunc fields. (gr_get_dcache, gr_set_dcache): Removed macro definitions. * remote.c (#include "dcache.h"): Removed. (remote_dcache): Removed. (remote_open_1): Removed code that created local dcache. (remote_async_open_1): Likewise. (remote_resume): Removed call to dcache_invd(). (remote_async_resume): Likewise. (remote_xfer_memory): Changed to call remote_write_bytes() and remote_read_bytes() instead of dcache_xfer_memory(). * wince.c (#include "dcache.h"): Removed. (remote_dcache): Removed. (child_create_inferior): Removed code that created local dcache. (child_xfer_memory): Changed to call remote_write_bytes() and remote_read_bytes() instead of dcache_xfer_memory(). (child_resume): Removed call to dcache_invd(). * target.c (target_dcache): Added. (target_load): Invalidate target_dcache. (do_xfer_memory): New function. (target_xfer_memory): Reimplement in terms of dcache_xfer_memory(). (target_xfer_memory_partial): Likewise. (initialize_targets): Create target_dcache. * target.h (#include "dcache.h"): Added. (target_open): Invalidate target_dcache. (target_resume): Likewise. (do_xfer_memory): New declaration. * dcache.c (dcache_init): Removed reading and writing arguments. (dcache_struct): Removed read_memory and write_memory fields. (dcache_write_line): Call do_xfer_memory. (dcache_read_line): Likewise. (dcache_xfer_memory): Likewise. (dcache_invalidate): Renamed from dcache_invd. (dcache_init): Updated. (dcache_xfer_memory): Updated. * dcache.h (memxferfunc): Removed definition.
2000-11-03 23:00:56 +01:00
int res;
if (write)
{
if (current_monitor->flags & MO_HAS_BLOCKWRITES)
res = monitor_write_memory_block(memaddr, myaddr, len);
else
res = monitor_write_memory(memaddr, myaddr, len);
}
else
{
res = monitor_read_memory(memaddr, myaddr, len);
}
return res;
}
static void
2000-07-30 03:48:28 +02:00
monitor_kill (void)
{
1999-07-07 22:19:36 +02:00
return; /* ignore attempts to kill target system */
}
/* All we actually do is set the PC to the start address of exec_bfd, and start
the program at that point. */
static void
2000-07-30 03:48:28 +02:00
monitor_create_inferior (char *exec_file, char *args, char **env)
{
if (args && (*args != '\000'))
error ("Args are not supported by the monitor.");
first_time = 1;
clear_proceed_status ();
proceed (bfd_get_start_address (exec_bfd), TARGET_SIGNAL_0, 0);
}
/* Clean up when a program exits.
The program actually lives on in the remote processor's RAM, and may be
run again without a download. Don't leave it full of breakpoint
instructions. */
static void
2000-07-30 03:48:28 +02:00
monitor_mourn_inferior (void)
{
unpush_target (targ_ops);
generic_mourn_inferior (); /* Do all the proper things now */
}
/* Tell the monitor to add a breakpoint. */
static int
2000-07-30 03:48:28 +02:00
monitor_insert_breakpoint (CORE_ADDR addr, char *shadow)
{
int i;
unsigned char *bp;
int bplen;
1999-10-12 06:37:53 +02:00
monitor_debug ("MON inst bkpt %s\n", paddr (addr));
if (current_monitor->set_break == NULL)
error ("No set_break defined for this monitor");
if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
addr = ADDR_BITS_REMOVE (addr);
/* Determine appropriate breakpoint size for this address. */
bp = memory_breakpoint_from_pc (&addr, &bplen);
1999-05-19 21:58:41 +02:00
for (i = 0; i < current_monitor->num_breakpoints; i++)
{
if (breakaddr[i] == 0)
{
breakaddr[i] = addr;
monitor_read_memory (addr, shadow, bplen);
monitor_printf (current_monitor->set_break, addr);
monitor_expect_prompt (NULL, 0);
return 0;
}
}
1999-05-19 21:58:41 +02:00
error ("Too many breakpoints (> %d) for monitor.", current_monitor->num_breakpoints);
}
/* Tell the monitor to remove a breakpoint. */
static int
2000-07-30 03:48:28 +02:00
monitor_remove_breakpoint (CORE_ADDR addr, char *shadow)
{
int i;
1999-10-12 06:37:53 +02:00
monitor_debug ("MON rmbkpt %s\n", paddr (addr));
if (current_monitor->clr_break == NULL)
error ("No clr_break defined for this monitor");
if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
addr = ADDR_BITS_REMOVE (addr);
1999-05-19 21:58:41 +02:00
for (i = 0; i < current_monitor->num_breakpoints; i++)
{
if (breakaddr[i] == addr)
{
breakaddr[i] = 0;
/* some monitors remove breakpoints based on the address */
if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
monitor_printf (current_monitor->clr_break, addr);
else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
monitor_printf (current_monitor->clr_break, i + 1);
else
monitor_printf (current_monitor->clr_break, i);
monitor_expect_prompt (NULL, 0);
return 0;
}
}
fprintf_unfiltered (gdb_stderr,
1999-10-12 06:37:53 +02:00
"Can't find breakpoint associated with 0x%s\n",
paddr_nz (addr));
return 1;
}
/* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
an S-record. Return non-zero if the ACK is received properly. */
static int
2000-07-30 03:48:28 +02:00
monitor_wait_srec_ack (void)
{
1999-09-09 02:02:17 +02:00
int ch;
if (current_monitor->flags & MO_SREC_ACK_PLUS)
{
return (readchar (timeout) == '+');
}
else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
{
/* Eat two backspaces, a "rotating" char (|/-\), and a space. */
if ((ch = readchar (1)) < 0)
return 0;
if ((ch = readchar (1)) < 0)
return 0;
if ((ch = readchar (1)) < 0)
return 0;
if ((ch = readchar (1)) < 0)
return 0;
}
return 1;
}
/* monitor_load -- download a file. */
static void
2000-07-30 03:48:28 +02:00
monitor_load (char *file, int from_tty)
{
1999-10-12 06:37:53 +02:00
monitor_debug ("MON load\n");
1999-10-12 06:37:53 +02:00
if (current_monitor->load_routine)
current_monitor->load_routine (monitor_desc, file, hashmark);
else
{ /* The default is ascii S-records */
int n;
unsigned long load_offset;
char buf[128];
/* enable user to specify address for downloading as 2nd arg to load */
n = sscanf (file, "%s 0x%lx", buf, &load_offset);
if (n > 1)
file = buf;
else
load_offset = 0;
monitor_printf (current_monitor->load);
if (current_monitor->loadresp)
monitor_expect (current_monitor->loadresp, NULL, 0);
load_srec (monitor_desc, file, (bfd_vma) load_offset,
32, SREC_ALL, hashmark,
current_monitor->flags & MO_SREC_ACK ?
1999-07-07 22:19:36 +02:00
monitor_wait_srec_ack : NULL);
monitor_expect_prompt (NULL, 0);
}
2001-09-13 20:53:42 +02:00
/* Finally, make the PC point at the start address */
if (exec_bfd)
write_pc (bfd_get_start_address (exec_bfd));
/* There used to be code here which would clear inferior_ptid and
call clear_symtab_users. None of that should be necessary:
monitor targets should behave like remote protocol targets, and
since generic_load does none of those things, this function
shouldn't either.
Furthermore, clearing inferior_ptid is *incorrect*. After doing
a load, we still have a valid connection to the monitor, with a
live processor state to fiddle with. The user can type
`continue' or `jump *start' and make the program run. If they do
these things, however, GDB will be talking to a running program
while inferior_ptid is null_ptid; this makes things like
reinit_frame_cache very confused. */
}
static void
2000-07-30 03:48:28 +02:00
monitor_stop (void)
{
1999-10-12 06:37:53 +02:00
monitor_debug ("MON stop\n");
if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
serial_send_break (monitor_desc);
if (current_monitor->stop)
monitor_printf_noecho (current_monitor->stop);
}
1999-08-09 23:36:23 +02:00
/* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
in OUTPUT until the prompt is seen. FIXME: We read the characters
ourseleves here cause of a nasty echo. */
static void
1999-08-09 23:36:23 +02:00
monitor_rcmd (char *command,
2000-02-02 01:21:19 +01:00
struct ui_file *outbuf)
{
char *p;
int resp_len;
char buf[1000];
if (monitor_desc == NULL)
error ("monitor target not open.");
p = current_monitor->prompt;
/* Send the command. Note that if no args were supplied, then we're
just sending the monitor a newline, which is sometimes useful. */
1999-08-09 23:36:23 +02:00
monitor_printf ("%s\r", (command ? command : ""));
resp_len = monitor_expect_prompt (buf, sizeof buf);
1999-08-09 23:36:23 +02:00
fputs_unfiltered (buf, outbuf); /* Output the response */
}
/* Convert hex digit A to a number. */
#if 0
static int
2000-07-30 03:48:28 +02:00
from_hex (int a)
1999-07-07 22:19:36 +02:00
{
if (a >= '0' && a <= '9')
return a - '0';
if (a >= 'a' && a <= 'f')
return a - 'a' + 10;
if (a >= 'A' && a <= 'F')
return a - 'A' + 10;
error ("Reply contains invalid hex digit 0x%x", a);
}
#endif
char *
2000-07-30 03:48:28 +02:00
monitor_get_dev_name (void)
{
return dev_name;
}
static struct target_ops monitor_ops;
static void
init_base_monitor_ops (void)
{
monitor_ops.to_shortname = NULL;
monitor_ops.to_longname = NULL;
monitor_ops.to_doc = NULL;
monitor_ops.to_open = NULL;
monitor_ops.to_close = monitor_close;
monitor_ops.to_attach = NULL;
monitor_ops.to_post_attach = NULL;
monitor_ops.to_require_attach = NULL;
monitor_ops.to_detach = monitor_detach;
monitor_ops.to_require_detach = NULL;
monitor_ops.to_resume = monitor_resume;
monitor_ops.to_wait = monitor_wait;
monitor_ops.to_post_wait = NULL;
monitor_ops.to_fetch_registers = monitor_fetch_registers;
monitor_ops.to_store_registers = monitor_store_registers;
monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
monitor_ops.to_xfer_memory = monitor_xfer_memory;
monitor_ops.to_files_info = monitor_files_info;
monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
monitor_ops.to_terminal_init = 0;
monitor_ops.to_terminal_inferior = 0;
monitor_ops.to_terminal_ours_for_output = 0;
monitor_ops.to_terminal_ours = 0;
monitor_ops.to_terminal_info = 0;
monitor_ops.to_kill = monitor_kill;
monitor_ops.to_load = monitor_load;
monitor_ops.to_lookup_symbol = 0;
monitor_ops.to_create_inferior = monitor_create_inferior;
monitor_ops.to_post_startup_inferior = NULL;
monitor_ops.to_acknowledge_created_inferior = NULL;
monitor_ops.to_clone_and_follow_inferior = NULL;
monitor_ops.to_post_follow_inferior_by_clone = NULL;
monitor_ops.to_insert_fork_catchpoint = NULL;
monitor_ops.to_remove_fork_catchpoint = NULL;
monitor_ops.to_insert_vfork_catchpoint = NULL;
monitor_ops.to_remove_vfork_catchpoint = NULL;
monitor_ops.to_has_forked = NULL;
monitor_ops.to_has_vforked = NULL;
monitor_ops.to_can_follow_vfork_prior_to_exec = NULL;
monitor_ops.to_post_follow_vfork = NULL;
monitor_ops.to_insert_exec_catchpoint = NULL;
monitor_ops.to_remove_exec_catchpoint = NULL;
monitor_ops.to_has_execd = NULL;
monitor_ops.to_reported_exec_events_per_exec_call = NULL;
monitor_ops.to_has_exited = NULL;
monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
monitor_ops.to_can_run = 0;
monitor_ops.to_notice_signals = 0;
monitor_ops.to_thread_alive = 0;
monitor_ops.to_stop = monitor_stop;
1999-08-09 23:36:23 +02:00
monitor_ops.to_rcmd = monitor_rcmd;
monitor_ops.to_pid_to_exec_file = NULL;
monitor_ops.to_stratum = process_stratum;
monitor_ops.DONT_USE = 0;
monitor_ops.to_has_all_memory = 1;
monitor_ops.to_has_memory = 1;
monitor_ops.to_has_stack = 1;
monitor_ops.to_has_registers = 1;
monitor_ops.to_has_execution = 1;
monitor_ops.to_sections = 0;
monitor_ops.to_sections_end = 0;
monitor_ops.to_magic = OPS_MAGIC;
1999-07-07 22:19:36 +02:00
} /* init_base_monitor_ops */
/* Init the target_ops structure pointed at by OPS */
void
2000-07-30 03:48:28 +02:00
init_monitor_ops (struct target_ops *ops)
{
if (monitor_ops.to_magic != OPS_MAGIC)
init_base_monitor_ops ();
memcpy (ops, &monitor_ops, sizeof monitor_ops);
}
/* Define additional commands that are usually only used by monitors. */
void
2000-07-30 03:48:28 +02:00
_initialize_remote_monitors (void)
{
init_base_monitor_ops ();
add_show_from_set (add_set_cmd ("hash", no_class, var_boolean,
1999-07-07 22:19:36 +02:00
(char *) &hashmark,
"Set display of activity while downloading a file.\n\
When enabled, a hashmark \'#\' is displayed.",
1999-07-07 22:19:36 +02:00
&setlist),
&showlist);
1999-10-12 06:37:53 +02:00
add_show_from_set
2000-03-28 04:25:14 +02:00
(add_set_cmd ("monitor", no_class, var_zinteger,
1999-10-12 06:37:53 +02:00
(char *) &monitor_debug_p,
"Set debugging of remote monitor communication.\n\
When enabled, communication between GDB and the remote monitor\n\
2000-03-28 04:25:14 +02:00
is displayed.", &setdebuglist),
&showdebuglist);
}