2001-02-18 23:33:11 +00:00
|
|
|
|
/* BFD back-end for PDP-11 a.out binaries.
|
2002-03-28 03:27:46 +00:00
|
|
|
|
Copyright 2001, 2002 Free Software Foundation, Inc.
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
2001-08-28 09:35:16 +00:00
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
2001-08-28 09:35:16 +00:00
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
2001-08-28 09:35:16 +00:00
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
2001-08-28 09:35:16 +00:00
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
/* BFD backend for PDP-11, running 2.11BSD in particular.
|
|
|
|
|
|
|
|
|
|
This file was hacked up by looking hard at the existing vaxnetbsd
|
|
|
|
|
back end and the header files in 2.11BSD.
|
|
|
|
|
|
|
|
|
|
TODO
|
|
|
|
|
* support for V7 file formats
|
|
|
|
|
* support for overlay object files (see 2.11 a.out(5))
|
|
|
|
|
* support for old and very old archives
|
|
|
|
|
(see 2.11 ar(5), historical section)
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|
2001-02-18 23:33:11 +00:00
|
|
|
|
Search for TODO to find other areas needing more work. */
|
|
|
|
|
|
|
|
|
|
#define BYTES_IN_WORD 2
|
|
|
|
|
#define BYTES_IN_LONG 4
|
|
|
|
|
#define ARCH_SIZE 16
|
|
|
|
|
#undef TARGET_IS_BIG_ENDIAN_P
|
|
|
|
|
|
|
|
|
|
#define TARGET_PAGE_SIZE 1024
|
|
|
|
|
#define SEGMENT__SIZE TARGET_PAGE_SIZE
|
|
|
|
|
|
|
|
|
|
#define DEFAULT_ARCH bfd_arch_pdp11
|
|
|
|
|
#define DEFAULT_MID M_PDP11
|
|
|
|
|
|
2001-10-02 05:58:41 +00:00
|
|
|
|
/* Do not "beautify" the CONCAT* macro args. Traditional C will not
|
|
|
|
|
remove whitespace added here, and thus will fail to concatenate
|
|
|
|
|
the tokens. */
|
|
|
|
|
#define MY(OP) CONCAT2 (pdp11_aout_,OP)
|
|
|
|
|
|
2001-02-18 23:33:11 +00:00
|
|
|
|
/* This needs to start with a.out so GDB knows it is an a.out variant. */
|
|
|
|
|
#define TARGETNAME "a.out-pdp11"
|
|
|
|
|
|
|
|
|
|
/* This is the normal load address for executables. */
|
|
|
|
|
#define TEXT_START_ADDR 0
|
|
|
|
|
|
|
|
|
|
/* The header is not included in the text segment. */
|
|
|
|
|
#define N_HEADER_IN_TEXT(x) 0
|
|
|
|
|
|
|
|
|
|
/* There are no shared libraries. */
|
|
|
|
|
#define N_SHARED_LIB(x) 0
|
|
|
|
|
|
|
|
|
|
/* There is no flags field. */
|
|
|
|
|
#define N_FLAGS(exec) 0
|
|
|
|
|
|
|
|
|
|
#define N_SET_FLAGS(exec, flags) do { } while (0)
|
|
|
|
|
#define N_BADMAG(x) (((x).a_info != OMAGIC) && \
|
|
|
|
|
((x).a_info != NMAGIC) && \
|
|
|
|
|
((x).a_info != A_MAGIC3) && \
|
|
|
|
|
((x).a_info != A_MAGIC4) && \
|
|
|
|
|
((x).a_info != A_MAGIC5) && \
|
|
|
|
|
((x).a_info != A_MAGIC6))
|
|
|
|
|
|
|
|
|
|
#include "bfd.h"
|
|
|
|
|
|
|
|
|
|
#define external_exec pdp11_external_exec
|
|
|
|
|
struct pdp11_external_exec
|
|
|
|
|
{
|
|
|
|
|
bfd_byte e_info[2]; /* magic number */
|
|
|
|
|
bfd_byte e_text[2]; /* length of text section in bytes */
|
|
|
|
|
bfd_byte e_data[2]; /* length of data section in bytes */
|
|
|
|
|
bfd_byte e_bss[2]; /* length of bss area in bytes */
|
|
|
|
|
bfd_byte e_syms[2]; /* length of symbol table in bytes */
|
|
|
|
|
bfd_byte e_entry[2]; /* start address */
|
|
|
|
|
bfd_byte e_unused[2]; /* not used */
|
|
|
|
|
bfd_byte e_flag[2]; /* relocation info stripped */
|
|
|
|
|
bfd_byte e_relocatable; /* ugly hack */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#define EXEC_BYTES_SIZE (8 * 2)
|
|
|
|
|
|
|
|
|
|
#define A_MAGIC1 OMAGIC
|
|
|
|
|
#define OMAGIC 0407 /* ...object file or impure executable. */
|
|
|
|
|
#define A_MAGIC2 NMAGIC
|
|
|
|
|
#define NMAGIC 0410 /* pure executable. */
|
|
|
|
|
#define ZMAGIC 0413 /* demand-paged executable. */
|
|
|
|
|
#define A_MAGIC3 0411 /* separated I&D */
|
|
|
|
|
#define A_MAGIC4 0405 /* overlay */
|
|
|
|
|
#define A_MAGIC5 0430 /* auto-overlay (nonseparate) */
|
|
|
|
|
#define A_MAGIC6 0431 /* auto-overlay (separate) */
|
|
|
|
|
#define QMAGIC 0
|
|
|
|
|
#define BMAGIC 0
|
|
|
|
|
|
|
|
|
|
#define A_FLAG_RELOC_STRIPPED 0x0001
|
|
|
|
|
|
|
|
|
|
#define external_nlist pdp11_external_nlist
|
|
|
|
|
struct pdp11_external_nlist
|
|
|
|
|
{
|
|
|
|
|
bfd_byte e_unused[2]; /* unused */
|
|
|
|
|
bfd_byte e_strx[2]; /* index into string table of name */
|
|
|
|
|
bfd_byte e_type[1]; /* type of symbol */
|
|
|
|
|
bfd_byte e_ovly[1]; /* overlay number */
|
|
|
|
|
bfd_byte e_value[2]; /* value of symbol */
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#define EXTERNAL_NLIST_SIZE 8
|
|
|
|
|
|
|
|
|
|
#define N_TXTOFF(x) (EXEC_BYTES_SIZE)
|
|
|
|
|
#define N_DATOFF(x) (N_TXTOFF(x) + (x).a_text)
|
|
|
|
|
#define N_TRELOFF(x) (N_DATOFF(x) + (x).a_data)
|
|
|
|
|
#define N_DRELOFF(x) (N_TRELOFF(x) + (x).a_trsize)
|
|
|
|
|
#define N_SYMOFF(x) (N_DRELOFF(x) + (x).a_drsize)
|
|
|
|
|
#define N_STROFF(x) (N_SYMOFF(x) + (x).a_syms)
|
|
|
|
|
|
|
|
|
|
#define WRITE_HEADERS(abfd, execp) pdp11_aout_write_headers (abfd, execp)
|
|
|
|
|
|
|
|
|
|
#include "sysdep.h"
|
|
|
|
|
#include "libbfd.h"
|
|
|
|
|
#include "libaout.h"
|
|
|
|
|
|
|
|
|
|
#define SWAP_MAGIC(ext) bfd_getl16 (ext)
|
|
|
|
|
|
|
|
|
|
#define MY_entry_is_text_address 1
|
|
|
|
|
|
|
|
|
|
#define MY_write_object_contents MY(write_object_contents)
|
|
|
|
|
static boolean MY(write_object_contents) PARAMS ((bfd *abfd));
|
|
|
|
|
#define MY_text_includes_header 1
|
|
|
|
|
|
|
|
|
|
bfd_vma bfd_getp32 PARAMS ((const bfd_byte *));
|
|
|
|
|
bfd_signed_vma bfd_getp_signed_32 PARAMS ((const bfd_byte *));
|
|
|
|
|
void bfd_putp32 PARAMS ((bfd_vma, bfd_byte *));
|
|
|
|
|
|
|
|
|
|
#define MY_BFD_TARGET
|
|
|
|
|
|
|
|
|
|
#include "aout-target.h"
|
|
|
|
|
|
|
|
|
|
const bfd_target MY(vec) =
|
|
|
|
|
{
|
|
|
|
|
TARGETNAME, /* name */
|
|
|
|
|
bfd_target_aout_flavour,
|
|
|
|
|
BFD_ENDIAN_LITTLE, /* target byte order (little) */
|
|
|
|
|
BFD_ENDIAN_LITTLE, /* target headers byte order (little) */
|
|
|
|
|
(HAS_RELOC | EXEC_P | /* object flags */
|
|
|
|
|
HAS_LINENO | HAS_DEBUG |
|
|
|
|
|
HAS_SYMS | HAS_LOCALS | WP_TEXT),
|
|
|
|
|
(SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
|
|
|
|
|
MY_symbol_leading_char,
|
|
|
|
|
AR_PAD_CHAR, /* ar_pad_char */
|
|
|
|
|
15, /* ar_max_namelen */
|
|
|
|
|
bfd_getl64, bfd_getl_signed_64, bfd_putl64,
|
|
|
|
|
bfd_getp32, bfd_getp_signed_32, bfd_putp32,
|
|
|
|
|
bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
|
|
|
|
|
bfd_getl64, bfd_getl_signed_64, bfd_putl64,
|
|
|
|
|
bfd_getp32, bfd_getp_signed_32, bfd_putp32,
|
|
|
|
|
bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
|
|
|
|
|
{_bfd_dummy_target, MY_object_p, /* bfd_check_format */
|
|
|
|
|
bfd_generic_archive_p, MY_core_file_p},
|
|
|
|
|
{bfd_false, MY_mkobject, /* bfd_set_format */
|
|
|
|
|
_bfd_generic_mkarchive, bfd_false},
|
|
|
|
|
{bfd_false, MY_write_object_contents, /* bfd_write_contents */
|
|
|
|
|
_bfd_write_archive_contents, bfd_false},
|
|
|
|
|
|
|
|
|
|
BFD_JUMP_TABLE_GENERIC (MY),
|
|
|
|
|
BFD_JUMP_TABLE_COPY (MY),
|
|
|
|
|
BFD_JUMP_TABLE_CORE (MY),
|
|
|
|
|
BFD_JUMP_TABLE_ARCHIVE (MY),
|
|
|
|
|
BFD_JUMP_TABLE_SYMBOLS (MY),
|
|
|
|
|
BFD_JUMP_TABLE_RELOCS (MY),
|
|
|
|
|
BFD_JUMP_TABLE_WRITE (MY),
|
|
|
|
|
BFD_JUMP_TABLE_LINK (MY),
|
|
|
|
|
BFD_JUMP_TABLE_DYNAMIC (MY),
|
|
|
|
|
|
|
|
|
|
/* Alternative_target */
|
|
|
|
|
NULL,
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|
2001-02-18 23:33:11 +00:00
|
|
|
|
(PTR) MY_backend_data,
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* start of modified aoutx.h */
|
|
|
|
|
/* BFD semi-generic back-end for a.out binaries.
|
|
|
|
|
Copyright 1990, 91, 92, 93, 94, 95, 96, 97, 1998
|
|
|
|
|
Free Software Foundation, Inc.
|
|
|
|
|
Written by Cygnus Support.
|
|
|
|
|
|
|
|
|
|
This file is part of BFD, the Binary File Descriptor library.
|
|
|
|
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
|
along with this program; if not, write to the Free Software
|
|
|
|
|
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
SECTION
|
|
|
|
|
a.out backends
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
|
|
|
|
|
|
BFD supports a number of different flavours of a.out format,
|
|
|
|
|
though the major differences are only the sizes of the
|
|
|
|
|
structures on disk, and the shape of the relocation
|
|
|
|
|
information.
|
|
|
|
|
|
|
|
|
|
The support is split into a basic support file @file{aoutx.h}
|
|
|
|
|
and other files which derive functions from the base. One
|
|
|
|
|
derivation file is @file{aoutf1.h} (for a.out flavour 1), and
|
|
|
|
|
adds to the basic a.out functions support for sun3, sun4, 386
|
|
|
|
|
and 29k a.out files, to create a target jump vector for a
|
|
|
|
|
specific target.
|
|
|
|
|
|
|
|
|
|
This information is further split out into more specific files
|
|
|
|
|
for each machine, including @file{sunos.c} for sun3 and sun4,
|
|
|
|
|
@file{newsos3.c} for the Sony NEWS, and @file{demo64.c} for a
|
|
|
|
|
demonstration of a 64 bit a.out format.
|
|
|
|
|
|
|
|
|
|
The base file @file{aoutx.h} defines general mechanisms for
|
|
|
|
|
reading and writing records to and from disk and various
|
|
|
|
|
other methods which BFD requires. It is included by
|
|
|
|
|
@file{aout32.c} and @file{aout64.c} to form the names
|
|
|
|
|
<<aout_32_swap_exec_header_in>>, <<aout_64_swap_exec_header_in>>, etc.
|
|
|
|
|
|
|
|
|
|
As an example, this is what goes on to make the back end for a
|
|
|
|
|
sun4, from @file{aout32.c}:
|
|
|
|
|
|
|
|
|
|
| #define ARCH_SIZE 32
|
|
|
|
|
| #include "aoutx.h"
|
|
|
|
|
|
|
|
|
|
Which exports names:
|
|
|
|
|
|
|
|
|
|
| ...
|
|
|
|
|
| aout_32_canonicalize_reloc
|
|
|
|
|
| aout_32_find_nearest_line
|
|
|
|
|
| aout_32_get_lineno
|
|
|
|
|
| aout_32_get_reloc_upper_bound
|
|
|
|
|
| ...
|
|
|
|
|
|
|
|
|
|
from @file{sunos.c}:
|
|
|
|
|
|
|
|
|
|
| #define TARGET_NAME "a.out-sunos-big"
|
|
|
|
|
| #define VECNAME sunos_big_vec
|
|
|
|
|
| #include "aoutf1.h"
|
|
|
|
|
|
|
|
|
|
requires all the names from @file{aout32.c}, and produces the jump vector
|
|
|
|
|
|
|
|
|
|
| sunos_big_vec
|
|
|
|
|
|
|
|
|
|
The file @file{host-aout.c} is a special case. It is for a large set
|
|
|
|
|
of hosts that use ``more or less standard'' a.out files, and
|
|
|
|
|
for which cross-debugging is not interesting. It uses the
|
|
|
|
|
standard 32-bit a.out support routines, but determines the
|
|
|
|
|
file offsets and addresses of the text, data, and BSS
|
|
|
|
|
sections, the machine architecture and machine type, and the
|
|
|
|
|
entry point address, in a host-dependent manner. Once these
|
|
|
|
|
values have been determined, generic code is used to handle
|
|
|
|
|
the object file.
|
|
|
|
|
|
|
|
|
|
When porting it to run on a new system, you must supply:
|
|
|
|
|
|
|
|
|
|
| HOST_PAGE_SIZE
|
|
|
|
|
| HOST_SEGMENT_SIZE
|
|
|
|
|
| HOST_MACHINE_ARCH (optional)
|
|
|
|
|
| HOST_MACHINE_MACHINE (optional)
|
|
|
|
|
| HOST_TEXT_START_ADDR
|
|
|
|
|
| HOST_STACK_END_ADDR
|
|
|
|
|
|
|
|
|
|
in the file @file{../include/sys/h-@var{XXX}.h} (for your host). These
|
|
|
|
|
values, plus the structures and macros defined in @file{a.out.h} on
|
|
|
|
|
your host system, will produce a BFD target that will access
|
|
|
|
|
ordinary a.out files on your host. To configure a new machine
|
|
|
|
|
to use @file{host-aout.c}, specify:
|
|
|
|
|
|
|
|
|
|
| TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
|
|
|
|
|
| TDEPFILES= host-aout.o trad-core.o
|
|
|
|
|
|
|
|
|
|
in the @file{config/@var{XXX}.mt} file, and modify @file{configure.in}
|
|
|
|
|
to use the
|
|
|
|
|
@file{@var{XXX}.mt} file (by setting "<<bfd_target=XXX>>") when your
|
|
|
|
|
configuration is selected.
|
|
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/* Some assumptions:
|
|
|
|
|
* Any BFD with D_PAGED set is ZMAGIC, and vice versa.
|
|
|
|
|
Doesn't matter what the setting of WP_TEXT is on output, but it'll
|
|
|
|
|
get set on input.
|
|
|
|
|
* Any BFD with D_PAGED clear and WP_TEXT set is NMAGIC.
|
|
|
|
|
* Any BFD with both flags clear is OMAGIC.
|
|
|
|
|
(Just want to make these explicit, so the conditions tested in this
|
|
|
|
|
file make sense if you're more familiar with a.out than with BFD.) */
|
|
|
|
|
|
|
|
|
|
#define KEEPIT udata.i
|
|
|
|
|
|
|
|
|
|
#include <string.h> /* For strchr and friends */
|
|
|
|
|
#include "bfd.h"
|
|
|
|
|
#include "sysdep.h"
|
2001-09-19 05:33:36 +00:00
|
|
|
|
#include "safe-ctype.h"
|
2001-02-18 23:33:11 +00:00
|
|
|
|
#include "bfdlink.h"
|
|
|
|
|
|
|
|
|
|
#include "libaout.h"
|
|
|
|
|
/*#include "libbfd.h"*/
|
|
|
|
|
#include "aout/aout64.h"
|
|
|
|
|
#include "aout/stab_gnu.h"
|
|
|
|
|
#include "aout/ar.h"
|
|
|
|
|
|
|
|
|
|
#undef N_TYPE
|
|
|
|
|
#undef N_UNDF
|
|
|
|
|
#undef N_ABS
|
|
|
|
|
#undef N_TEXT
|
|
|
|
|
#undef N_DATA
|
|
|
|
|
#undef N_BSS
|
|
|
|
|
#undef N_REG
|
|
|
|
|
#undef N_FN
|
|
|
|
|
#undef N_EXT
|
|
|
|
|
#define N_TYPE 0x1f /* type mask */
|
|
|
|
|
#define N_UNDF 0x00 /* undefined */
|
|
|
|
|
#define N_ABS 0x01 /* absolute */
|
|
|
|
|
#define N_TEXT 0x02 /* text segment */
|
|
|
|
|
#define N_DATA 0x03 /* data segment */
|
|
|
|
|
#define N_BSS 0x04 /* bss segment */
|
|
|
|
|
#define N_REG 0x14 /* register symbol */
|
|
|
|
|
#define N_FN 0x1f /* file name */
|
|
|
|
|
|
|
|
|
|
#define N_EXT 0x20 /* external flag */
|
|
|
|
|
|
|
|
|
|
#define RELOC_SIZE 2
|
|
|
|
|
|
|
|
|
|
struct pdp11_aout_reloc_external
|
|
|
|
|
{
|
|
|
|
|
bfd_byte e_reloc_entry[2];
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#define RELFLG 0x0001 /* pc-relative flag */
|
|
|
|
|
#define RTYPE 0x000e /* type mask */
|
|
|
|
|
#define RIDXMASK 0xfff0 /* index mask */
|
|
|
|
|
|
|
|
|
|
#define RABS 0x00 /* absolute */
|
|
|
|
|
#define RTEXT 0x02 /* text */
|
|
|
|
|
#define RDATA 0x04 /* data */
|
|
|
|
|
#define RBSS 0x06 /* bss */
|
|
|
|
|
#define REXT 0x08 /* external */
|
|
|
|
|
|
|
|
|
|
#define RINDEX(x) (((x) & 0xfff0) >> 4)
|
|
|
|
|
|
|
|
|
|
static boolean aout_get_external_symbols PARAMS ((bfd *));
|
|
|
|
|
static boolean translate_from_native_sym_flags
|
|
|
|
|
PARAMS ((bfd *, aout_symbol_type *));
|
|
|
|
|
static boolean translate_to_native_sym_flags
|
|
|
|
|
PARAMS ((bfd *, asymbol *, struct external_nlist *));
|
|
|
|
|
static void adjust_o_magic PARAMS ((bfd *, struct internal_exec *));
|
|
|
|
|
static void adjust_z_magic PARAMS ((bfd *, struct internal_exec *));
|
|
|
|
|
static void adjust_n_magic PARAMS ((bfd *, struct internal_exec *));
|
|
|
|
|
|
2001-08-28 09:35:16 +00:00
|
|
|
|
static int pdp11_aout_write_headers PARAMS ((bfd *, struct internal_exec *));
|
|
|
|
|
void pdp11_aout_swap_reloc_out PARAMS ((bfd *, arelent *, struct pdp11_aout_reloc_external *));
|
|
|
|
|
void pdp11_aout_swap_reloc_in
|
|
|
|
|
PARAMS ((bfd *, struct pdp11_aout_reloc_external *, arelent *,
|
|
|
|
|
bfd_size_type, asymbol **, bfd_size_type));
|
|
|
|
|
|
2001-02-18 23:33:11 +00:00
|
|
|
|
/*
|
|
|
|
|
SUBSECTION
|
|
|
|
|
Relocations
|
|
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
|
The file @file{aoutx.h} provides for both the @emph{standard}
|
|
|
|
|
and @emph{extended} forms of a.out relocation records.
|
|
|
|
|
|
|
|
|
|
The standard records contain only an
|
|
|
|
|
address, a symbol index, and a type field. The extended records
|
|
|
|
|
(used on 29ks and sparcs) also have a full integer for an
|
|
|
|
|
addend.
|
|
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#ifndef MY_final_link_relocate
|
|
|
|
|
#define MY_final_link_relocate _bfd_final_link_relocate
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#ifndef MY_relocate_contents
|
|
|
|
|
#define MY_relocate_contents _bfd_relocate_contents
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
reloc_howto_type howto_table_pdp11[] =
|
|
|
|
|
{
|
|
|
|
|
/* type rs size bsz pcrel bitpos ovrf sf name part_inpl readmask setmask pcdone */
|
|
|
|
|
HOWTO( 0, 0, 1, 16, false, 0, complain_overflow_signed,0,"16", true, 0x0000ffff,0x0000ffff, false),
|
|
|
|
|
HOWTO( 1, 0, 1, 16, true, 0, complain_overflow_signed,0,"DISP16", true, 0x0000ffff,0x0000ffff, false),
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#define TABLE_SIZE(TABLE) (sizeof(TABLE)/sizeof(TABLE[0]))
|
|
|
|
|
|
|
|
|
|
reloc_howto_type *
|
|
|
|
|
NAME(aout,reloc_type_lookup) (abfd,code)
|
|
|
|
|
bfd * abfd ATTRIBUTE_UNUSED;
|
|
|
|
|
bfd_reloc_code_real_type code;
|
|
|
|
|
{
|
|
|
|
|
switch (code)
|
|
|
|
|
{
|
|
|
|
|
case BFD_RELOC_16:
|
|
|
|
|
return &howto_table_pdp11[0];
|
|
|
|
|
case BFD_RELOC_16_PCREL:
|
|
|
|
|
return &howto_table_pdp11[1];
|
|
|
|
|
default:
|
|
|
|
|
return (reloc_howto_type *)NULL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
|
pdp11_aout_write_headers (abfd, execp)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct internal_exec *execp;
|
|
|
|
|
{
|
|
|
|
|
struct external_exec exec_bytes;
|
|
|
|
|
bfd_size_type text_size;
|
|
|
|
|
file_ptr text_end;
|
|
|
|
|
|
|
|
|
|
if (adata(abfd).magic == undecided_magic)
|
|
|
|
|
NAME(aout,adjust_sizes_and_vmas) (abfd, &text_size, &text_end);
|
|
|
|
|
|
|
|
|
|
execp->a_syms = bfd_get_symcount (abfd) * EXTERNAL_NLIST_SIZE;
|
|
|
|
|
execp->a_entry = bfd_get_start_address (abfd);
|
|
|
|
|
|
|
|
|
|
if (obj_textsec (abfd)->reloc_count > 0 ||
|
|
|
|
|
obj_datasec (abfd)->reloc_count > 0)
|
|
|
|
|
{
|
|
|
|
|
execp->a_trsize = execp->a_text;
|
|
|
|
|
execp->a_drsize = execp->a_data;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
execp->a_trsize = 0;
|
|
|
|
|
execp->a_drsize = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
NAME(aout,swap_exec_header_out) (abfd, execp, &exec_bytes);
|
|
|
|
|
|
|
|
|
|
if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
|
|
|
|
|
return false;
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_bwrite ((PTR) &exec_bytes, (bfd_size_type) EXEC_BYTES_SIZE, abfd)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
!= EXEC_BYTES_SIZE)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Now write out reloc info, followed by syms and strings */
|
|
|
|
|
|
|
|
|
|
if (bfd_get_outsymbols (abfd) != (asymbol **) NULL
|
|
|
|
|
&& bfd_get_symcount (abfd) != 0)
|
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_seek (abfd, (file_ptr) (N_SYMOFF(*execp)), SEEK_SET) != 0)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return false;
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (! NAME(aout,write_syms) (abfd))
|
|
|
|
|
return false;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (obj_textsec (abfd)->reloc_count > 0 ||
|
|
|
|
|
obj_datasec (abfd)->reloc_count > 0)
|
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_seek (abfd, (file_ptr) (N_TRELOFF(*execp)), SEEK_SET) != 0)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return false;
|
|
|
|
|
if (!NAME(aout,squirt_out_relocs) (abfd, obj_textsec (abfd)))
|
|
|
|
|
return false;
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_seek (abfd, (file_ptr) (N_DRELOFF(*execp)), SEEK_SET) != 0)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return false;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (!NAME(aout,squirt_out_relocs) (abfd, obj_datasec (abfd)))
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
}
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
/* Write an object file.
|
|
|
|
|
Section contents have already been written. We write the
|
|
|
|
|
file header, symbols, and relocation. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
MY(write_object_contents) (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
struct internal_exec *execp = exec_hdr (abfd);
|
|
|
|
|
|
|
|
|
|
/* We must make certain that the magic number has been set. This
|
|
|
|
|
will normally have been done by set_section_contents, but only if
|
|
|
|
|
there actually are some section contents. */
|
|
|
|
|
if (! abfd->output_has_begun)
|
|
|
|
|
{
|
|
|
|
|
bfd_size_type text_size;
|
|
|
|
|
file_ptr text_end;
|
|
|
|
|
|
|
|
|
|
NAME(aout,adjust_sizes_and_vmas) (abfd, &text_size, &text_end);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
obj_reloc_entry_size (abfd) = RELOC_SIZE;
|
|
|
|
|
|
|
|
|
|
return WRITE_HEADERS(abfd, execp);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
SUBSECTION
|
|
|
|
|
Internal entry points
|
|
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
|
@file{aoutx.h} exports several routines for accessing the
|
|
|
|
|
contents of an a.out file, which are gathered and exported in
|
|
|
|
|
turn by various format specific files (eg sunos.c).
|
|
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
FUNCTION
|
|
|
|
|
aout_@var{size}_swap_exec_header_in
|
|
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
|
void aout_@var{size}_swap_exec_header_in,
|
|
|
|
|
(bfd *abfd,
|
|
|
|
|
struct external_exec *raw_bytes,
|
|
|
|
|
struct internal_exec *execp);
|
|
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
|
Swap the information in an executable header @var{raw_bytes} taken
|
|
|
|
|
from a raw byte stream memory image into the internal exec header
|
|
|
|
|
structure @var{execp}.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
#ifndef NAME_swap_exec_header_in
|
|
|
|
|
void
|
|
|
|
|
NAME(aout,swap_exec_header_in) (abfd, raw_bytes, execp)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct external_exec *raw_bytes;
|
|
|
|
|
struct internal_exec *execp;
|
|
|
|
|
{
|
|
|
|
|
struct external_exec *bytes = (struct external_exec *)raw_bytes;
|
|
|
|
|
|
|
|
|
|
/* The internal_exec structure has some fields that are unused in this
|
|
|
|
|
configuration (IE for i960), so ensure that all such uninitialized
|
|
|
|
|
fields are zero'd out. There are places where two of these structs
|
|
|
|
|
are memcmp'd, and thus the contents do matter. */
|
|
|
|
|
memset ((PTR) execp, 0, sizeof (struct internal_exec));
|
|
|
|
|
/* Now fill in fields in the execp, from the bytes in the raw data. */
|
|
|
|
|
execp->a_info = GET_MAGIC (abfd, bytes->e_info);
|
|
|
|
|
execp->a_text = GET_WORD (abfd, bytes->e_text);
|
|
|
|
|
execp->a_data = GET_WORD (abfd, bytes->e_data);
|
|
|
|
|
execp->a_bss = GET_WORD (abfd, bytes->e_bss);
|
|
|
|
|
execp->a_syms = GET_WORD (abfd, bytes->e_syms);
|
|
|
|
|
execp->a_entry = GET_WORD (abfd, bytes->e_entry);
|
|
|
|
|
|
|
|
|
|
if (GET_WORD (abfd, bytes->e_flag) & A_FLAG_RELOC_STRIPPED)
|
|
|
|
|
{
|
|
|
|
|
execp->a_trsize = 0;
|
|
|
|
|
execp->a_drsize = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
execp->a_trsize = execp->a_text;
|
|
|
|
|
execp->a_drsize = execp->a_data;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#define NAME_swap_exec_header_in NAME(aout,swap_exec_header_in)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
FUNCTION
|
|
|
|
|
aout_@var{size}_swap_exec_header_out
|
|
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
|
void aout_@var{size}_swap_exec_header_out
|
|
|
|
|
(bfd *abfd,
|
|
|
|
|
struct internal_exec *execp,
|
|
|
|
|
struct external_exec *raw_bytes);
|
|
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
|
Swap the information in an internal exec header structure
|
|
|
|
|
@var{execp} into the buffer @var{raw_bytes} ready for writing to disk.
|
|
|
|
|
*/
|
|
|
|
|
void
|
|
|
|
|
NAME(aout,swap_exec_header_out) (abfd, execp, raw_bytes)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct internal_exec *execp;
|
|
|
|
|
struct external_exec *raw_bytes;
|
|
|
|
|
{
|
|
|
|
|
struct external_exec *bytes = (struct external_exec *)raw_bytes;
|
|
|
|
|
|
|
|
|
|
/* Now fill in fields in the raw data, from the fields in the exec struct. */
|
|
|
|
|
PUT_MAGIC (abfd, execp->a_info, bytes->e_info);
|
|
|
|
|
PUT_WORD (abfd, execp->a_text, bytes->e_text);
|
|
|
|
|
PUT_WORD (abfd, execp->a_data, bytes->e_data);
|
|
|
|
|
PUT_WORD (abfd, execp->a_bss, bytes->e_bss);
|
|
|
|
|
PUT_WORD (abfd, execp->a_syms, bytes->e_syms);
|
|
|
|
|
PUT_WORD (abfd, execp->a_entry, bytes->e_entry);
|
|
|
|
|
PUT_WORD (abfd, 0, bytes->e_unused);
|
|
|
|
|
|
|
|
|
|
if ((execp->a_trsize == 0 || execp->a_text == 0) &&
|
|
|
|
|
(execp->a_drsize == 0 || execp->a_data == 0))
|
|
|
|
|
PUT_WORD (abfd, A_FLAG_RELOC_STRIPPED, bytes->e_flag);
|
|
|
|
|
else if (execp->a_trsize == execp->a_text &&
|
|
|
|
|
execp->a_drsize == execp->a_data)
|
|
|
|
|
PUT_WORD (abfd, 0, bytes->e_flag);
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* TODO: print a proper warning message */
|
|
|
|
|
fprintf (stderr, "BFD:%s:%d: internal error\n", __FILE__, __LINE__);
|
|
|
|
|
PUT_WORD (abfd, 0, bytes->e_flag);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Make all the section for an a.out file. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,make_sections) (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
if (obj_textsec (abfd) == (asection *) NULL
|
|
|
|
|
&& bfd_make_section (abfd, ".text") == (asection *) NULL)
|
|
|
|
|
return false;
|
|
|
|
|
if (obj_datasec (abfd) == (asection *) NULL
|
|
|
|
|
&& bfd_make_section (abfd, ".data") == (asection *) NULL)
|
|
|
|
|
return false;
|
|
|
|
|
if (obj_bsssec (abfd) == (asection *) NULL
|
|
|
|
|
&& bfd_make_section (abfd, ".bss") == (asection *) NULL)
|
|
|
|
|
return false;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
FUNCTION
|
|
|
|
|
aout_@var{size}_some_aout_object_p
|
|
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
|
const bfd_target *aout_@var{size}_some_aout_object_p
|
|
|
|
|
(bfd *abfd,
|
|
|
|
|
const bfd_target *(*callback_to_real_object_p)());
|
|
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
|
Some a.out variant thinks that the file open in @var{abfd}
|
|
|
|
|
checking is an a.out file. Do some more checking, and set up
|
|
|
|
|
for access if it really is. Call back to the calling
|
|
|
|
|
environment's "finish up" function just before returning, to
|
|
|
|
|
handle any last-minute setup.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
const bfd_target *
|
|
|
|
|
NAME(aout,some_aout_object_p) (abfd, execp, callback_to_real_object_p)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct internal_exec *execp;
|
|
|
|
|
const bfd_target *(*callback_to_real_object_p) PARAMS ((bfd *));
|
|
|
|
|
{
|
|
|
|
|
struct aout_data_struct *rawptr, *oldrawptr;
|
|
|
|
|
const bfd_target *result;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type amt = sizeof (struct aout_data_struct);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, amt);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (rawptr == NULL)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
oldrawptr = abfd->tdata.aout_data;
|
|
|
|
|
abfd->tdata.aout_data = rawptr;
|
|
|
|
|
|
|
|
|
|
/* Copy the contents of the old tdata struct.
|
|
|
|
|
In particular, we want the subformat, since for hpux it was set in
|
|
|
|
|
hp300hpux.c:swap_exec_header_in and will be used in
|
|
|
|
|
hp300hpux.c:callback. */
|
|
|
|
|
if (oldrawptr != NULL)
|
|
|
|
|
*abfd->tdata.aout_data = *oldrawptr;
|
|
|
|
|
|
|
|
|
|
abfd->tdata.aout_data->a.hdr = &rawptr->e;
|
|
|
|
|
*(abfd->tdata.aout_data->a.hdr) = *execp; /* Copy in the internal_exec struct */
|
|
|
|
|
execp = abfd->tdata.aout_data->a.hdr;
|
|
|
|
|
|
|
|
|
|
/* Set the file flags */
|
|
|
|
|
abfd->flags = BFD_NO_FLAGS;
|
|
|
|
|
if (execp->a_drsize || execp->a_trsize)
|
|
|
|
|
abfd->flags |= HAS_RELOC;
|
|
|
|
|
/* Setting of EXEC_P has been deferred to the bottom of this function */
|
|
|
|
|
if (execp->a_syms)
|
|
|
|
|
abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
|
|
|
|
|
if (N_DYNAMIC(*execp))
|
|
|
|
|
abfd->flags |= DYNAMIC;
|
|
|
|
|
|
|
|
|
|
if (N_MAGIC (*execp) == ZMAGIC)
|
|
|
|
|
{
|
|
|
|
|
abfd->flags |= D_PAGED | WP_TEXT;
|
|
|
|
|
adata (abfd).magic = z_magic;
|
|
|
|
|
}
|
|
|
|
|
else if (N_MAGIC (*execp) == QMAGIC)
|
|
|
|
|
{
|
|
|
|
|
abfd->flags |= D_PAGED | WP_TEXT;
|
|
|
|
|
adata (abfd).magic = z_magic;
|
|
|
|
|
adata (abfd).subformat = q_magic_format;
|
|
|
|
|
}
|
|
|
|
|
else if (N_MAGIC (*execp) == NMAGIC)
|
|
|
|
|
{
|
|
|
|
|
abfd->flags |= WP_TEXT;
|
|
|
|
|
adata (abfd).magic = n_magic;
|
|
|
|
|
}
|
|
|
|
|
else if (N_MAGIC (*execp) == OMAGIC
|
|
|
|
|
|| N_MAGIC (*execp) == BMAGIC)
|
|
|
|
|
adata (abfd).magic = o_magic;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Should have been checked with N_BADMAG before this routine
|
|
|
|
|
was called. */
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bfd_get_start_address (abfd) = execp->a_entry;
|
|
|
|
|
|
|
|
|
|
obj_aout_symbols (abfd) = (aout_symbol_type *)NULL;
|
|
|
|
|
bfd_get_symcount (abfd) = execp->a_syms / sizeof (struct external_nlist);
|
|
|
|
|
|
|
|
|
|
/* The default relocation entry size is that of traditional V7 Unix. */
|
|
|
|
|
obj_reloc_entry_size (abfd) = RELOC_SIZE;
|
|
|
|
|
|
|
|
|
|
/* The default symbol entry size is that of traditional Unix. */
|
|
|
|
|
obj_symbol_entry_size (abfd) = EXTERNAL_NLIST_SIZE;
|
|
|
|
|
|
|
|
|
|
#ifdef USE_MMAP
|
|
|
|
|
bfd_init_window (&obj_aout_sym_window (abfd));
|
|
|
|
|
bfd_init_window (&obj_aout_string_window (abfd));
|
|
|
|
|
#endif
|
|
|
|
|
obj_aout_external_syms (abfd) = NULL;
|
|
|
|
|
obj_aout_external_strings (abfd) = NULL;
|
|
|
|
|
obj_aout_sym_hashes (abfd) = NULL;
|
|
|
|
|
|
|
|
|
|
if (! NAME(aout,make_sections) (abfd))
|
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
|
|
obj_datasec (abfd)->_raw_size = execp->a_data;
|
|
|
|
|
obj_bsssec (abfd)->_raw_size = execp->a_bss;
|
|
|
|
|
|
|
|
|
|
obj_textsec (abfd)->flags =
|
|
|
|
|
(execp->a_trsize != 0
|
|
|
|
|
? (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_RELOC)
|
|
|
|
|
: (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS));
|
|
|
|
|
obj_datasec (abfd)->flags =
|
|
|
|
|
(execp->a_drsize != 0
|
|
|
|
|
? (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS | SEC_RELOC)
|
|
|
|
|
: (SEC_ALLOC | SEC_LOAD | SEC_DATA | SEC_HAS_CONTENTS));
|
|
|
|
|
obj_bsssec (abfd)->flags = SEC_ALLOC;
|
|
|
|
|
|
|
|
|
|
#ifdef THIS_IS_ONLY_DOCUMENTATION
|
|
|
|
|
/* The common code can't fill in these things because they depend
|
|
|
|
|
on either the start address of the text segment, the rounding
|
|
|
|
|
up of virtual addresses between segments, or the starting file
|
|
|
|
|
position of the text segment -- all of which varies among different
|
|
|
|
|
versions of a.out. */
|
|
|
|
|
|
|
|
|
|
/* Call back to the format-dependent code to fill in the rest of the
|
|
|
|
|
fields and do any further cleanup. Things that should be filled
|
|
|
|
|
in by the callback: */
|
|
|
|
|
|
|
|
|
|
struct exec *execp = exec_hdr (abfd);
|
|
|
|
|
|
|
|
|
|
obj_textsec (abfd)->size = N_TXTSIZE(*execp);
|
|
|
|
|
obj_textsec (abfd)->raw_size = N_TXTSIZE(*execp);
|
|
|
|
|
/* data and bss are already filled in since they're so standard */
|
|
|
|
|
|
|
|
|
|
/* The virtual memory addresses of the sections */
|
|
|
|
|
obj_textsec (abfd)->vma = N_TXTADDR(*execp);
|
|
|
|
|
obj_datasec (abfd)->vma = N_DATADDR(*execp);
|
|
|
|
|
obj_bsssec (abfd)->vma = N_BSSADDR(*execp);
|
|
|
|
|
|
|
|
|
|
/* The file offsets of the sections */
|
|
|
|
|
obj_textsec (abfd)->filepos = N_TXTOFF(*execp);
|
|
|
|
|
obj_datasec (abfd)->filepos = N_DATOFF(*execp);
|
|
|
|
|
|
|
|
|
|
/* The file offsets of the relocation info */
|
|
|
|
|
obj_textsec (abfd)->rel_filepos = N_TRELOFF(*execp);
|
|
|
|
|
obj_datasec (abfd)->rel_filepos = N_DRELOFF(*execp);
|
|
|
|
|
|
|
|
|
|
/* The file offsets of the string table and symbol table. */
|
|
|
|
|
obj_str_filepos (abfd) = N_STROFF (*execp);
|
|
|
|
|
obj_sym_filepos (abfd) = N_SYMOFF (*execp);
|
|
|
|
|
|
|
|
|
|
/* Determine the architecture and machine type of the object file. */
|
|
|
|
|
abfd->obj_arch = bfd_arch_obscure;
|
|
|
|
|
|
|
|
|
|
adata(abfd)->page_size = TARGET_PAGE_SIZE;
|
|
|
|
|
adata(abfd)->segment_size = SEGMENT_SIZE;
|
|
|
|
|
adata(abfd)->exec_bytes_size = EXEC_BYTES_SIZE;
|
|
|
|
|
|
|
|
|
|
return abfd->xvec;
|
|
|
|
|
|
|
|
|
|
/* The architecture is encoded in various ways in various a.out variants,
|
|
|
|
|
or is not encoded at all in some of them. The relocation size depends
|
|
|
|
|
on the architecture and the a.out variant. Finally, the return value
|
|
|
|
|
is the bfd_target vector in use. If an error occurs, return zero and
|
|
|
|
|
set bfd_error to the appropriate error code.
|
|
|
|
|
|
|
|
|
|
Formats such as b.out, which have additional fields in the a.out
|
|
|
|
|
header, should cope with them in this callback as well. */
|
|
|
|
|
#endif /* DOCUMENTATION */
|
|
|
|
|
|
|
|
|
|
result = (*callback_to_real_object_p)(abfd);
|
|
|
|
|
|
|
|
|
|
/* Now that the segment addresses have been worked out, take a better
|
|
|
|
|
guess at whether the file is executable. If the entry point
|
|
|
|
|
is within the text segment, assume it is. (This makes files
|
|
|
|
|
executable even if their entry point address is 0, as long as
|
|
|
|
|
their text starts at zero.).
|
|
|
|
|
|
|
|
|
|
This test had to be changed to deal with systems where the text segment
|
|
|
|
|
runs at a different location than the default. The problem is that the
|
|
|
|
|
entry address can appear to be outside the text segment, thus causing an
|
|
|
|
|
erroneous conclusion that the file isn't executable.
|
|
|
|
|
|
|
|
|
|
To fix this, we now accept any non-zero entry point as an indication of
|
|
|
|
|
executability. This will work most of the time, since only the linker
|
|
|
|
|
sets the entry point, and that is likely to be non-zero for most systems. */
|
|
|
|
|
|
|
|
|
|
if (execp->a_entry != 0
|
|
|
|
|
|| (execp->a_entry >= obj_textsec(abfd)->vma
|
|
|
|
|
&& execp->a_entry < obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size))
|
|
|
|
|
abfd->flags |= EXEC_P;
|
|
|
|
|
#ifdef STAT_FOR_EXEC
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
struct stat stat_buf;
|
|
|
|
|
|
|
|
|
|
/* The original heuristic doesn't work in some important cases.
|
|
|
|
|
The a.out file has no information about the text start
|
|
|
|
|
address. For files (like kernels) linked to non-standard
|
|
|
|
|
addresses (ld -Ttext nnn) the entry point may not be between
|
|
|
|
|
the default text start (obj_textsec(abfd)->vma) and
|
|
|
|
|
(obj_textsec(abfd)->vma) + text size. This is not just a mach
|
|
|
|
|
issue. Many kernels are loaded at non standard addresses. */
|
|
|
|
|
if (abfd->iostream != NULL
|
|
|
|
|
&& (abfd->flags & BFD_IN_MEMORY) == 0
|
|
|
|
|
&& (fstat(fileno((FILE *) (abfd->iostream)), &stat_buf) == 0)
|
|
|
|
|
&& ((stat_buf.st_mode & 0111) != 0))
|
|
|
|
|
abfd->flags |= EXEC_P;
|
|
|
|
|
}
|
|
|
|
|
#endif /* STAT_FOR_EXEC */
|
|
|
|
|
|
|
|
|
|
if (result)
|
|
|
|
|
{
|
|
|
|
|
#if 0 /* These should be set correctly anyways. */
|
|
|
|
|
abfd->sections = obj_textsec (abfd);
|
|
|
|
|
obj_textsec (abfd)->next = obj_datasec (abfd);
|
|
|
|
|
obj_datasec (abfd)->next = obj_bsssec (abfd);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
free (rawptr);
|
|
|
|
|
abfd->tdata.aout_data = oldrawptr;
|
|
|
|
|
}
|
|
|
|
|
return result;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
FUNCTION
|
|
|
|
|
aout_@var{size}_mkobject
|
|
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
|
boolean aout_@var{size}_mkobject, (bfd *abfd);
|
|
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
|
Initialize BFD @var{abfd} for use with a.out files.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,mkobject) (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
struct aout_data_struct *rawptr;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type amt = sizeof (struct aout_data_struct);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
bfd_set_error (bfd_error_system_call);
|
|
|
|
|
|
|
|
|
|
/* Use an intermediate variable for clarity */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
rawptr = (struct aout_data_struct *) bfd_zalloc (abfd, amt);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
if (rawptr == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
abfd->tdata.aout_data = rawptr;
|
|
|
|
|
exec_hdr (abfd) = &(rawptr->e);
|
|
|
|
|
|
|
|
|
|
obj_textsec (abfd) = (asection *)NULL;
|
|
|
|
|
obj_datasec (abfd) = (asection *)NULL;
|
|
|
|
|
obj_bsssec (abfd) = (asection *)NULL;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
FUNCTION
|
|
|
|
|
aout_@var{size}_machine_type
|
|
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
|
enum machine_type aout_@var{size}_machine_type
|
|
|
|
|
(enum bfd_architecture arch,
|
|
|
|
|
unsigned long machine));
|
|
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
|
Keep track of machine architecture and machine type for
|
|
|
|
|
a.out's. Return the <<machine_type>> for a particular
|
|
|
|
|
architecture and machine, or <<M_UNKNOWN>> if that exact architecture
|
|
|
|
|
and machine can't be represented in a.out format.
|
|
|
|
|
|
|
|
|
|
If the architecture is understood, machine type 0 (default)
|
|
|
|
|
is always understood.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
enum machine_type
|
|
|
|
|
NAME(aout,machine_type) (arch, machine, unknown)
|
|
|
|
|
enum bfd_architecture arch;
|
|
|
|
|
unsigned long machine;
|
|
|
|
|
boolean *unknown;
|
|
|
|
|
{
|
|
|
|
|
enum machine_type arch_flags;
|
|
|
|
|
|
|
|
|
|
arch_flags = M_UNKNOWN;
|
|
|
|
|
*unknown = true;
|
|
|
|
|
|
|
|
|
|
switch (arch)
|
|
|
|
|
{
|
|
|
|
|
case bfd_arch_sparc:
|
|
|
|
|
if (machine == 0
|
|
|
|
|
|| machine == bfd_mach_sparc
|
|
|
|
|
|| machine == bfd_mach_sparc_sparclite
|
|
|
|
|
|| machine == bfd_mach_sparc_v9)
|
|
|
|
|
arch_flags = M_SPARC;
|
|
|
|
|
else if (machine == bfd_mach_sparc_sparclet)
|
|
|
|
|
arch_flags = M_SPARCLET;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case bfd_arch_m68k:
|
|
|
|
|
switch (machine)
|
|
|
|
|
{
|
|
|
|
|
case 0: arch_flags = M_68010; break;
|
|
|
|
|
case bfd_mach_m68000: arch_flags = M_UNKNOWN; *unknown = false; break;
|
|
|
|
|
case bfd_mach_m68010: arch_flags = M_68010; break;
|
|
|
|
|
case bfd_mach_m68020: arch_flags = M_68020; break;
|
|
|
|
|
default: arch_flags = M_UNKNOWN; break;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case bfd_arch_i386:
|
|
|
|
|
if (machine == 0) arch_flags = M_386;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case bfd_arch_a29k:
|
|
|
|
|
if (machine == 0) arch_flags = M_29K;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case bfd_arch_arm:
|
|
|
|
|
if (machine == 0) arch_flags = M_ARM;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case bfd_arch_mips:
|
|
|
|
|
switch (machine)
|
|
|
|
|
{
|
|
|
|
|
case 0:
|
|
|
|
|
case 2000:
|
|
|
|
|
case bfd_mach_mips3000:
|
|
|
|
|
arch_flags = M_MIPS1;
|
|
|
|
|
break;
|
|
|
|
|
case bfd_mach_mips4000: /* mips3 */
|
|
|
|
|
case bfd_mach_mips4400:
|
|
|
|
|
case bfd_mach_mips8000: /* mips4 */
|
|
|
|
|
case bfd_mach_mips6000: /* real mips2: */
|
|
|
|
|
arch_flags = M_MIPS2;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
arch_flags = M_UNKNOWN;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case bfd_arch_ns32k:
|
|
|
|
|
switch (machine)
|
|
|
|
|
{
|
|
|
|
|
case 0: arch_flags = M_NS32532; break;
|
|
|
|
|
case 32032: arch_flags = M_NS32032; break;
|
|
|
|
|
case 32532: arch_flags = M_NS32532; break;
|
|
|
|
|
default: arch_flags = M_UNKNOWN; break;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case bfd_arch_pdp11:
|
|
|
|
|
/* TODO: arch_flags = M_PDP11; */
|
|
|
|
|
*unknown = false;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case bfd_arch_vax:
|
|
|
|
|
*unknown = false;
|
|
|
|
|
break;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|
2001-02-18 23:33:11 +00:00
|
|
|
|
default:
|
|
|
|
|
arch_flags = M_UNKNOWN;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (arch_flags != M_UNKNOWN)
|
|
|
|
|
*unknown = false;
|
|
|
|
|
|
|
|
|
|
return arch_flags;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
FUNCTION
|
|
|
|
|
aout_@var{size}_set_arch_mach
|
|
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
|
boolean aout_@var{size}_set_arch_mach,
|
|
|
|
|
(bfd *,
|
|
|
|
|
enum bfd_architecture arch,
|
|
|
|
|
unsigned long machine));
|
|
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
|
Set the architecture and the machine of the BFD @var{abfd} to the
|
|
|
|
|
values @var{arch} and @var{machine}. Verify that @var{abfd}'s format
|
|
|
|
|
can support the architecture required.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,set_arch_mach) (abfd, arch, machine)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
enum bfd_architecture arch;
|
|
|
|
|
unsigned long machine;
|
|
|
|
|
{
|
|
|
|
|
if (! bfd_default_set_arch_mach (abfd, arch, machine))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if (arch != bfd_arch_unknown)
|
|
|
|
|
{
|
|
|
|
|
boolean unknown;
|
|
|
|
|
|
|
|
|
|
NAME(aout,machine_type) (arch, machine, &unknown);
|
|
|
|
|
if (unknown)
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
obj_reloc_entry_size (abfd) = RELOC_SIZE;
|
|
|
|
|
|
|
|
|
|
return (*aout_backend_info(abfd)->set_sizes) (abfd);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
adjust_o_magic (abfd, execp)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct internal_exec *execp;
|
|
|
|
|
{
|
|
|
|
|
file_ptr pos = adata (abfd).exec_bytes_size;
|
|
|
|
|
bfd_vma vma = 0;
|
|
|
|
|
int pad = 0;
|
|
|
|
|
|
|
|
|
|
/* Text. */
|
|
|
|
|
obj_textsec (abfd)->filepos = pos;
|
|
|
|
|
if (! obj_textsec (abfd)->user_set_vma)
|
|
|
|
|
obj_textsec (abfd)->vma = vma;
|
|
|
|
|
else
|
|
|
|
|
vma = obj_textsec (abfd)->vma;
|
|
|
|
|
|
|
|
|
|
pos += obj_textsec (abfd)->_raw_size;
|
|
|
|
|
vma += obj_textsec (abfd)->_raw_size;
|
|
|
|
|
|
|
|
|
|
/* Data. */
|
|
|
|
|
if (!obj_datasec (abfd)->user_set_vma)
|
|
|
|
|
{
|
|
|
|
|
#if 0 /* ?? Does alignment in the file image really matter? */
|
|
|
|
|
pad = align_power (vma, obj_datasec (abfd)->alignment_power) - vma;
|
|
|
|
|
#endif
|
|
|
|
|
obj_textsec (abfd)->_raw_size += pad;
|
|
|
|
|
pos += pad;
|
|
|
|
|
vma += pad;
|
|
|
|
|
obj_datasec (abfd)->vma = vma;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
vma = obj_datasec (abfd)->vma;
|
|
|
|
|
obj_datasec (abfd)->filepos = pos;
|
|
|
|
|
pos += obj_datasec (abfd)->_raw_size;
|
|
|
|
|
vma += obj_datasec (abfd)->_raw_size;
|
|
|
|
|
|
|
|
|
|
/* BSS. */
|
|
|
|
|
if (! obj_bsssec (abfd)->user_set_vma)
|
|
|
|
|
{
|
|
|
|
|
#if 0
|
|
|
|
|
pad = align_power (vma, obj_bsssec (abfd)->alignment_power) - vma;
|
|
|
|
|
#endif
|
|
|
|
|
obj_datasec (abfd)->_raw_size += pad;
|
|
|
|
|
pos += pad;
|
|
|
|
|
vma += pad;
|
|
|
|
|
obj_bsssec (abfd)->vma = vma;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
2001-10-10 12:08:29 +00:00
|
|
|
|
/* The VMA of the .bss section is set by the VMA of the
|
2001-02-18 23:33:11 +00:00
|
|
|
|
.data section plus the size of the .data section. We may
|
|
|
|
|
need to add padding bytes to make this true. */
|
|
|
|
|
pad = obj_bsssec (abfd)->vma - vma;
|
|
|
|
|
if (pad > 0)
|
|
|
|
|
{
|
|
|
|
|
obj_datasec (abfd)->_raw_size += pad;
|
|
|
|
|
pos += pad;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
obj_bsssec (abfd)->filepos = pos;
|
|
|
|
|
|
|
|
|
|
/* Fix up the exec header. */
|
|
|
|
|
execp->a_text = obj_textsec (abfd)->_raw_size;
|
|
|
|
|
execp->a_data = obj_datasec (abfd)->_raw_size;
|
|
|
|
|
execp->a_bss = obj_bsssec (abfd)->_raw_size;
|
|
|
|
|
N_SET_MAGIC (*execp, OMAGIC);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
adjust_z_magic (abfd, execp)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct internal_exec *execp;
|
|
|
|
|
{
|
|
|
|
|
bfd_size_type data_pad, text_pad;
|
|
|
|
|
file_ptr text_end;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
const struct aout_backend_data *abdp;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
int ztih; /* Nonzero if text includes exec header. */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|
2001-02-18 23:33:11 +00:00
|
|
|
|
abdp = aout_backend_info (abfd);
|
|
|
|
|
|
|
|
|
|
/* Text. */
|
|
|
|
|
ztih = (abdp != NULL
|
|
|
|
|
&& (abdp->text_includes_header
|
|
|
|
|
|| obj_aout_subformat (abfd) == q_magic_format));
|
|
|
|
|
obj_textsec(abfd)->filepos = (ztih
|
|
|
|
|
? adata(abfd).exec_bytes_size
|
|
|
|
|
: adata(abfd).zmagic_disk_block_size);
|
|
|
|
|
if (! obj_textsec(abfd)->user_set_vma)
|
|
|
|
|
{
|
|
|
|
|
/* ?? Do we really need to check for relocs here? */
|
|
|
|
|
obj_textsec(abfd)->vma = ((abfd->flags & HAS_RELOC)
|
|
|
|
|
? 0
|
|
|
|
|
: (ztih
|
|
|
|
|
? (abdp->default_text_vma
|
|
|
|
|
+ adata (abfd).exec_bytes_size)
|
|
|
|
|
: abdp->default_text_vma));
|
|
|
|
|
text_pad = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* The .text section is being loaded at an unusual address. We
|
|
|
|
|
may need to pad it such that the .data section starts at a page
|
|
|
|
|
boundary. */
|
|
|
|
|
if (ztih)
|
|
|
|
|
text_pad = ((obj_textsec (abfd)->filepos - obj_textsec (abfd)->vma)
|
|
|
|
|
& (adata (abfd).page_size - 1));
|
|
|
|
|
else
|
|
|
|
|
text_pad = ((- obj_textsec (abfd)->vma)
|
|
|
|
|
& (adata (abfd).page_size - 1));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Find start of data. */
|
|
|
|
|
if (ztih)
|
|
|
|
|
{
|
|
|
|
|
text_end = obj_textsec (abfd)->filepos + obj_textsec (abfd)->_raw_size;
|
|
|
|
|
text_pad += BFD_ALIGN (text_end, adata (abfd).page_size) - text_end;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Note that if page_size == zmagic_disk_block_size, then
|
|
|
|
|
filepos == page_size, and this case is the same as the ztih
|
|
|
|
|
case. */
|
|
|
|
|
text_end = obj_textsec (abfd)->_raw_size;
|
|
|
|
|
text_pad += BFD_ALIGN (text_end, adata (abfd).page_size) - text_end;
|
|
|
|
|
text_end += obj_textsec (abfd)->filepos;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
obj_textsec (abfd)->_raw_size += text_pad;
|
|
|
|
|
text_end += text_pad;
|
|
|
|
|
|
|
|
|
|
/* Data. */
|
|
|
|
|
if (!obj_datasec(abfd)->user_set_vma)
|
|
|
|
|
{
|
|
|
|
|
bfd_vma vma;
|
|
|
|
|
vma = obj_textsec(abfd)->vma + obj_textsec(abfd)->_raw_size;
|
|
|
|
|
obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size);
|
|
|
|
|
}
|
|
|
|
|
if (abdp && abdp->zmagic_mapped_contiguous)
|
|
|
|
|
{
|
|
|
|
|
text_pad = (obj_datasec(abfd)->vma
|
|
|
|
|
- obj_textsec(abfd)->vma
|
|
|
|
|
- obj_textsec(abfd)->_raw_size);
|
|
|
|
|
obj_textsec(abfd)->_raw_size += text_pad;
|
|
|
|
|
}
|
|
|
|
|
obj_datasec (abfd)->filepos = (obj_textsec (abfd)->filepos
|
|
|
|
|
+ obj_textsec (abfd)->_raw_size);
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|
2001-02-18 23:33:11 +00:00
|
|
|
|
/* Fix up exec header while we're at it. */
|
|
|
|
|
execp->a_text = obj_textsec(abfd)->_raw_size;
|
|
|
|
|
if (ztih && (!abdp || (abdp && !abdp->exec_header_not_counted)))
|
|
|
|
|
execp->a_text += adata(abfd).exec_bytes_size;
|
|
|
|
|
if (obj_aout_subformat (abfd) == q_magic_format)
|
|
|
|
|
N_SET_MAGIC (*execp, QMAGIC);
|
|
|
|
|
else
|
|
|
|
|
N_SET_MAGIC (*execp, ZMAGIC);
|
|
|
|
|
|
|
|
|
|
/* Spec says data section should be rounded up to page boundary. */
|
|
|
|
|
obj_datasec(abfd)->_raw_size
|
|
|
|
|
= align_power (obj_datasec(abfd)->_raw_size,
|
|
|
|
|
obj_bsssec(abfd)->alignment_power);
|
|
|
|
|
execp->a_data = BFD_ALIGN (obj_datasec(abfd)->_raw_size,
|
|
|
|
|
adata(abfd).page_size);
|
|
|
|
|
data_pad = execp->a_data - obj_datasec(abfd)->_raw_size;
|
|
|
|
|
|
|
|
|
|
/* BSS. */
|
|
|
|
|
if (!obj_bsssec(abfd)->user_set_vma)
|
|
|
|
|
obj_bsssec(abfd)->vma = (obj_datasec(abfd)->vma
|
|
|
|
|
+ obj_datasec(abfd)->_raw_size);
|
|
|
|
|
/* If the BSS immediately follows the data section and extra space
|
|
|
|
|
in the page is left after the data section, fudge data
|
|
|
|
|
in the header so that the bss section looks smaller by that
|
|
|
|
|
amount. We'll start the bss section there, and lie to the OS.
|
|
|
|
|
(Note that a linker script, as well as the above assignment,
|
|
|
|
|
could have explicitly set the BSS vma to immediately follow
|
|
|
|
|
the data section.) */
|
|
|
|
|
if (align_power (obj_bsssec(abfd)->vma, obj_bsssec(abfd)->alignment_power)
|
|
|
|
|
== obj_datasec(abfd)->vma + obj_datasec(abfd)->_raw_size)
|
|
|
|
|
execp->a_bss = (data_pad > obj_bsssec(abfd)->_raw_size) ? 0 :
|
|
|
|
|
obj_bsssec(abfd)->_raw_size - data_pad;
|
|
|
|
|
else
|
|
|
|
|
execp->a_bss = obj_bsssec(abfd)->_raw_size;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
|
adjust_n_magic (abfd, execp)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct internal_exec *execp;
|
|
|
|
|
{
|
|
|
|
|
file_ptr pos = adata(abfd).exec_bytes_size;
|
|
|
|
|
bfd_vma vma = 0;
|
|
|
|
|
int pad;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|
2001-02-18 23:33:11 +00:00
|
|
|
|
/* Text. */
|
|
|
|
|
obj_textsec(abfd)->filepos = pos;
|
|
|
|
|
if (!obj_textsec(abfd)->user_set_vma)
|
|
|
|
|
obj_textsec(abfd)->vma = vma;
|
|
|
|
|
else
|
|
|
|
|
vma = obj_textsec(abfd)->vma;
|
|
|
|
|
pos += obj_textsec(abfd)->_raw_size;
|
|
|
|
|
vma += obj_textsec(abfd)->_raw_size;
|
|
|
|
|
|
|
|
|
|
/* Data. */
|
|
|
|
|
obj_datasec(abfd)->filepos = pos;
|
|
|
|
|
if (!obj_datasec(abfd)->user_set_vma)
|
|
|
|
|
obj_datasec(abfd)->vma = BFD_ALIGN (vma, adata(abfd).segment_size);
|
|
|
|
|
vma = obj_datasec(abfd)->vma;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|
2001-02-18 23:33:11 +00:00
|
|
|
|
/* Since BSS follows data immediately, see if it needs alignment. */
|
|
|
|
|
vma += obj_datasec(abfd)->_raw_size;
|
|
|
|
|
pad = align_power (vma, obj_bsssec(abfd)->alignment_power) - vma;
|
|
|
|
|
obj_datasec(abfd)->_raw_size += pad;
|
|
|
|
|
pos += obj_datasec(abfd)->_raw_size;
|
|
|
|
|
|
|
|
|
|
/* BSS. */
|
|
|
|
|
if (!obj_bsssec(abfd)->user_set_vma)
|
|
|
|
|
obj_bsssec(abfd)->vma = vma;
|
|
|
|
|
else
|
|
|
|
|
vma = obj_bsssec(abfd)->vma;
|
|
|
|
|
|
|
|
|
|
/* Fix up exec header. */
|
|
|
|
|
execp->a_text = obj_textsec(abfd)->_raw_size;
|
|
|
|
|
execp->a_data = obj_datasec(abfd)->_raw_size;
|
|
|
|
|
execp->a_bss = obj_bsssec(abfd)->_raw_size;
|
|
|
|
|
N_SET_MAGIC (*execp, NMAGIC);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,adjust_sizes_and_vmas) (abfd, text_size, text_end)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
bfd_size_type *text_size;
|
|
|
|
|
file_ptr * text_end ATTRIBUTE_UNUSED;
|
|
|
|
|
{
|
|
|
|
|
struct internal_exec *execp = exec_hdr (abfd);
|
|
|
|
|
|
|
|
|
|
if (! NAME(aout,make_sections) (abfd))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if (adata(abfd).magic != undecided_magic)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
obj_textsec(abfd)->_raw_size =
|
|
|
|
|
align_power(obj_textsec(abfd)->_raw_size,
|
|
|
|
|
obj_textsec(abfd)->alignment_power);
|
|
|
|
|
|
|
|
|
|
*text_size = obj_textsec (abfd)->_raw_size;
|
|
|
|
|
/* Rule (heuristic) for when to pad to a new page. Note that there
|
|
|
|
|
are (at least) two ways demand-paged (ZMAGIC) files have been
|
|
|
|
|
handled. Most Berkeley-based systems start the text segment at
|
|
|
|
|
(TARGET_PAGE_SIZE). However, newer versions of SUNOS start the text
|
|
|
|
|
segment right after the exec header; the latter is counted in the
|
|
|
|
|
text segment size, and is paged in by the kernel with the rest of
|
|
|
|
|
the text. */
|
|
|
|
|
|
|
|
|
|
/* This perhaps isn't the right way to do this, but made it simpler for me
|
|
|
|
|
to understand enough to implement it. Better would probably be to go
|
|
|
|
|
right from BFD flags to alignment/positioning characteristics. But the
|
|
|
|
|
old code was sloppy enough about handling the flags, and had enough
|
|
|
|
|
other magic, that it was a little hard for me to understand. I think
|
|
|
|
|
I understand it better now, but I haven't time to do the cleanup this
|
|
|
|
|
minute. */
|
|
|
|
|
|
|
|
|
|
if (abfd->flags & WP_TEXT)
|
|
|
|
|
adata(abfd).magic = n_magic;
|
|
|
|
|
else
|
|
|
|
|
adata(abfd).magic = o_magic;
|
|
|
|
|
|
|
|
|
|
#ifdef BFD_AOUT_DEBUG /* requires gcc2 */
|
|
|
|
|
#if __GNUC__ >= 2
|
|
|
|
|
fprintf (stderr, "%s text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x,%x>\n",
|
|
|
|
|
({ char *str;
|
|
|
|
|
switch (adata(abfd).magic) {
|
|
|
|
|
case n_magic: str = "NMAGIC"; break;
|
|
|
|
|
case o_magic: str = "OMAGIC"; break;
|
|
|
|
|
case z_magic: str = "ZMAGIC"; break;
|
|
|
|
|
default: abort ();
|
|
|
|
|
}
|
|
|
|
|
str;
|
|
|
|
|
}),
|
|
|
|
|
obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size,
|
|
|
|
|
obj_textsec(abfd)->alignment_power,
|
|
|
|
|
obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size,
|
|
|
|
|
obj_datasec(abfd)->alignment_power,
|
|
|
|
|
obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size,
|
|
|
|
|
obj_bsssec(abfd)->alignment_power);
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
switch (adata(abfd).magic)
|
|
|
|
|
{
|
|
|
|
|
case o_magic:
|
|
|
|
|
adjust_o_magic (abfd, execp);
|
|
|
|
|
break;
|
|
|
|
|
case z_magic:
|
|
|
|
|
adjust_z_magic (abfd, execp);
|
|
|
|
|
break;
|
|
|
|
|
case n_magic:
|
|
|
|
|
adjust_n_magic (abfd, execp);
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#ifdef BFD_AOUT_DEBUG
|
|
|
|
|
fprintf (stderr, " text=<%x,%x,%x> data=<%x,%x,%x> bss=<%x,%x>\n",
|
|
|
|
|
obj_textsec(abfd)->vma, obj_textsec(abfd)->_raw_size,
|
|
|
|
|
obj_textsec(abfd)->filepos,
|
|
|
|
|
obj_datasec(abfd)->vma, obj_datasec(abfd)->_raw_size,
|
|
|
|
|
obj_datasec(abfd)->filepos,
|
|
|
|
|
obj_bsssec(abfd)->vma, obj_bsssec(abfd)->_raw_size);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
FUNCTION
|
|
|
|
|
aout_@var{size}_new_section_hook
|
|
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
|
boolean aout_@var{size}_new_section_hook,
|
|
|
|
|
(bfd *abfd,
|
|
|
|
|
asection *newsect));
|
|
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
|
Called by the BFD in response to a @code{bfd_make_section}
|
|
|
|
|
request.
|
|
|
|
|
*/
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,new_section_hook) (abfd, newsect)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
asection *newsect;
|
|
|
|
|
{
|
|
|
|
|
/* align to double at least */
|
|
|
|
|
newsect->alignment_power = bfd_get_arch_info(abfd)->section_align_power;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (bfd_get_format (abfd) == bfd_object)
|
|
|
|
|
{
|
|
|
|
|
if (obj_textsec (abfd) == NULL
|
|
|
|
|
&& ! strcmp (newsect->name, ".text"))
|
|
|
|
|
{
|
|
|
|
|
obj_textsec(abfd)= newsect;
|
|
|
|
|
newsect->target_index = N_TEXT;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (obj_datasec (abfd) == NULL
|
|
|
|
|
&& ! strcmp (newsect->name, ".data"))
|
|
|
|
|
{
|
|
|
|
|
obj_datasec (abfd) = newsect;
|
|
|
|
|
newsect->target_index = N_DATA;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (obj_bsssec (abfd) == NULL
|
|
|
|
|
&& !strcmp (newsect->name, ".bss"))
|
|
|
|
|
{
|
|
|
|
|
obj_bsssec (abfd) = newsect;
|
|
|
|
|
newsect->target_index = N_BSS;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We allow more than three sections internally */
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,set_section_contents) (abfd, section, location, offset, count)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
sec_ptr section;
|
|
|
|
|
PTR location;
|
|
|
|
|
file_ptr offset;
|
|
|
|
|
bfd_size_type count;
|
|
|
|
|
{
|
|
|
|
|
file_ptr text_end;
|
|
|
|
|
bfd_size_type text_size;
|
|
|
|
|
|
|
|
|
|
if (! abfd->output_has_begun)
|
|
|
|
|
{
|
|
|
|
|
if (! NAME(aout,adjust_sizes_and_vmas) (abfd, &text_size, &text_end))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (section == obj_bsssec (abfd))
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_no_contents);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (section != obj_textsec (abfd)
|
|
|
|
|
&& section != obj_datasec (abfd))
|
|
|
|
|
{
|
|
|
|
|
(*_bfd_error_handler)
|
|
|
|
|
("%s: can not represent section `%s' in a.out object file format",
|
|
|
|
|
bfd_get_filename (abfd), bfd_get_section_name (abfd, section));
|
|
|
|
|
bfd_set_error (bfd_error_nonrepresentable_section);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (count != 0)
|
|
|
|
|
{
|
|
|
|
|
if (bfd_seek (abfd, section->filepos + offset, SEEK_SET) != 0
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|| bfd_bwrite (location, count, abfd) != count)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read the external symbols from an a.out file. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
aout_get_external_symbols (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
if (obj_aout_external_syms (abfd) == (struct external_nlist *) NULL)
|
|
|
|
|
{
|
|
|
|
|
bfd_size_type count;
|
|
|
|
|
struct external_nlist *syms;
|
|
|
|
|
|
|
|
|
|
count = exec_hdr (abfd)->a_syms / EXTERNAL_NLIST_SIZE;
|
|
|
|
|
|
|
|
|
|
#ifdef USE_MMAP
|
2002-06-25 06:21:54 +00:00
|
|
|
|
if (! bfd_get_file_window (abfd, obj_sym_filepos (abfd),
|
|
|
|
|
exec_hdr (abfd)->a_syms,
|
|
|
|
|
&obj_aout_sym_window (abfd), true))
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return false;
|
|
|
|
|
syms = (struct external_nlist *) obj_aout_sym_window (abfd).data;
|
|
|
|
|
#else
|
|
|
|
|
/* We allocate using malloc to make the values easy to free
|
|
|
|
|
later on. If we put them on the objalloc it might not be
|
|
|
|
|
possible to free them. */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
syms = (struct external_nlist *) bfd_malloc (count * EXTERNAL_NLIST_SIZE);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (syms == (struct external_nlist *) NULL && count != 0)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if (bfd_seek (abfd, obj_sym_filepos (abfd), SEEK_SET) != 0
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|| (bfd_bread (syms, exec_hdr (abfd)->a_syms, abfd)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
!= exec_hdr (abfd)->a_syms))
|
|
|
|
|
{
|
|
|
|
|
free (syms);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
obj_aout_external_syms (abfd) = syms;
|
|
|
|
|
obj_aout_external_sym_count (abfd) = count;
|
|
|
|
|
}
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (obj_aout_external_strings (abfd) == NULL
|
|
|
|
|
&& exec_hdr (abfd)->a_syms != 0)
|
|
|
|
|
{
|
|
|
|
|
unsigned char string_chars[BYTES_IN_LONG];
|
|
|
|
|
bfd_size_type stringsize;
|
|
|
|
|
char *strings;
|
|
|
|
|
|
|
|
|
|
/* Get the size of the strings. */
|
|
|
|
|
if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|| (bfd_bread ((PTR) string_chars, (bfd_size_type) BYTES_IN_LONG,
|
|
|
|
|
abfd) != BYTES_IN_LONG))
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return false;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
stringsize = H_GET_32 (abfd, string_chars);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
#ifdef USE_MMAP
|
2002-06-25 06:21:54 +00:00
|
|
|
|
if (! bfd_get_file_window (abfd, obj_str_filepos (abfd), stringsize,
|
|
|
|
|
&obj_aout_string_window (abfd), true))
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return false;
|
|
|
|
|
strings = (char *) obj_aout_string_window (abfd).data;
|
|
|
|
|
#else
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
strings = (char *) bfd_malloc (stringsize + 1);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (strings == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Skip space for the string count in the buffer for convenience
|
|
|
|
|
when using indexes. */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_bread (strings + 4, stringsize - 4, abfd) != stringsize - 4)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
{
|
|
|
|
|
free (strings);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Ensure that a zero index yields an empty string. */
|
|
|
|
|
strings[0] = '\0';
|
|
|
|
|
|
|
|
|
|
strings[stringsize - 1] = 0;
|
|
|
|
|
|
|
|
|
|
obj_aout_external_strings (abfd) = strings;
|
|
|
|
|
obj_aout_external_string_size (abfd) = stringsize;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Translate an a.out symbol into a BFD symbol. The desc, other, type
|
|
|
|
|
and symbol->value fields of CACHE_PTR will be set from the a.out
|
|
|
|
|
nlist structure. This function is responsible for setting
|
|
|
|
|
symbol->flags and symbol->section, and adjusting symbol->value. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
translate_from_native_sym_flags (abfd, cache_ptr)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
aout_symbol_type *cache_ptr;
|
|
|
|
|
{
|
|
|
|
|
flagword visible;
|
|
|
|
|
|
|
|
|
|
if (cache_ptr->type == N_FN)
|
|
|
|
|
{
|
|
|
|
|
asection *sec;
|
|
|
|
|
|
|
|
|
|
/* This is a debugging symbol. */
|
|
|
|
|
|
|
|
|
|
cache_ptr->symbol.flags = BSF_DEBUGGING;
|
|
|
|
|
|
|
|
|
|
/* Work out the symbol section. */
|
|
|
|
|
switch (cache_ptr->type & N_TYPE)
|
|
|
|
|
{
|
|
|
|
|
case N_TEXT:
|
|
|
|
|
case N_FN:
|
|
|
|
|
sec = obj_textsec (abfd);
|
|
|
|
|
break;
|
|
|
|
|
case N_DATA:
|
|
|
|
|
sec = obj_datasec (abfd);
|
|
|
|
|
break;
|
|
|
|
|
case N_BSS:
|
|
|
|
|
sec = obj_bsssec (abfd);
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
case N_ABS:
|
|
|
|
|
sec = bfd_abs_section_ptr;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
cache_ptr->symbol.section = sec;
|
|
|
|
|
cache_ptr->symbol.value -= sec->vma;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Get the default visibility. This does not apply to all types, so
|
|
|
|
|
we just hold it in a local variable to use if wanted. */
|
|
|
|
|
if ((cache_ptr->type & N_EXT) == 0)
|
|
|
|
|
visible = BSF_LOCAL;
|
|
|
|
|
else
|
|
|
|
|
visible = BSF_GLOBAL;
|
|
|
|
|
|
|
|
|
|
switch (cache_ptr->type)
|
|
|
|
|
{
|
|
|
|
|
default:
|
|
|
|
|
case N_ABS: case N_ABS | N_EXT:
|
|
|
|
|
cache_ptr->symbol.section = bfd_abs_section_ptr;
|
|
|
|
|
cache_ptr->symbol.flags = visible;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_UNDF | N_EXT:
|
|
|
|
|
if (cache_ptr->symbol.value != 0)
|
|
|
|
|
{
|
|
|
|
|
/* This is a common symbol. */
|
|
|
|
|
cache_ptr->symbol.flags = BSF_GLOBAL;
|
|
|
|
|
cache_ptr->symbol.section = bfd_com_section_ptr;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
cache_ptr->symbol.flags = 0;
|
|
|
|
|
cache_ptr->symbol.section = bfd_und_section_ptr;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_TEXT: case N_TEXT | N_EXT:
|
|
|
|
|
cache_ptr->symbol.section = obj_textsec (abfd);
|
|
|
|
|
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
|
|
|
|
|
cache_ptr->symbol.flags = visible;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_DATA: case N_DATA | N_EXT:
|
|
|
|
|
cache_ptr->symbol.section = obj_datasec (abfd);
|
|
|
|
|
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
|
|
|
|
|
cache_ptr->symbol.flags = visible;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_BSS: case N_BSS | N_EXT:
|
|
|
|
|
cache_ptr->symbol.section = obj_bsssec (abfd);
|
|
|
|
|
cache_ptr->symbol.value -= cache_ptr->symbol.section->vma;
|
|
|
|
|
cache_ptr->symbol.flags = visible;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Set the fields of SYM_POINTER according to CACHE_PTR. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
translate_to_native_sym_flags (abfd, cache_ptr, sym_pointer)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
asymbol *cache_ptr;
|
|
|
|
|
struct external_nlist *sym_pointer;
|
|
|
|
|
{
|
|
|
|
|
bfd_vma value = cache_ptr->value;
|
|
|
|
|
asection *sec;
|
|
|
|
|
bfd_vma off;
|
|
|
|
|
|
|
|
|
|
/* Mask out any existing type bits in case copying from one section
|
|
|
|
|
to another. */
|
|
|
|
|
sym_pointer->e_type[0] &= ~N_TYPE;
|
|
|
|
|
|
|
|
|
|
sec = bfd_get_section (cache_ptr);
|
|
|
|
|
off = 0;
|
|
|
|
|
|
|
|
|
|
if (sec == NULL)
|
|
|
|
|
{
|
|
|
|
|
/* This case occurs, e.g., for the *DEBUG* section of a COFF
|
|
|
|
|
file. */
|
|
|
|
|
(*_bfd_error_handler)
|
|
|
|
|
("%s: can not represent section for symbol `%s' in a.out object file format",
|
2001-09-20 23:30:37 +00:00
|
|
|
|
bfd_archive_filename (abfd),
|
2001-02-18 23:33:11 +00:00
|
|
|
|
cache_ptr->name != NULL ? cache_ptr->name : "*unknown*");
|
|
|
|
|
bfd_set_error (bfd_error_nonrepresentable_section);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (sec->output_section != NULL)
|
|
|
|
|
{
|
|
|
|
|
off = sec->output_offset;
|
|
|
|
|
sec = sec->output_section;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (bfd_is_abs_section (sec))
|
|
|
|
|
sym_pointer->e_type[0] |= N_ABS;
|
|
|
|
|
else if (sec == obj_textsec (abfd))
|
|
|
|
|
sym_pointer->e_type[0] |= N_TEXT;
|
|
|
|
|
else if (sec == obj_datasec (abfd))
|
|
|
|
|
sym_pointer->e_type[0] |= N_DATA;
|
|
|
|
|
else if (sec == obj_bsssec (abfd))
|
|
|
|
|
sym_pointer->e_type[0] |= N_BSS;
|
|
|
|
|
else if (bfd_is_und_section (sec))
|
|
|
|
|
sym_pointer->e_type[0] = N_UNDF | N_EXT;
|
|
|
|
|
else if (bfd_is_com_section (sec))
|
|
|
|
|
sym_pointer->e_type[0] = N_UNDF | N_EXT;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
(*_bfd_error_handler)
|
|
|
|
|
("%s: can not represent section `%s' in a.out object file format",
|
2001-09-20 23:30:37 +00:00
|
|
|
|
bfd_archive_filename (abfd), bfd_get_section_name (abfd, sec));
|
2001-02-18 23:33:11 +00:00
|
|
|
|
bfd_set_error (bfd_error_nonrepresentable_section);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Turn the symbol from section relative to absolute again */
|
|
|
|
|
value += sec->vma + off;
|
|
|
|
|
|
|
|
|
|
if ((cache_ptr->flags & BSF_DEBUGGING) != 0)
|
|
|
|
|
sym_pointer->e_type[0] = ((aout_symbol_type *) cache_ptr)->type;
|
|
|
|
|
else if ((cache_ptr->flags & BSF_GLOBAL) != 0)
|
|
|
|
|
sym_pointer->e_type[0] |= N_EXT;
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
if ((cache_ptr->flags & BSF_CONSTRUCTOR) != 0)
|
|
|
|
|
{
|
|
|
|
|
int type = ((aout_symbol_type *) cache_ptr)->type;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
switch (type)
|
|
|
|
|
{
|
|
|
|
|
case N_ABS: type = N_SETA; break;
|
|
|
|
|
case N_TEXT: type = N_SETT; break;
|
|
|
|
|
case N_DATA: type = N_SETD; break;
|
|
|
|
|
case N_BSS: type = N_SETB; break;
|
|
|
|
|
}
|
|
|
|
|
sym_pointer->e_type[0] = type;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
if ((cache_ptr->flags & BSF_WEAK) != 0)
|
|
|
|
|
{
|
|
|
|
|
int type;
|
|
|
|
|
|
|
|
|
|
switch (sym_pointer->e_type[0] & N_TYPE)
|
|
|
|
|
{
|
|
|
|
|
default:
|
|
|
|
|
case N_ABS: type = N_WEAKA; break;
|
|
|
|
|
case N_TEXT: type = N_WEAKT; break;
|
|
|
|
|
case N_DATA: type = N_WEAKD; break;
|
|
|
|
|
case N_BSS: type = N_WEAKB; break;
|
|
|
|
|
case N_UNDF: type = N_WEAKU; break;
|
|
|
|
|
}
|
|
|
|
|
sym_pointer->e_type[0] = type;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
PUT_WORD(abfd, value, sym_pointer->e_value);
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Native-level interface to symbols. */
|
|
|
|
|
|
|
|
|
|
asymbol *
|
|
|
|
|
NAME(aout,make_empty_symbol) (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type amt = sizeof (aout_symbol_type);
|
|
|
|
|
aout_symbol_type *new = (aout_symbol_type *) bfd_zalloc (abfd, amt);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (!new)
|
|
|
|
|
return NULL;
|
|
|
|
|
new->symbol.the_bfd = abfd;
|
|
|
|
|
|
|
|
|
|
return &new->symbol;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Translate a set of internal symbols into external symbols. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,translate_symbol_table) (abfd, in, ext, count, str, strsize, dynamic)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
aout_symbol_type *in;
|
|
|
|
|
struct external_nlist *ext;
|
|
|
|
|
bfd_size_type count;
|
|
|
|
|
char *str;
|
|
|
|
|
bfd_size_type strsize;
|
|
|
|
|
boolean dynamic;
|
|
|
|
|
{
|
|
|
|
|
struct external_nlist *ext_end;
|
|
|
|
|
|
|
|
|
|
ext_end = ext + count;
|
|
|
|
|
for (; ext < ext_end; ext++, in++)
|
|
|
|
|
{
|
|
|
|
|
bfd_vma x;
|
|
|
|
|
|
|
|
|
|
x = GET_WORD (abfd, ext->e_strx);
|
|
|
|
|
in->symbol.the_bfd = abfd;
|
|
|
|
|
|
|
|
|
|
/* For the normal symbols, the zero index points at the number
|
|
|
|
|
of bytes in the string table but is to be interpreted as the
|
|
|
|
|
null string. For the dynamic symbols, the number of bytes in
|
|
|
|
|
the string table is stored in the __DYNAMIC structure and the
|
|
|
|
|
zero index points at an actual string. */
|
|
|
|
|
if (x == 0 && ! dynamic)
|
|
|
|
|
in->symbol.name = "";
|
|
|
|
|
else if (x < strsize)
|
|
|
|
|
in->symbol.name = str + x;
|
|
|
|
|
else
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
in->symbol.value = GET_SWORD (abfd, ext->e_value);
|
|
|
|
|
/* TODO: is 0 a safe value here? */
|
|
|
|
|
in->desc = 0;
|
|
|
|
|
in->other = 0;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
in->type = H_GET_8 (abfd, ext->e_type);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
in->symbol.udata.p = NULL;
|
|
|
|
|
|
|
|
|
|
if (! translate_from_native_sym_flags (abfd, in))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if (dynamic)
|
|
|
|
|
in->symbol.flags |= BSF_DYNAMIC;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We read the symbols into a buffer, which is discarded when this
|
|
|
|
|
function exits. We read the strings into a buffer large enough to
|
|
|
|
|
hold them all plus all the cached symbol entries. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,slurp_symbol_table) (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
struct external_nlist *old_external_syms;
|
|
|
|
|
aout_symbol_type *cached;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type cached_size;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
/* If there's no work to be done, don't do any */
|
|
|
|
|
if (obj_aout_symbols (abfd) != (aout_symbol_type *) NULL)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
old_external_syms = obj_aout_external_syms (abfd);
|
|
|
|
|
|
|
|
|
|
if (! aout_get_external_symbols (abfd))
|
|
|
|
|
return false;
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
cached_size = obj_aout_external_sym_count (abfd);
|
|
|
|
|
cached_size *= sizeof (aout_symbol_type);
|
2002-06-07 15:04:49 +00:00
|
|
|
|
cached = (aout_symbol_type *) bfd_zmalloc (cached_size);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (cached == NULL && cached_size != 0)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Convert from external symbol information to internal. */
|
|
|
|
|
if (! (NAME(aout,translate_symbol_table)
|
|
|
|
|
(abfd, cached,
|
|
|
|
|
obj_aout_external_syms (abfd),
|
|
|
|
|
obj_aout_external_sym_count (abfd),
|
|
|
|
|
obj_aout_external_strings (abfd),
|
|
|
|
|
obj_aout_external_string_size (abfd),
|
|
|
|
|
false)))
|
|
|
|
|
{
|
|
|
|
|
free (cached);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bfd_get_symcount (abfd) = obj_aout_external_sym_count (abfd);
|
|
|
|
|
|
|
|
|
|
obj_aout_symbols (abfd) = cached;
|
|
|
|
|
|
|
|
|
|
/* It is very likely that anybody who calls this function will not
|
|
|
|
|
want the external symbol information, so if it was allocated
|
|
|
|
|
because of our call to aout_get_external_symbols, we free it up
|
|
|
|
|
right away to save space. */
|
|
|
|
|
if (old_external_syms == (struct external_nlist *) NULL
|
|
|
|
|
&& obj_aout_external_syms (abfd) != (struct external_nlist *) NULL)
|
|
|
|
|
{
|
|
|
|
|
#ifdef USE_MMAP
|
|
|
|
|
bfd_free_window (&obj_aout_sym_window (abfd));
|
|
|
|
|
#else
|
|
|
|
|
free (obj_aout_external_syms (abfd));
|
|
|
|
|
#endif
|
|
|
|
|
obj_aout_external_syms (abfd) = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We use a hash table when writing out symbols so that we only write
|
|
|
|
|
out a particular string once. This helps particularly when the
|
|
|
|
|
linker writes out stabs debugging entries, because each different
|
|
|
|
|
contributing object file tends to have many duplicate stabs
|
|
|
|
|
strings.
|
|
|
|
|
|
|
|
|
|
This hash table code breaks dbx on SunOS 4.1.3, so we don't do it
|
|
|
|
|
if BFD_TRADITIONAL_FORMAT is set. */
|
|
|
|
|
|
|
|
|
|
static bfd_size_type add_to_stringtab
|
|
|
|
|
PARAMS ((bfd *, struct bfd_strtab_hash *, const char *, boolean));
|
|
|
|
|
static boolean emit_stringtab PARAMS ((bfd *, struct bfd_strtab_hash *));
|
|
|
|
|
|
|
|
|
|
/* Get the index of a string in a strtab, adding it if it is not
|
|
|
|
|
already present. */
|
|
|
|
|
|
|
|
|
|
static INLINE bfd_size_type
|
|
|
|
|
add_to_stringtab (abfd, tab, str, copy)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_strtab_hash *tab;
|
|
|
|
|
const char *str;
|
|
|
|
|
boolean copy;
|
|
|
|
|
{
|
|
|
|
|
boolean hash;
|
|
|
|
|
bfd_size_type index;
|
|
|
|
|
|
|
|
|
|
/* An index of 0 always means the empty string. */
|
|
|
|
|
if (str == 0 || *str == '\0')
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
/* Don't hash if BFD_TRADITIONAL_FORMAT is set, because SunOS dbx
|
|
|
|
|
doesn't understand a hashed string table. */
|
|
|
|
|
hash = true;
|
|
|
|
|
if ((abfd->flags & BFD_TRADITIONAL_FORMAT) != 0)
|
|
|
|
|
hash = false;
|
|
|
|
|
|
|
|
|
|
index = _bfd_stringtab_add (tab, str, hash, copy);
|
|
|
|
|
|
|
|
|
|
if (index != (bfd_size_type) -1)
|
|
|
|
|
{
|
|
|
|
|
/* Add BYTES_IN_LONG to the return value to account for the
|
|
|
|
|
space taken up by the string table size. */
|
|
|
|
|
index += BYTES_IN_LONG;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return index;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Write out a strtab. ABFD is already at the right location in the
|
|
|
|
|
file. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
emit_stringtab (abfd, tab)
|
|
|
|
|
register bfd *abfd;
|
|
|
|
|
struct bfd_strtab_hash *tab;
|
|
|
|
|
{
|
|
|
|
|
bfd_byte buffer[BYTES_IN_LONG];
|
|
|
|
|
|
|
|
|
|
/* The string table starts with the size. */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
H_PUT_32 (abfd, _bfd_stringtab_size (tab) + BYTES_IN_LONG, buffer);
|
|
|
|
|
if (bfd_bwrite ((PTR) buffer, (bfd_size_type) BYTES_IN_LONG, abfd)
|
|
|
|
|
!= BYTES_IN_LONG)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
return _bfd_stringtab_emit (abfd, tab);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,write_syms) (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
unsigned int count ;
|
|
|
|
|
asymbol **generic = bfd_get_outsymbols (abfd);
|
|
|
|
|
struct bfd_strtab_hash *strtab;
|
|
|
|
|
|
|
|
|
|
strtab = _bfd_stringtab_init ();
|
|
|
|
|
if (strtab == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
for (count = 0; count < bfd_get_symcount (abfd); count++)
|
|
|
|
|
{
|
|
|
|
|
asymbol *g = generic[count];
|
|
|
|
|
bfd_size_type indx;
|
|
|
|
|
struct external_nlist nsp;
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
PUT_WORD (abfd, 0, nsp.e_unused);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
indx = add_to_stringtab (abfd, strtab, g->name, false);
|
|
|
|
|
if (indx == (bfd_size_type) -1)
|
|
|
|
|
goto error_return;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
PUT_WORD (abfd, indx, nsp.e_strx);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
if (bfd_asymbol_flavour(g) == abfd->xvec->flavour)
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
H_PUT_8 (abfd, aout_symbol(g)->type, nsp.e_type);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
else
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
H_PUT_8 (abfd, 0, nsp.e_type);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
if (! translate_to_native_sym_flags (abfd, g, &nsp))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
H_PUT_8 (abfd, 0, nsp.e_ovly);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_bwrite ((PTR)&nsp, (bfd_size_type) EXTERNAL_NLIST_SIZE, abfd)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
!= EXTERNAL_NLIST_SIZE)
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
/* NB: `KEEPIT' currently overlays `udata.p', so set this only
|
|
|
|
|
here, at the end. */
|
|
|
|
|
g->KEEPIT = count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (! emit_stringtab (abfd, strtab))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
_bfd_stringtab_free (strtab);
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
error_return:
|
|
|
|
|
_bfd_stringtab_free (strtab);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
long
|
|
|
|
|
NAME(aout,get_symtab) (abfd, location)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
asymbol **location;
|
|
|
|
|
{
|
|
|
|
|
unsigned int counter = 0;
|
|
|
|
|
aout_symbol_type *symbase;
|
|
|
|
|
|
|
|
|
|
if (!NAME(aout,slurp_symbol_table)(abfd))
|
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
|
|
for (symbase = obj_aout_symbols(abfd); counter++ < bfd_get_symcount (abfd);)
|
|
|
|
|
*(location++) = (asymbol *)( symbase++);
|
|
|
|
|
*location++ =0;
|
|
|
|
|
return bfd_get_symcount (abfd);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Standard reloc stuff */
|
|
|
|
|
|
|
|
|
|
/* Extended stuff */
|
|
|
|
|
/* Output extended relocation information to a file in target byte order. */
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
pdp11_aout_swap_reloc_out (abfd, g, natptr)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
arelent *g;
|
|
|
|
|
register struct pdp11_aout_reloc_external *natptr;
|
|
|
|
|
{
|
|
|
|
|
int r_index;
|
|
|
|
|
int r_pcrel;
|
|
|
|
|
int reloc_entry;
|
|
|
|
|
int r_type;
|
|
|
|
|
asymbol *sym = *(g->sym_ptr_ptr);
|
|
|
|
|
asection *output_section = sym->section->output_section;
|
|
|
|
|
|
|
|
|
|
if (g->addend != 0)
|
|
|
|
|
fprintf (stderr, "BFD: can't do this reloc addend stuff\n");
|
|
|
|
|
|
|
|
|
|
r_pcrel = g->howto->pc_relative;
|
|
|
|
|
|
|
|
|
|
if (bfd_is_abs_section (output_section))
|
|
|
|
|
r_type = RABS;
|
|
|
|
|
else if (output_section == obj_textsec (abfd))
|
|
|
|
|
r_type = RTEXT;
|
|
|
|
|
else if (output_section == obj_datasec (abfd))
|
|
|
|
|
r_type = RDATA;
|
|
|
|
|
else if (output_section == obj_bsssec (abfd))
|
|
|
|
|
r_type = RBSS;
|
|
|
|
|
else if (bfd_is_und_section (output_section))
|
|
|
|
|
r_type = REXT;
|
|
|
|
|
else if (bfd_is_com_section (output_section))
|
|
|
|
|
r_type = REXT;
|
|
|
|
|
else
|
|
|
|
|
r_type = -1;
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT (r_type != -1);
|
|
|
|
|
|
|
|
|
|
if (r_type == RABS)
|
|
|
|
|
r_index = 0;
|
|
|
|
|
else
|
|
|
|
|
r_index = (*(g->sym_ptr_ptr))->KEEPIT;
|
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
if (bfd_is_abs_section (bfd_get_section (sym)))
|
|
|
|
|
{
|
|
|
|
|
r_extern = 0;
|
|
|
|
|
r_index = N_ABS;
|
|
|
|
|
r_type = RABS;
|
|
|
|
|
}
|
|
|
|
|
else if ((sym->flags & BSF_SECTION_SYM) == 0)
|
|
|
|
|
{
|
|
|
|
|
if (bfd_is_und_section (bfd_get_section (sym))
|
|
|
|
|
|| (sym->flags & BSF_GLOBAL) != 0)
|
|
|
|
|
r_extern = 1;
|
|
|
|
|
else
|
|
|
|
|
r_extern = 0;
|
|
|
|
|
r_index = (*(g->sym_ptr_ptr))->KEEPIT;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Just an ordinary section */
|
|
|
|
|
r_extern = 0;
|
|
|
|
|
r_index = output_section->target_index;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
reloc_entry = r_index << 4 | r_type | r_pcrel;
|
|
|
|
|
|
|
|
|
|
PUT_WORD (abfd, reloc_entry, natptr->e_reloc_entry);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* BFD deals internally with all things based from the section they're
|
|
|
|
|
in. so, something in 10 bytes into a text section with a base of
|
|
|
|
|
50 would have a symbol (.text+10) and know .text vma was 50.
|
|
|
|
|
|
|
|
|
|
Aout keeps all it's symbols based from zero, so the symbol would
|
|
|
|
|
contain 60. This macro subs the base of each section from the value
|
|
|
|
|
to give the true offset from the section */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define MOVE_ADDRESS(ad) \
|
|
|
|
|
if (r_extern) \
|
|
|
|
|
{ \
|
|
|
|
|
/* Undefined symbol. */ \
|
|
|
|
|
cache_ptr->sym_ptr_ptr = symbols + r_index; \
|
|
|
|
|
cache_ptr->addend = ad; \
|
|
|
|
|
} \
|
|
|
|
|
else \
|
|
|
|
|
{ \
|
|
|
|
|
/* Defined, section relative. replace symbol with pointer to \
|
|
|
|
|
symbol which points to section. */ \
|
|
|
|
|
switch (r_index) \
|
|
|
|
|
{ \
|
|
|
|
|
case N_TEXT: \
|
|
|
|
|
case N_TEXT | N_EXT: \
|
|
|
|
|
cache_ptr->sym_ptr_ptr = obj_textsec (abfd)->symbol_ptr_ptr; \
|
|
|
|
|
cache_ptr->addend = ad - su->textsec->vma; \
|
|
|
|
|
break; \
|
|
|
|
|
case N_DATA: \
|
|
|
|
|
case N_DATA | N_EXT: \
|
|
|
|
|
cache_ptr->sym_ptr_ptr = obj_datasec (abfd)->symbol_ptr_ptr; \
|
|
|
|
|
cache_ptr->addend = ad - su->datasec->vma; \
|
|
|
|
|
break; \
|
|
|
|
|
case N_BSS: \
|
|
|
|
|
case N_BSS | N_EXT: \
|
|
|
|
|
cache_ptr->sym_ptr_ptr = obj_bsssec (abfd)->symbol_ptr_ptr; \
|
|
|
|
|
cache_ptr->addend = ad - su->bsssec->vma; \
|
|
|
|
|
break; \
|
|
|
|
|
default: \
|
|
|
|
|
case N_ABS: \
|
|
|
|
|
case N_ABS | N_EXT: \
|
|
|
|
|
cache_ptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; \
|
|
|
|
|
cache_ptr->addend = ad; \
|
|
|
|
|
break; \
|
|
|
|
|
} \
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
}
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
pdp11_aout_swap_reloc_in (abfd, bytes, cache_ptr, offset,
|
|
|
|
|
symbols, symcount)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct pdp11_aout_reloc_external *bytes;
|
|
|
|
|
arelent *cache_ptr;
|
|
|
|
|
bfd_size_type offset;
|
|
|
|
|
asymbol **symbols;
|
|
|
|
|
bfd_size_type symcount;
|
|
|
|
|
{
|
|
|
|
|
struct aoutdata *su = &(abfd->tdata.aout_data->a);
|
|
|
|
|
unsigned int r_index;
|
|
|
|
|
int reloc_entry;
|
|
|
|
|
int r_extern;
|
|
|
|
|
int r_pcrel;
|
|
|
|
|
|
|
|
|
|
reloc_entry = GET_WORD (abfd, (PTR)bytes);
|
|
|
|
|
|
|
|
|
|
r_pcrel = reloc_entry & RELFLG;
|
|
|
|
|
|
|
|
|
|
cache_ptr->address = offset;
|
|
|
|
|
cache_ptr->howto = howto_table_pdp11 + (r_pcrel ? 1 : 0);
|
|
|
|
|
|
|
|
|
|
if ((reloc_entry & RTYPE) == RABS)
|
|
|
|
|
r_index = N_ABS;
|
|
|
|
|
else
|
|
|
|
|
r_index = RINDEX (reloc_entry);
|
|
|
|
|
|
|
|
|
|
/* r_extern reflects whether the symbol the reloc is against is
|
|
|
|
|
local or global. */
|
|
|
|
|
r_extern = (reloc_entry & RTYPE) == REXT;
|
|
|
|
|
|
|
|
|
|
if (r_extern && r_index > symcount)
|
|
|
|
|
{
|
|
|
|
|
/* We could arrange to return an error, but it might be useful
|
|
|
|
|
to see the file even if it is bad. */
|
|
|
|
|
r_extern = 0;
|
|
|
|
|
r_index = N_ABS;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
MOVE_ADDRESS(0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Read and swap the relocs for a section. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,slurp_reloc_table) (abfd, asect, symbols)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
sec_ptr asect;
|
|
|
|
|
asymbol **symbols;
|
|
|
|
|
{
|
|
|
|
|
struct pdp11_aout_reloc_external *rptr;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type count;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
bfd_size_type reloc_size;
|
|
|
|
|
PTR relocs;
|
|
|
|
|
arelent *reloc_cache;
|
|
|
|
|
size_t each_size;
|
|
|
|
|
unsigned int counter = 0;
|
|
|
|
|
arelent *cache_ptr;
|
|
|
|
|
|
|
|
|
|
if (asect->relocation)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
if (asect->flags & SEC_CONSTRUCTOR)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
if (asect == obj_datasec (abfd))
|
|
|
|
|
reloc_size = exec_hdr(abfd)->a_drsize;
|
|
|
|
|
else if (asect == obj_textsec (abfd))
|
|
|
|
|
reloc_size = exec_hdr(abfd)->a_trsize;
|
|
|
|
|
else if (asect == obj_bsssec (abfd))
|
|
|
|
|
reloc_size = 0;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_invalid_operation);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (bfd_seek (abfd, asect->rel_filepos, SEEK_SET) != 0)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
each_size = obj_reloc_entry_size (abfd);
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
relocs = bfd_malloc (reloc_size);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (relocs == NULL && reloc_size != 0)
|
|
|
|
|
return false;
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_bread (relocs, reloc_size, abfd) != reloc_size)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
{
|
|
|
|
|
free (relocs);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
count = reloc_size / each_size;
|
|
|
|
|
|
|
|
|
|
/* Count the number of NON-ZERO relocs, this is the count we want. */
|
|
|
|
|
{
|
|
|
|
|
unsigned int real_count = 0;
|
|
|
|
|
|
|
|
|
|
for (counter = 0; counter < count; counter++)
|
|
|
|
|
{
|
|
|
|
|
int x;
|
|
|
|
|
|
2001-10-17 12:01:05 +00:00
|
|
|
|
x = GET_WORD (abfd, (char *) relocs + each_size * counter);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (x != 0)
|
|
|
|
|
real_count++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
count = real_count;
|
|
|
|
|
}
|
|
|
|
|
|
2002-06-07 15:04:49 +00:00
|
|
|
|
reloc_cache = (arelent *) bfd_zmalloc (count * sizeof (arelent));
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (reloc_cache == NULL && count != 0)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
cache_ptr = reloc_cache;
|
|
|
|
|
|
|
|
|
|
rptr = (struct pdp11_aout_reloc_external *) relocs;
|
|
|
|
|
for (counter = 0;
|
|
|
|
|
counter < count;
|
|
|
|
|
counter++, ((char *)rptr) += RELOC_SIZE, cache_ptr++)
|
|
|
|
|
{
|
|
|
|
|
while (GET_WORD (abfd, (PTR)rptr) == 0)
|
|
|
|
|
{
|
|
|
|
|
rptr =
|
|
|
|
|
(struct pdp11_aout_reloc_external *)
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
((char *) rptr + RELOC_SIZE);
|
|
|
|
|
if ((char *) rptr >= (char *) relocs + reloc_size)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pdp11_aout_swap_reloc_in (abfd, rptr, cache_ptr,
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
(bfd_size_type) ((char *) rptr - (char *) relocs),
|
|
|
|
|
symbols,
|
|
|
|
|
(bfd_size_type) bfd_get_symcount (abfd));
|
2001-02-18 23:33:11 +00:00
|
|
|
|
}
|
|
|
|
|
done:
|
|
|
|
|
/* Just in case, if rptr >= relocs + reloc_size should happen
|
|
|
|
|
too early. */
|
|
|
|
|
BFD_ASSERT (counter == count);
|
|
|
|
|
|
|
|
|
|
free (relocs);
|
|
|
|
|
|
|
|
|
|
asect->relocation = reloc_cache;
|
|
|
|
|
asect->reloc_count = cache_ptr - reloc_cache;
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Write out a relocation section into an object file. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,squirt_out_relocs) (abfd, section)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
asection *section;
|
|
|
|
|
{
|
|
|
|
|
arelent **generic;
|
|
|
|
|
unsigned char *native;
|
|
|
|
|
unsigned int count = section->reloc_count;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type natsize;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
/* If we're writing an .o file, we must write
|
|
|
|
|
relocation information, even if there is none. */
|
|
|
|
|
if ((count == 0 || section->orelocation == NULL) &&
|
|
|
|
|
<writing_executable>)
|
|
|
|
|
return true;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
natsize = bfd_get_section_size_before_reloc (section);
|
|
|
|
|
native = (unsigned char *) bfd_zalloc (abfd, natsize);
|
|
|
|
|
if (!native)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
generic = section->orelocation;
|
|
|
|
|
if (generic != NULL)
|
|
|
|
|
{
|
|
|
|
|
while (count > 0)
|
|
|
|
|
{
|
|
|
|
|
struct pdp11_aout_reloc_external *r;
|
|
|
|
|
|
|
|
|
|
r = (struct pdp11_aout_reloc_external *)
|
|
|
|
|
(native + (*generic)->address);
|
|
|
|
|
pdp11_aout_swap_reloc_out (abfd, *generic, r);
|
|
|
|
|
count--;
|
|
|
|
|
generic++;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_bwrite ((PTR) native, natsize, abfd) != natsize)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_release (abfd, native);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bfd_release (abfd, native);
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* This is stupid. This function should be a boolean predicate */
|
|
|
|
|
long
|
|
|
|
|
NAME(aout,canonicalize_reloc) (abfd, section, relptr, symbols)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
sec_ptr section;
|
|
|
|
|
arelent **relptr;
|
|
|
|
|
asymbol **symbols;
|
|
|
|
|
{
|
|
|
|
|
arelent *tblptr = section->relocation;
|
|
|
|
|
unsigned int count;
|
|
|
|
|
|
|
|
|
|
if (section == obj_bsssec (abfd))
|
|
|
|
|
{
|
|
|
|
|
*relptr = NULL;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (!(tblptr || NAME(aout,slurp_reloc_table)(abfd, section, symbols)))
|
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
|
|
if (section->flags & SEC_CONSTRUCTOR)
|
|
|
|
|
{
|
|
|
|
|
arelent_chain *chain = section->constructor_chain;
|
|
|
|
|
|
|
|
|
|
for (count = 0; count < section->reloc_count; count ++)
|
|
|
|
|
{
|
|
|
|
|
*relptr ++ = &chain->relent;
|
|
|
|
|
chain = chain->next;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
tblptr = section->relocation;
|
|
|
|
|
|
|
|
|
|
for (count = 0; count++ < section->reloc_count;)
|
|
|
|
|
*relptr++ = tblptr++;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
*relptr = 0;
|
|
|
|
|
|
|
|
|
|
return section->reloc_count;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
long
|
|
|
|
|
NAME(aout,get_reloc_upper_bound) (abfd, asect)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
sec_ptr asect;
|
|
|
|
|
{
|
|
|
|
|
if (bfd_get_format (abfd) != bfd_object)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_invalid_operation);
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (asect->flags & SEC_CONSTRUCTOR)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return (sizeof (arelent *) * (asect->reloc_count+1));
|
|
|
|
|
|
|
|
|
|
if (asect == obj_datasec (abfd))
|
|
|
|
|
return (sizeof (arelent *)
|
|
|
|
|
* ((exec_hdr(abfd)->a_drsize / obj_reloc_entry_size (abfd))
|
|
|
|
|
+ 1));
|
|
|
|
|
|
|
|
|
|
if (asect == obj_textsec (abfd))
|
|
|
|
|
return (sizeof (arelent *)
|
|
|
|
|
* ((exec_hdr(abfd)->a_trsize / obj_reloc_entry_size (abfd))
|
|
|
|
|
+ 1));
|
|
|
|
|
|
|
|
|
|
/* TODO: why are there two if statements for obj_bsssec()? */
|
|
|
|
|
|
|
|
|
|
if (asect == obj_bsssec (abfd))
|
|
|
|
|
return sizeof (arelent *);
|
|
|
|
|
|
|
|
|
|
if (asect == obj_bsssec (abfd))
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
bfd_set_error (bfd_error_invalid_operation);
|
|
|
|
|
return -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
long
|
|
|
|
|
NAME(aout,get_symtab_upper_bound) (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
if (!NAME(aout,slurp_symbol_table)(abfd))
|
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
|
|
return (bfd_get_symcount (abfd) + 1) * (sizeof (aout_symbol_type *));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
alent *
|
|
|
|
|
NAME(aout,get_lineno) (abfd, symbol)
|
|
|
|
|
bfd * abfd ATTRIBUTE_UNUSED;
|
|
|
|
|
asymbol * symbol ATTRIBUTE_UNUSED;
|
|
|
|
|
{
|
|
|
|
|
return (alent *)NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
NAME(aout,get_symbol_info) (abfd, symbol, ret)
|
|
|
|
|
bfd * abfd ATTRIBUTE_UNUSED;
|
|
|
|
|
asymbol *symbol;
|
|
|
|
|
symbol_info *ret;
|
|
|
|
|
{
|
|
|
|
|
bfd_symbol_info (symbol, ret);
|
|
|
|
|
|
|
|
|
|
if (ret->type == '?')
|
|
|
|
|
{
|
|
|
|
|
int type_code = aout_symbol(symbol)->type & 0xff;
|
|
|
|
|
const char *stab_name = bfd_get_stab_name (type_code);
|
|
|
|
|
static char buf[10];
|
|
|
|
|
|
|
|
|
|
if (stab_name == NULL)
|
|
|
|
|
{
|
|
|
|
|
sprintf(buf, "(%d)", type_code);
|
|
|
|
|
stab_name = buf;
|
|
|
|
|
}
|
|
|
|
|
ret->type = '-';
|
|
|
|
|
ret->stab_type = type_code;
|
|
|
|
|
ret->stab_other = (unsigned)(aout_symbol(symbol)->other & 0xff);
|
|
|
|
|
ret->stab_desc = (unsigned)(aout_symbol(symbol)->desc & 0xffff);
|
|
|
|
|
ret->stab_name = stab_name;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*ARGSUSED*/
|
|
|
|
|
void
|
|
|
|
|
NAME(aout,print_symbol) (abfd, afile, symbol, how)
|
2001-08-23 15:45:19 +00:00
|
|
|
|
bfd * abfd;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
PTR afile;
|
|
|
|
|
asymbol *symbol;
|
|
|
|
|
bfd_print_symbol_type how;
|
|
|
|
|
{
|
|
|
|
|
FILE *file = (FILE *)afile;
|
|
|
|
|
|
|
|
|
|
switch (how)
|
|
|
|
|
{
|
|
|
|
|
case bfd_print_symbol_name:
|
|
|
|
|
if (symbol->name)
|
|
|
|
|
fprintf(file,"%s", symbol->name);
|
|
|
|
|
break;
|
|
|
|
|
case bfd_print_symbol_more:
|
|
|
|
|
fprintf(file,"%4x %2x %2x",(unsigned)(aout_symbol(symbol)->desc & 0xffff),
|
|
|
|
|
(unsigned)(aout_symbol(symbol)->other & 0xff),
|
|
|
|
|
(unsigned)(aout_symbol(symbol)->type));
|
|
|
|
|
break;
|
|
|
|
|
case bfd_print_symbol_all:
|
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
const char *section_name = symbol->section->name;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
2001-08-23 15:45:19 +00:00
|
|
|
|
bfd_print_symbol_vandf (abfd, (PTR)file, symbol);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
fprintf (file," %-5s %04x %02x %02x",
|
|
|
|
|
section_name,
|
|
|
|
|
(unsigned)(aout_symbol(symbol)->desc & 0xffff),
|
|
|
|
|
(unsigned)(aout_symbol(symbol)->other & 0xff),
|
|
|
|
|
(unsigned)(aout_symbol(symbol)->type & 0xff));
|
|
|
|
|
if (symbol->name)
|
|
|
|
|
fprintf(file," %s", symbol->name);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we don't have to allocate more than 1MB to hold the generic
|
|
|
|
|
symbols, we use the generic minisymbol method: it's faster, since
|
|
|
|
|
it only translates the symbols once, not multiple times. */
|
|
|
|
|
#define MINISYM_THRESHOLD (1000000 / sizeof (asymbol))
|
|
|
|
|
|
|
|
|
|
/* Read minisymbols. For minisymbols, we use the unmodified a.out
|
|
|
|
|
symbols. The minisymbol_to_symbol function translates these into
|
|
|
|
|
BFD asymbol structures. */
|
|
|
|
|
|
|
|
|
|
long
|
|
|
|
|
NAME(aout,read_minisymbols) (abfd, dynamic, minisymsp, sizep)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
boolean dynamic;
|
|
|
|
|
PTR *minisymsp;
|
|
|
|
|
unsigned int *sizep;
|
|
|
|
|
{
|
|
|
|
|
if (dynamic)
|
|
|
|
|
{
|
|
|
|
|
/* We could handle the dynamic symbols here as well, but it's
|
|
|
|
|
easier to hand them off. */
|
|
|
|
|
return _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (! aout_get_external_symbols (abfd))
|
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
|
|
if (obj_aout_external_sym_count (abfd) < MINISYM_THRESHOLD)
|
|
|
|
|
return _bfd_generic_read_minisymbols (abfd, dynamic, minisymsp, sizep);
|
|
|
|
|
|
|
|
|
|
*minisymsp = (PTR) obj_aout_external_syms (abfd);
|
|
|
|
|
|
|
|
|
|
/* By passing the external symbols back from this routine, we are
|
|
|
|
|
giving up control over the memory block. Clear
|
|
|
|
|
obj_aout_external_syms, so that we do not try to free it
|
|
|
|
|
ourselves. */
|
|
|
|
|
obj_aout_external_syms (abfd) = NULL;
|
|
|
|
|
|
|
|
|
|
*sizep = EXTERNAL_NLIST_SIZE;
|
|
|
|
|
return obj_aout_external_sym_count (abfd);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Convert a minisymbol to a BFD asymbol. A minisymbol is just an
|
|
|
|
|
unmodified a.out symbol. The SYM argument is a structure returned
|
|
|
|
|
by bfd_make_empty_symbol, which we fill in here. */
|
|
|
|
|
|
|
|
|
|
asymbol *
|
|
|
|
|
NAME(aout,minisymbol_to_symbol) (abfd, dynamic, minisym, sym)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
boolean dynamic;
|
|
|
|
|
const PTR minisym;
|
|
|
|
|
asymbol *sym;
|
|
|
|
|
{
|
|
|
|
|
if (dynamic
|
|
|
|
|
|| obj_aout_external_sym_count (abfd) < MINISYM_THRESHOLD)
|
|
|
|
|
return _bfd_generic_minisymbol_to_symbol (abfd, dynamic, minisym, sym);
|
|
|
|
|
|
|
|
|
|
memset (sym, 0, sizeof (aout_symbol_type));
|
|
|
|
|
|
|
|
|
|
/* We call translate_symbol_table to translate a single symbol. */
|
|
|
|
|
if (! (NAME(aout,translate_symbol_table)
|
|
|
|
|
(abfd,
|
|
|
|
|
(aout_symbol_type *) sym,
|
|
|
|
|
(struct external_nlist *) minisym,
|
|
|
|
|
(bfd_size_type) 1,
|
|
|
|
|
obj_aout_external_strings (abfd),
|
|
|
|
|
obj_aout_external_string_size (abfd),
|
|
|
|
|
false)))
|
|
|
|
|
return NULL;
|
|
|
|
|
|
|
|
|
|
return sym;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
provided a BFD, a section and an offset into the section, calculate
|
|
|
|
|
and return the name of the source file and the line nearest to the
|
|
|
|
|
wanted location.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,find_nearest_line)
|
|
|
|
|
(abfd, section, symbols, offset, filename_ptr, functionname_ptr, line_ptr)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
asection *section;
|
|
|
|
|
asymbol **symbols;
|
|
|
|
|
bfd_vma offset;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
const char **filename_ptr;
|
|
|
|
|
const char **functionname_ptr;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
unsigned int *line_ptr;
|
|
|
|
|
{
|
|
|
|
|
/* Run down the file looking for the filename, function and linenumber */
|
|
|
|
|
asymbol **p;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
const char *directory_name = NULL;
|
|
|
|
|
const char *main_file_name = NULL;
|
|
|
|
|
const char *current_file_name = NULL;
|
|
|
|
|
const char *line_file_name = NULL; /* Value of current_file_name at line number. */
|
2001-02-18 23:33:11 +00:00
|
|
|
|
bfd_vma low_line_vma = 0;
|
|
|
|
|
bfd_vma low_func_vma = 0;
|
|
|
|
|
asymbol *func = 0;
|
|
|
|
|
size_t filelen, funclen;
|
|
|
|
|
char *buf;
|
|
|
|
|
|
|
|
|
|
*filename_ptr = abfd->filename;
|
|
|
|
|
*functionname_ptr = 0;
|
|
|
|
|
*line_ptr = 0;
|
|
|
|
|
|
|
|
|
|
if (symbols != (asymbol **)NULL)
|
|
|
|
|
{
|
|
|
|
|
for (p = symbols; *p; p++)
|
|
|
|
|
{
|
|
|
|
|
aout_symbol_type *q = (aout_symbol_type *)(*p);
|
|
|
|
|
next:
|
|
|
|
|
switch (q->type)
|
|
|
|
|
{
|
|
|
|
|
case N_TEXT:
|
|
|
|
|
/* If this looks like a file name symbol, and it comes after
|
|
|
|
|
the line number we have found so far, but before the
|
|
|
|
|
offset, then we have probably not found the right line
|
|
|
|
|
number. */
|
|
|
|
|
if (q->symbol.value <= offset
|
|
|
|
|
&& ((q->symbol.value > low_line_vma
|
|
|
|
|
&& (line_file_name != NULL
|
|
|
|
|
|| *line_ptr != 0))
|
|
|
|
|
|| (q->symbol.value > low_func_vma
|
|
|
|
|
&& func != NULL)))
|
|
|
|
|
{
|
|
|
|
|
const char * symname;
|
|
|
|
|
|
|
|
|
|
symname = q->symbol.name;
|
|
|
|
|
if (strcmp (symname + strlen (symname) - 2, ".o") == 0)
|
|
|
|
|
{
|
|
|
|
|
if (q->symbol.value > low_line_vma)
|
|
|
|
|
{
|
|
|
|
|
*line_ptr = 0;
|
|
|
|
|
line_file_name = NULL;
|
|
|
|
|
}
|
|
|
|
|
if (q->symbol.value > low_func_vma)
|
|
|
|
|
func = NULL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_SO:
|
|
|
|
|
/* If this symbol is less than the offset, but greater than
|
|
|
|
|
the line number we have found so far, then we have not
|
|
|
|
|
found the right line number. */
|
|
|
|
|
if (q->symbol.value <= offset)
|
|
|
|
|
{
|
|
|
|
|
if (q->symbol.value > low_line_vma)
|
|
|
|
|
{
|
|
|
|
|
*line_ptr = 0;
|
|
|
|
|
line_file_name = NULL;
|
|
|
|
|
}
|
|
|
|
|
if (q->symbol.value > low_func_vma)
|
|
|
|
|
func = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
main_file_name = current_file_name = q->symbol.name;
|
|
|
|
|
/* Look ahead to next symbol to check if that too is an N_SO. */
|
|
|
|
|
p++;
|
|
|
|
|
if (*p == NULL)
|
|
|
|
|
break;
|
|
|
|
|
q = (aout_symbol_type *)(*p);
|
|
|
|
|
if (q->type != (int)N_SO)
|
|
|
|
|
goto next;
|
|
|
|
|
|
|
|
|
|
/* Found a second N_SO First is directory; second is filename. */
|
|
|
|
|
directory_name = current_file_name;
|
|
|
|
|
main_file_name = current_file_name = q->symbol.name;
|
|
|
|
|
if (obj_textsec(abfd) != section)
|
|
|
|
|
goto done;
|
|
|
|
|
break;
|
|
|
|
|
case N_SOL:
|
|
|
|
|
current_file_name = q->symbol.name;
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_SLINE:
|
|
|
|
|
case N_DSLINE:
|
|
|
|
|
case N_BSLINE:
|
|
|
|
|
/* We'll keep this if it resolves nearer than the one we have
|
|
|
|
|
already. */
|
|
|
|
|
if (q->symbol.value >= low_line_vma
|
|
|
|
|
&& q->symbol.value <= offset)
|
|
|
|
|
{
|
|
|
|
|
*line_ptr = q->desc;
|
|
|
|
|
low_line_vma = q->symbol.value;
|
|
|
|
|
line_file_name = current_file_name;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
|
|
case N_FUN:
|
|
|
|
|
{
|
|
|
|
|
/* We'll keep this if it is nearer than the one we have already */
|
|
|
|
|
if (q->symbol.value >= low_func_vma &&
|
|
|
|
|
q->symbol.value <= offset)
|
|
|
|
|
{
|
|
|
|
|
low_func_vma = q->symbol.value;
|
|
|
|
|
func = (asymbol *)q;
|
|
|
|
|
}
|
|
|
|
|
else if (q->symbol.value > offset)
|
|
|
|
|
goto done;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
done:
|
|
|
|
|
if (*line_ptr != 0)
|
|
|
|
|
main_file_name = line_file_name;
|
|
|
|
|
|
|
|
|
|
if (main_file_name == NULL
|
|
|
|
|
|| main_file_name[0] == '/'
|
|
|
|
|
|| directory_name == NULL)
|
|
|
|
|
filelen = 0;
|
|
|
|
|
else
|
|
|
|
|
filelen = strlen (directory_name) + strlen (main_file_name);
|
|
|
|
|
if (func == NULL)
|
|
|
|
|
funclen = 0;
|
|
|
|
|
else
|
|
|
|
|
funclen = strlen (bfd_asymbol_name (func));
|
|
|
|
|
|
|
|
|
|
if (adata (abfd).line_buf != NULL)
|
|
|
|
|
free (adata (abfd).line_buf);
|
|
|
|
|
if (filelen + funclen == 0)
|
|
|
|
|
adata (abfd).line_buf = buf = NULL;
|
|
|
|
|
else
|
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
buf = (char *) bfd_malloc ((bfd_size_type) filelen + funclen + 3);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
adata (abfd).line_buf = buf;
|
|
|
|
|
if (buf == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (main_file_name != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (main_file_name[0] == '/' || directory_name == NULL)
|
|
|
|
|
*filename_ptr = main_file_name;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
sprintf (buf, "%s%s", directory_name, main_file_name);
|
|
|
|
|
*filename_ptr = buf;
|
|
|
|
|
buf += filelen + 1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (func)
|
|
|
|
|
{
|
|
|
|
|
const char *function = func->name;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
char *colon;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
/* The caller expects a symbol name. We actually have a
|
|
|
|
|
function name, without the leading underscore. Put the
|
|
|
|
|
underscore back in, so that the caller gets a symbol name. */
|
|
|
|
|
if (bfd_get_symbol_leading_char (abfd) == '\0')
|
|
|
|
|
strcpy (buf, function);
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
buf[0] = bfd_get_symbol_leading_char (abfd);
|
|
|
|
|
strcpy (buf + 1, function);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Have to remove : stuff. */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
colon = strchr (buf, ':');
|
|
|
|
|
if (colon != NULL)
|
|
|
|
|
*colon = '\0';
|
2001-02-18 23:33:11 +00:00
|
|
|
|
*functionname_ptr = buf;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
int
|
|
|
|
|
NAME(aout,sizeof_headers) (abfd, execable)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
boolean execable ATTRIBUTE_UNUSED;
|
|
|
|
|
{
|
|
|
|
|
return adata(abfd).exec_bytes_size;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Free all information we have cached for this BFD. We can always
|
|
|
|
|
read it again later if we need it. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,bfd_free_cached_info) (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
asection *o;
|
|
|
|
|
|
|
|
|
|
if (bfd_get_format (abfd) != bfd_object)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
#define BFCI_FREE(x) if (x != NULL) { free (x); x = NULL; }
|
|
|
|
|
BFCI_FREE (obj_aout_symbols (abfd));
|
|
|
|
|
#ifdef USE_MMAP
|
|
|
|
|
obj_aout_external_syms (abfd) = 0;
|
|
|
|
|
bfd_free_window (&obj_aout_sym_window (abfd));
|
|
|
|
|
bfd_free_window (&obj_aout_string_window (abfd));
|
|
|
|
|
obj_aout_external_strings (abfd) = 0;
|
|
|
|
|
#else
|
|
|
|
|
BFCI_FREE (obj_aout_external_syms (abfd));
|
|
|
|
|
BFCI_FREE (obj_aout_external_strings (abfd));
|
|
|
|
|
#endif
|
|
|
|
|
for (o = abfd->sections; o != (asection *) NULL; o = o->next)
|
|
|
|
|
BFCI_FREE (o->relocation);
|
|
|
|
|
#undef BFCI_FREE
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* a.out link code. */
|
|
|
|
|
|
|
|
|
|
static boolean aout_link_add_object_symbols
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
|
|
|
|
static boolean aout_link_check_archive_element
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *, boolean *));
|
|
|
|
|
static boolean aout_link_free_symbols PARAMS ((bfd *));
|
|
|
|
|
static boolean aout_link_check_ar_symbols
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *, boolean *pneeded));
|
|
|
|
|
static boolean aout_link_add_symbols
|
|
|
|
|
PARAMS ((bfd *, struct bfd_link_info *));
|
|
|
|
|
|
|
|
|
|
/* Routine to create an entry in an a.out link hash table. */
|
|
|
|
|
|
|
|
|
|
struct bfd_hash_entry *
|
|
|
|
|
NAME(aout,link_hash_newfunc) (entry, table, string)
|
|
|
|
|
struct bfd_hash_entry *entry;
|
|
|
|
|
struct bfd_hash_table *table;
|
|
|
|
|
const char *string;
|
|
|
|
|
{
|
|
|
|
|
struct aout_link_hash_entry *ret = (struct aout_link_hash_entry *) entry;
|
|
|
|
|
|
|
|
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
|
|
|
subclass. */
|
|
|
|
|
if (ret == (struct aout_link_hash_entry *) NULL)
|
|
|
|
|
ret = ((struct aout_link_hash_entry *)
|
|
|
|
|
bfd_hash_allocate (table, sizeof (struct aout_link_hash_entry)));
|
|
|
|
|
if (ret == (struct aout_link_hash_entry *) NULL)
|
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
|
|
|
|
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
|
|
|
ret = ((struct aout_link_hash_entry *)
|
|
|
|
|
_bfd_link_hash_newfunc ((struct bfd_hash_entry *) ret,
|
|
|
|
|
table, string));
|
|
|
|
|
if (ret)
|
|
|
|
|
{
|
|
|
|
|
/* Set local fields. */
|
|
|
|
|
ret->written = false;
|
|
|
|
|
ret->indx = -1;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Initialize an a.out link hash table. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,link_hash_table_init) (table, abfd, newfunc)
|
|
|
|
|
struct aout_link_hash_table *table;
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
|
|
|
|
|
struct bfd_hash_table *,
|
|
|
|
|
const char *));
|
|
|
|
|
{
|
|
|
|
|
return _bfd_link_hash_table_init (&table->root, abfd, newfunc);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Create an a.out link hash table. */
|
|
|
|
|
|
|
|
|
|
struct bfd_link_hash_table *
|
|
|
|
|
NAME(aout,link_hash_table_create) (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
struct aout_link_hash_table *ret;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type amt = sizeof (struct aout_link_hash_table);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
ret = ((struct aout_link_hash_table *) bfd_alloc (abfd, amt));
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (ret == NULL)
|
|
|
|
|
return (struct bfd_link_hash_table *) NULL;
|
|
|
|
|
if (! NAME(aout,link_hash_table_init) (ret, abfd,
|
|
|
|
|
NAME(aout,link_hash_newfunc)))
|
|
|
|
|
{
|
|
|
|
|
free (ret);
|
|
|
|
|
return (struct bfd_link_hash_table *) NULL;
|
|
|
|
|
}
|
|
|
|
|
return &ret->root;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Given an a.out BFD, add symbols to the global hash table as
|
|
|
|
|
appropriate. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,link_add_symbols) (abfd, info)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
{
|
|
|
|
|
switch (bfd_get_format (abfd))
|
|
|
|
|
{
|
|
|
|
|
case bfd_object:
|
|
|
|
|
return aout_link_add_object_symbols (abfd, info);
|
|
|
|
|
case bfd_archive:
|
|
|
|
|
return _bfd_generic_link_add_archive_symbols
|
|
|
|
|
(abfd, info, aout_link_check_archive_element);
|
|
|
|
|
default:
|
|
|
|
|
bfd_set_error (bfd_error_wrong_format);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add symbols from an a.out object file. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
aout_link_add_object_symbols (abfd, info)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
{
|
|
|
|
|
if (! aout_get_external_symbols (abfd))
|
|
|
|
|
return false;
|
|
|
|
|
if (! aout_link_add_symbols (abfd, info))
|
|
|
|
|
return false;
|
|
|
|
|
if (! info->keep_memory)
|
|
|
|
|
{
|
|
|
|
|
if (! aout_link_free_symbols (abfd))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Check a single archive element to see if we need to include it in
|
|
|
|
|
the link. *PNEEDED is set according to whether this element is
|
|
|
|
|
needed in the link or not. This is called from
|
|
|
|
|
_bfd_generic_link_add_archive_symbols. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
aout_link_check_archive_element (abfd, info, pneeded)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
boolean *pneeded;
|
|
|
|
|
{
|
|
|
|
|
if (! aout_get_external_symbols (abfd))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if (! aout_link_check_ar_symbols (abfd, info, pneeded))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
if (*pneeded)
|
|
|
|
|
{
|
|
|
|
|
if (! aout_link_add_symbols (abfd, info))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (! info->keep_memory || ! *pneeded)
|
|
|
|
|
{
|
|
|
|
|
if (! aout_link_free_symbols (abfd))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Free up the internal symbols read from an a.out file. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
aout_link_free_symbols (abfd)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
{
|
|
|
|
|
if (obj_aout_external_syms (abfd) != (struct external_nlist *) NULL)
|
|
|
|
|
{
|
|
|
|
|
#ifdef USE_MMAP
|
|
|
|
|
bfd_free_window (&obj_aout_sym_window (abfd));
|
|
|
|
|
#else
|
|
|
|
|
free ((PTR) obj_aout_external_syms (abfd));
|
|
|
|
|
#endif
|
|
|
|
|
obj_aout_external_syms (abfd) = (struct external_nlist *) NULL;
|
|
|
|
|
}
|
|
|
|
|
if (obj_aout_external_strings (abfd) != (char *) NULL)
|
|
|
|
|
{
|
|
|
|
|
#ifdef USE_MMAP
|
|
|
|
|
bfd_free_window (&obj_aout_string_window (abfd));
|
|
|
|
|
#else
|
|
|
|
|
free ((PTR) obj_aout_external_strings (abfd));
|
|
|
|
|
#endif
|
|
|
|
|
obj_aout_external_strings (abfd) = (char *) NULL;
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Look through the internal symbols to see if this object file should
|
|
|
|
|
be included in the link. We should include this object file if it
|
|
|
|
|
defines any symbols which are currently undefined. If this object
|
|
|
|
|
file defines a common symbol, then we may adjust the size of the
|
|
|
|
|
known symbol but we do not include the object file in the link
|
|
|
|
|
(unless there is some other reason to include it). */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
aout_link_check_ar_symbols (abfd, info, pneeded)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
boolean *pneeded;
|
|
|
|
|
{
|
|
|
|
|
register struct external_nlist *p;
|
|
|
|
|
struct external_nlist *pend;
|
|
|
|
|
char *strings;
|
|
|
|
|
|
|
|
|
|
*pneeded = false;
|
|
|
|
|
|
|
|
|
|
/* Look through all the symbols. */
|
|
|
|
|
p = obj_aout_external_syms (abfd);
|
|
|
|
|
pend = p + obj_aout_external_sym_count (abfd);
|
|
|
|
|
strings = obj_aout_external_strings (abfd);
|
|
|
|
|
for (; p < pend; p++)
|
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
int type = H_GET_8 (abfd, p->e_type);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
const char *name;
|
|
|
|
|
struct bfd_link_hash_entry *h;
|
|
|
|
|
|
|
|
|
|
/* Ignore symbols that are not externally visible. This is an
|
|
|
|
|
optimization only, as we check the type more thoroughly
|
|
|
|
|
below. */
|
|
|
|
|
if ((type & N_EXT) == 0
|
|
|
|
|
|| type == N_FN)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
name = strings + GET_WORD (abfd, p->e_strx);
|
|
|
|
|
h = bfd_link_hash_lookup (info->hash, name, false, false, true);
|
|
|
|
|
|
|
|
|
|
/* We are only interested in symbols that are currently
|
|
|
|
|
undefined or common. */
|
|
|
|
|
if (h == (struct bfd_link_hash_entry *) NULL
|
|
|
|
|
|| (h->type != bfd_link_hash_undefined
|
|
|
|
|
&& h->type != bfd_link_hash_common))
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if (type == (N_TEXT | N_EXT)
|
|
|
|
|
|| type == (N_DATA | N_EXT)
|
|
|
|
|
|| type == (N_BSS | N_EXT)
|
|
|
|
|
|| type == (N_ABS | N_EXT))
|
|
|
|
|
{
|
|
|
|
|
/* This object file defines this symbol. We must link it
|
|
|
|
|
in. This is true regardless of whether the current
|
|
|
|
|
definition of the symbol is undefined or common. If the
|
|
|
|
|
current definition is common, we have a case in which we
|
|
|
|
|
have already seen an object file including
|
|
|
|
|
int a;
|
|
|
|
|
and this object file from the archive includes
|
|
|
|
|
int a = 5;
|
|
|
|
|
In such a case we must include this object file.
|
|
|
|
|
|
|
|
|
|
FIXME: The SunOS 4.1.3 linker will pull in the archive
|
|
|
|
|
element if the symbol is defined in the .data section,
|
|
|
|
|
but not if it is defined in the .text section. That
|
|
|
|
|
seems a bit crazy to me, and I haven't implemented it.
|
|
|
|
|
However, it might be correct. */
|
|
|
|
|
if (! (*info->callbacks->add_archive_element) (info, abfd, name))
|
|
|
|
|
return false;
|
|
|
|
|
*pneeded = true;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (type == (N_UNDF | N_EXT))
|
|
|
|
|
{
|
|
|
|
|
bfd_vma value;
|
|
|
|
|
|
|
|
|
|
value = GET_WORD (abfd, p->e_value);
|
|
|
|
|
if (value != 0)
|
|
|
|
|
{
|
|
|
|
|
/* This symbol is common in the object from the archive
|
|
|
|
|
file. */
|
|
|
|
|
if (h->type == bfd_link_hash_undefined)
|
|
|
|
|
{
|
|
|
|
|
bfd *symbfd;
|
|
|
|
|
unsigned int power;
|
|
|
|
|
|
|
|
|
|
symbfd = h->u.undef.abfd;
|
|
|
|
|
if (symbfd == (bfd *) NULL)
|
|
|
|
|
{
|
|
|
|
|
/* This symbol was created as undefined from
|
|
|
|
|
outside BFD. We assume that we should link
|
|
|
|
|
in the object file. This is done for the -u
|
|
|
|
|
option in the linker. */
|
|
|
|
|
if (! (*info->callbacks->add_archive_element) (info,
|
|
|
|
|
abfd,
|
|
|
|
|
name))
|
|
|
|
|
return false;
|
|
|
|
|
*pneeded = true;
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
/* Turn the current link symbol into a common
|
|
|
|
|
symbol. It is already on the undefs list. */
|
|
|
|
|
h->type = bfd_link_hash_common;
|
|
|
|
|
h->u.c.p = ((struct bfd_link_hash_common_entry *)
|
|
|
|
|
bfd_hash_allocate (&info->hash->table,
|
|
|
|
|
sizeof (struct bfd_link_hash_common_entry)));
|
|
|
|
|
if (h->u.c.p == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
h->u.c.size = value;
|
|
|
|
|
|
|
|
|
|
/* FIXME: This isn't quite right. The maximum
|
|
|
|
|
alignment of a common symbol should be set by the
|
|
|
|
|
architecture of the output file, not of the input
|
|
|
|
|
file. */
|
|
|
|
|
power = bfd_log2 (value);
|
|
|
|
|
if (power > bfd_get_arch_info (abfd)->section_align_power)
|
|
|
|
|
power = bfd_get_arch_info (abfd)->section_align_power;
|
|
|
|
|
h->u.c.p->alignment_power = power;
|
|
|
|
|
|
|
|
|
|
h->u.c.p->section = bfd_make_section_old_way (symbfd,
|
|
|
|
|
"COMMON");
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* Adjust the size of the common symbol if
|
|
|
|
|
necessary. */
|
|
|
|
|
if (value > h->u.c.size)
|
|
|
|
|
h->u.c.size = value;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We do not need this object file. */
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Add all symbols from an object file to the hash table. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
aout_link_add_symbols (abfd, info)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
{
|
|
|
|
|
boolean (*add_one_symbol) PARAMS ((struct bfd_link_info *, bfd *,
|
|
|
|
|
const char *, flagword, asection *,
|
|
|
|
|
bfd_vma, const char *, boolean,
|
|
|
|
|
boolean,
|
|
|
|
|
struct bfd_link_hash_entry **));
|
|
|
|
|
struct external_nlist *syms;
|
|
|
|
|
bfd_size_type sym_count;
|
|
|
|
|
char *strings;
|
|
|
|
|
boolean copy;
|
|
|
|
|
struct aout_link_hash_entry **sym_hash;
|
|
|
|
|
register struct external_nlist *p;
|
|
|
|
|
struct external_nlist *pend;
|
|
|
|
|
|
|
|
|
|
syms = obj_aout_external_syms (abfd);
|
|
|
|
|
sym_count = obj_aout_external_sym_count (abfd);
|
|
|
|
|
strings = obj_aout_external_strings (abfd);
|
|
|
|
|
if (info->keep_memory)
|
|
|
|
|
copy = false;
|
|
|
|
|
else
|
|
|
|
|
copy = true;
|
|
|
|
|
|
|
|
|
|
if (aout_backend_info (abfd)->add_dynamic_symbols != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (! ((*aout_backend_info (abfd)->add_dynamic_symbols)
|
|
|
|
|
(abfd, info, &syms, &sym_count, &strings)))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* We keep a list of the linker hash table entries that correspond
|
|
|
|
|
to particular symbols. We could just look them up in the hash
|
|
|
|
|
table, but keeping the list is more efficient. Perhaps this
|
|
|
|
|
should be conditional on info->keep_memory. */
|
|
|
|
|
sym_hash = ((struct aout_link_hash_entry **)
|
|
|
|
|
bfd_alloc (abfd,
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
sym_count * sizeof (struct aout_link_hash_entry *)));
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (sym_hash == NULL && sym_count != 0)
|
|
|
|
|
return false;
|
|
|
|
|
obj_aout_sym_hashes (abfd) = sym_hash;
|
|
|
|
|
|
|
|
|
|
add_one_symbol = aout_backend_info (abfd)->add_one_symbol;
|
|
|
|
|
if (add_one_symbol == NULL)
|
|
|
|
|
add_one_symbol = _bfd_generic_link_add_one_symbol;
|
|
|
|
|
|
|
|
|
|
p = syms;
|
|
|
|
|
pend = p + sym_count;
|
|
|
|
|
for (; p < pend; p++, sym_hash++)
|
|
|
|
|
{
|
|
|
|
|
int type;
|
|
|
|
|
const char *name;
|
|
|
|
|
bfd_vma value;
|
|
|
|
|
asection *section;
|
|
|
|
|
flagword flags;
|
|
|
|
|
const char *string;
|
|
|
|
|
|
|
|
|
|
*sym_hash = NULL;
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
type = H_GET_8 (abfd, p->e_type);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
#if 0 /* not supported in PDP-11 a.out */
|
|
|
|
|
/* Ignore debugging symbols. */
|
|
|
|
|
if ((type & N_STAB) != 0)
|
|
|
|
|
continue;
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
name = strings + GET_WORD (abfd, p->e_strx);
|
|
|
|
|
value = GET_WORD (abfd, p->e_value);
|
|
|
|
|
flags = BSF_GLOBAL;
|
|
|
|
|
string = NULL;
|
|
|
|
|
switch (type)
|
|
|
|
|
{
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
|
|
|
|
|
case N_UNDF:
|
|
|
|
|
case N_ABS:
|
|
|
|
|
case N_TEXT:
|
|
|
|
|
case N_DATA:
|
|
|
|
|
case N_BSS:
|
|
|
|
|
case N_REG:
|
|
|
|
|
case N_FN:
|
|
|
|
|
/* Ignore symbols that are not externally visible. */
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
case N_UNDF | N_EXT:
|
|
|
|
|
if (value == 0)
|
|
|
|
|
{
|
|
|
|
|
section = bfd_und_section_ptr;
|
|
|
|
|
flags = 0;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
section = bfd_com_section_ptr;
|
|
|
|
|
break;
|
|
|
|
|
case N_ABS | N_EXT:
|
|
|
|
|
section = bfd_abs_section_ptr;
|
|
|
|
|
break;
|
|
|
|
|
case N_TEXT | N_EXT:
|
|
|
|
|
section = obj_textsec (abfd);
|
|
|
|
|
value -= bfd_get_section_vma (abfd, section);
|
|
|
|
|
break;
|
|
|
|
|
case N_DATA | N_EXT:
|
|
|
|
|
/* Treat N_SETV symbols as N_DATA symbol; see comment in
|
|
|
|
|
translate_from_native_sym_flags. */
|
|
|
|
|
section = obj_datasec (abfd);
|
|
|
|
|
value -= bfd_get_section_vma (abfd, section);
|
|
|
|
|
break;
|
|
|
|
|
case N_BSS | N_EXT:
|
|
|
|
|
section = obj_bsssec (abfd);
|
|
|
|
|
value -= bfd_get_section_vma (abfd, section);
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (! ((*add_one_symbol)
|
|
|
|
|
(info, abfd, name, flags, section, value, string, copy, false,
|
|
|
|
|
(struct bfd_link_hash_entry **) sym_hash)))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Restrict the maximum alignment of a common symbol based on
|
|
|
|
|
the architecture, since a.out has no way to represent
|
|
|
|
|
alignment requirements of a section in a .o file. FIXME:
|
|
|
|
|
This isn't quite right: it should use the architecture of the
|
|
|
|
|
output file, not the input files. */
|
|
|
|
|
if ((*sym_hash)->root.type == bfd_link_hash_common
|
|
|
|
|
&& ((*sym_hash)->root.u.c.p->alignment_power >
|
|
|
|
|
bfd_get_arch_info (abfd)->section_align_power))
|
|
|
|
|
(*sym_hash)->root.u.c.p->alignment_power =
|
|
|
|
|
bfd_get_arch_info (abfd)->section_align_power;
|
|
|
|
|
|
|
|
|
|
/* If this is a set symbol, and we are not building sets, then
|
|
|
|
|
it is possible for the hash entry to not have been set. In
|
|
|
|
|
such a case, treat the symbol as not globally defined. */
|
|
|
|
|
if ((*sym_hash)->root.type == bfd_link_hash_new)
|
|
|
|
|
{
|
|
|
|
|
BFD_ASSERT ((flags & BSF_CONSTRUCTOR) != 0);
|
|
|
|
|
*sym_hash = NULL;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* A hash table used for header files with N_BINCL entries. */
|
|
|
|
|
|
|
|
|
|
struct aout_link_includes_table
|
|
|
|
|
{
|
|
|
|
|
struct bfd_hash_table root;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* A linked list of totals that we have found for a particular header
|
|
|
|
|
file. */
|
|
|
|
|
|
|
|
|
|
struct aout_link_includes_totals
|
|
|
|
|
{
|
|
|
|
|
struct aout_link_includes_totals *next;
|
|
|
|
|
bfd_vma total;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* An entry in the header file hash table. */
|
|
|
|
|
|
|
|
|
|
struct aout_link_includes_entry
|
|
|
|
|
{
|
|
|
|
|
struct bfd_hash_entry root;
|
|
|
|
|
/* List of totals we have found for this file. */
|
|
|
|
|
struct aout_link_includes_totals *totals;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/* Look up an entry in an the header file hash table. */
|
|
|
|
|
|
|
|
|
|
#define aout_link_includes_lookup(table, string, create, copy) \
|
|
|
|
|
((struct aout_link_includes_entry *) \
|
|
|
|
|
bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
|
|
|
|
|
|
|
|
|
|
/* During the final link step we need to pass around a bunch of
|
|
|
|
|
information, so we do it in an instance of this structure. */
|
|
|
|
|
|
|
|
|
|
struct aout_final_link_info
|
|
|
|
|
{
|
|
|
|
|
/* General link information. */
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
/* Output bfd. */
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
/* Reloc file positions. */
|
|
|
|
|
file_ptr treloff, dreloff;
|
|
|
|
|
/* File position of symbols. */
|
|
|
|
|
file_ptr symoff;
|
|
|
|
|
/* String table. */
|
|
|
|
|
struct bfd_strtab_hash *strtab;
|
|
|
|
|
/* Header file hash table. */
|
|
|
|
|
struct aout_link_includes_table includes;
|
|
|
|
|
/* A buffer large enough to hold the contents of any section. */
|
|
|
|
|
bfd_byte *contents;
|
|
|
|
|
/* A buffer large enough to hold the relocs of any section. */
|
|
|
|
|
PTR relocs;
|
|
|
|
|
/* A buffer large enough to hold the symbol map of any input BFD. */
|
|
|
|
|
int *symbol_map;
|
|
|
|
|
/* A buffer large enough to hold output symbols of any input BFD. */
|
|
|
|
|
struct external_nlist *output_syms;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
static struct bfd_hash_entry *aout_link_includes_newfunc
|
|
|
|
|
PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
|
|
|
|
|
static boolean aout_link_input_bfd
|
|
|
|
|
PARAMS ((struct aout_final_link_info *, bfd *input_bfd));
|
|
|
|
|
static boolean aout_link_write_symbols
|
|
|
|
|
PARAMS ((struct aout_final_link_info *, bfd *input_bfd));
|
|
|
|
|
static boolean aout_link_write_other_symbol
|
|
|
|
|
PARAMS ((struct aout_link_hash_entry *, PTR));
|
|
|
|
|
static boolean aout_link_input_section
|
|
|
|
|
PARAMS ((struct aout_final_link_info *, bfd *input_bfd,
|
|
|
|
|
asection *input_section, file_ptr *reloff_ptr,
|
|
|
|
|
bfd_size_type rel_size));
|
|
|
|
|
static INLINE asection *aout_reloc_type_to_section
|
|
|
|
|
PARAMS ((bfd *, int));
|
|
|
|
|
static boolean aout_link_reloc_link_order
|
|
|
|
|
PARAMS ((struct aout_final_link_info *, asection *,
|
|
|
|
|
struct bfd_link_order *));
|
|
|
|
|
static boolean pdp11_aout_link_input_section
|
|
|
|
|
PARAMS ((struct aout_final_link_info *finfo,
|
|
|
|
|
bfd *input_bfd,
|
|
|
|
|
asection *input_section,
|
|
|
|
|
struct pdp11_aout_reloc_external *relocs,
|
|
|
|
|
bfd_size_type rel_size,
|
|
|
|
|
bfd_byte *contents));
|
|
|
|
|
|
|
|
|
|
/* The function to create a new entry in the header file hash table. */
|
|
|
|
|
|
|
|
|
|
static struct bfd_hash_entry *
|
|
|
|
|
aout_link_includes_newfunc (entry, table, string)
|
|
|
|
|
struct bfd_hash_entry *entry;
|
|
|
|
|
struct bfd_hash_table *table;
|
|
|
|
|
const char *string;
|
|
|
|
|
{
|
|
|
|
|
struct aout_link_includes_entry *ret =
|
|
|
|
|
(struct aout_link_includes_entry *) entry;
|
|
|
|
|
|
|
|
|
|
/* Allocate the structure if it has not already been allocated by a
|
|
|
|
|
subclass. */
|
|
|
|
|
if (ret == (struct aout_link_includes_entry *) NULL)
|
|
|
|
|
ret = ((struct aout_link_includes_entry *)
|
|
|
|
|
bfd_hash_allocate (table,
|
|
|
|
|
sizeof (struct aout_link_includes_entry)));
|
|
|
|
|
if (ret == (struct aout_link_includes_entry *) NULL)
|
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
|
|
|
|
|
|
|
|
/* Call the allocation method of the superclass. */
|
|
|
|
|
ret = ((struct aout_link_includes_entry *)
|
|
|
|
|
bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
|
|
|
|
|
if (ret)
|
|
|
|
|
{
|
|
|
|
|
/* Set local fields. */
|
|
|
|
|
ret->totals = NULL;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return (struct bfd_hash_entry *) ret;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Do the final link step. This is called on the output BFD. The
|
|
|
|
|
INFO structure should point to a list of BFDs linked through the
|
|
|
|
|
link_next field which can be used to find each BFD which takes part
|
|
|
|
|
in the output. Also, each section in ABFD should point to a list
|
|
|
|
|
of bfd_link_order structures which list all the input sections for
|
|
|
|
|
the output section. */
|
|
|
|
|
|
|
|
|
|
boolean
|
|
|
|
|
NAME(aout,final_link) (abfd, info, callback)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
struct bfd_link_info *info;
|
|
|
|
|
void (*callback) PARAMS ((bfd *, file_ptr *, file_ptr *, file_ptr *));
|
|
|
|
|
{
|
|
|
|
|
struct aout_final_link_info aout_info;
|
|
|
|
|
boolean includes_hash_initialized = false;
|
|
|
|
|
register bfd *sub;
|
|
|
|
|
bfd_size_type trsize, drsize;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type max_contents_size;
|
|
|
|
|
bfd_size_type max_relocs_size;
|
|
|
|
|
bfd_size_type max_sym_count;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
bfd_size_type text_size;
|
|
|
|
|
file_ptr text_end;
|
|
|
|
|
register struct bfd_link_order *p;
|
|
|
|
|
asection *o;
|
|
|
|
|
boolean have_link_order_relocs;
|
|
|
|
|
|
|
|
|
|
if (info->shared)
|
|
|
|
|
abfd->flags |= DYNAMIC;
|
|
|
|
|
|
|
|
|
|
aout_info.info = info;
|
|
|
|
|
aout_info.output_bfd = abfd;
|
|
|
|
|
aout_info.contents = NULL;
|
|
|
|
|
aout_info.relocs = NULL;
|
|
|
|
|
aout_info.symbol_map = NULL;
|
|
|
|
|
aout_info.output_syms = NULL;
|
|
|
|
|
|
|
|
|
|
if (! bfd_hash_table_init_n (&aout_info.includes.root,
|
|
|
|
|
aout_link_includes_newfunc,
|
|
|
|
|
251))
|
|
|
|
|
goto error_return;
|
|
|
|
|
includes_hash_initialized = true;
|
|
|
|
|
|
|
|
|
|
/* Figure out the largest section size. Also, if generating
|
|
|
|
|
relocateable output, count the relocs. */
|
|
|
|
|
trsize = 0;
|
|
|
|
|
drsize = 0;
|
|
|
|
|
max_contents_size = 0;
|
|
|
|
|
max_relocs_size = 0;
|
|
|
|
|
max_sym_count = 0;
|
|
|
|
|
for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
|
|
|
|
|
{
|
|
|
|
|
size_t sz;
|
|
|
|
|
|
|
|
|
|
if (info->relocateable)
|
|
|
|
|
{
|
|
|
|
|
if (bfd_get_flavour (sub) == bfd_target_aout_flavour)
|
|
|
|
|
{
|
|
|
|
|
trsize += exec_hdr (sub)->a_trsize;
|
|
|
|
|
drsize += exec_hdr (sub)->a_drsize;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* FIXME: We need to identify the .text and .data sections
|
|
|
|
|
and call get_reloc_upper_bound and canonicalize_reloc to
|
|
|
|
|
work out the number of relocs needed, and then multiply
|
|
|
|
|
by the reloc size. */
|
|
|
|
|
(*_bfd_error_handler)
|
|
|
|
|
("%s: relocateable link from %s to %s not supported",
|
|
|
|
|
bfd_get_filename (abfd),
|
|
|
|
|
sub->xvec->name, abfd->xvec->name);
|
|
|
|
|
bfd_set_error (bfd_error_invalid_operation);
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (bfd_get_flavour (sub) == bfd_target_aout_flavour)
|
|
|
|
|
{
|
|
|
|
|
sz = bfd_section_size (sub, obj_textsec (sub));
|
|
|
|
|
if (sz > max_contents_size)
|
|
|
|
|
max_contents_size = sz;
|
|
|
|
|
sz = bfd_section_size (sub, obj_datasec (sub));
|
|
|
|
|
if (sz > max_contents_size)
|
|
|
|
|
max_contents_size = sz;
|
|
|
|
|
|
|
|
|
|
sz = exec_hdr (sub)->a_trsize;
|
|
|
|
|
if (sz > max_relocs_size)
|
|
|
|
|
max_relocs_size = sz;
|
|
|
|
|
sz = exec_hdr (sub)->a_drsize;
|
|
|
|
|
if (sz > max_relocs_size)
|
|
|
|
|
max_relocs_size = sz;
|
|
|
|
|
|
|
|
|
|
sz = obj_aout_external_sym_count (sub);
|
|
|
|
|
if (sz > max_sym_count)
|
|
|
|
|
max_sym_count = sz;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (info->relocateable)
|
|
|
|
|
{
|
|
|
|
|
if (obj_textsec (abfd) != (asection *) NULL)
|
|
|
|
|
trsize += (_bfd_count_link_order_relocs (obj_textsec (abfd)
|
|
|
|
|
->link_order_head)
|
|
|
|
|
* obj_reloc_entry_size (abfd));
|
|
|
|
|
if (obj_datasec (abfd) != (asection *) NULL)
|
|
|
|
|
drsize += (_bfd_count_link_order_relocs (obj_datasec (abfd)
|
|
|
|
|
->link_order_head)
|
|
|
|
|
* obj_reloc_entry_size (abfd));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
exec_hdr (abfd)->a_trsize = trsize;
|
|
|
|
|
exec_hdr (abfd)->a_drsize = drsize;
|
|
|
|
|
|
|
|
|
|
exec_hdr (abfd)->a_entry = bfd_get_start_address (abfd);
|
|
|
|
|
|
|
|
|
|
/* Adjust the section sizes and vmas according to the magic number.
|
|
|
|
|
This sets a_text, a_data and a_bss in the exec_hdr and sets the
|
|
|
|
|
filepos for each section. */
|
|
|
|
|
if (! NAME(aout,adjust_sizes_and_vmas) (abfd, &text_size, &text_end))
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
/* The relocation and symbol file positions differ among a.out
|
|
|
|
|
targets. We are passed a callback routine from the backend
|
|
|
|
|
specific code to handle this.
|
|
|
|
|
FIXME: At this point we do not know how much space the symbol
|
|
|
|
|
table will require. This will not work for any (nonstandard)
|
|
|
|
|
a.out target that needs to know the symbol table size before it
|
|
|
|
|
can compute the relocation file positions. This may or may not
|
|
|
|
|
be the case for the hp300hpux target, for example. */
|
|
|
|
|
(*callback) (abfd, &aout_info.treloff, &aout_info.dreloff,
|
|
|
|
|
&aout_info.symoff);
|
|
|
|
|
obj_textsec (abfd)->rel_filepos = aout_info.treloff;
|
|
|
|
|
obj_datasec (abfd)->rel_filepos = aout_info.dreloff;
|
|
|
|
|
obj_sym_filepos (abfd) = aout_info.symoff;
|
|
|
|
|
|
|
|
|
|
/* We keep a count of the symbols as we output them. */
|
|
|
|
|
obj_aout_external_sym_count (abfd) = 0;
|
|
|
|
|
|
|
|
|
|
/* We accumulate the string table as we write out the symbols. */
|
|
|
|
|
aout_info.strtab = _bfd_stringtab_init ();
|
|
|
|
|
if (aout_info.strtab == NULL)
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
/* Allocate buffers to hold section contents and relocs. */
|
|
|
|
|
aout_info.contents = (bfd_byte *) bfd_malloc (max_contents_size);
|
|
|
|
|
aout_info.relocs = (PTR) bfd_malloc (max_relocs_size);
|
|
|
|
|
aout_info.symbol_map = (int *) bfd_malloc (max_sym_count * sizeof (int *));
|
|
|
|
|
aout_info.output_syms = ((struct external_nlist *)
|
|
|
|
|
bfd_malloc ((max_sym_count + 1)
|
|
|
|
|
* sizeof (struct external_nlist)));
|
|
|
|
|
if ((aout_info.contents == NULL && max_contents_size != 0)
|
|
|
|
|
|| (aout_info.relocs == NULL && max_relocs_size != 0)
|
|
|
|
|
|| (aout_info.symbol_map == NULL && max_sym_count != 0)
|
|
|
|
|
|| aout_info.output_syms == NULL)
|
|
|
|
|
goto error_return;
|
|
|
|
|
|
|
|
|
|
/* If we have a symbol named __DYNAMIC, force it out now. This is
|
|
|
|
|
required by SunOS. Doing this here rather than in sunos.c is a
|
|
|
|
|
hack, but it's easier than exporting everything which would be
|
|
|
|
|
needed. */
|
|
|
|
|
{
|
|
|
|
|
struct aout_link_hash_entry *h;
|
|
|
|
|
|
|
|
|
|
h = aout_link_hash_lookup (aout_hash_table (info), "__DYNAMIC",
|
|
|
|
|
false, false, false);
|
|
|
|
|
if (h != NULL)
|
|
|
|
|
aout_link_write_other_symbol (h, &aout_info);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* The most time efficient way to do the link would be to read all
|
|
|
|
|
the input object files into memory and then sort out the
|
|
|
|
|
information into the output file. Unfortunately, that will
|
|
|
|
|
probably use too much memory. Another method would be to step
|
|
|
|
|
through everything that composes the text section and write it
|
|
|
|
|
out, and then everything that composes the data section and write
|
|
|
|
|
it out, and then write out the relocs, and then write out the
|
|
|
|
|
symbols. Unfortunately, that requires reading stuff from each
|
|
|
|
|
input file several times, and we will not be able to keep all the
|
|
|
|
|
input files open simultaneously, and reopening them will be slow.
|
|
|
|
|
|
|
|
|
|
What we do is basically process one input file at a time. We do
|
|
|
|
|
everything we need to do with an input file once--copy over the
|
|
|
|
|
section contents, handle the relocation information, and write
|
|
|
|
|
out the symbols--and then we throw away the information we read
|
|
|
|
|
from it. This approach requires a lot of lseeks of the output
|
|
|
|
|
file, which is unfortunate but still faster than reopening a lot
|
|
|
|
|
of files.
|
|
|
|
|
|
|
|
|
|
We use the output_has_begun field of the input BFDs to see
|
|
|
|
|
whether we have already handled it. */
|
|
|
|
|
for (sub = info->input_bfds; sub != (bfd *) NULL; sub = sub->link_next)
|
|
|
|
|
sub->output_has_begun = false;
|
|
|
|
|
|
|
|
|
|
/* Mark all sections which are to be included in the link. This
|
|
|
|
|
will normally be every section. We need to do this so that we
|
|
|
|
|
can identify any sections which the linker has decided to not
|
|
|
|
|
include. */
|
|
|
|
|
for (o = abfd->sections; o != NULL; o = o->next)
|
|
|
|
|
{
|
|
|
|
|
for (p = o->link_order_head; p != NULL; p = p->next)
|
|
|
|
|
{
|
|
|
|
|
if (p->type == bfd_indirect_link_order)
|
|
|
|
|
p->u.indirect.section->linker_mark = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
have_link_order_relocs = false;
|
|
|
|
|
for (o = abfd->sections; o != (asection *) NULL; o = o->next)
|
|
|
|
|
{
|
|
|
|
|
for (p = o->link_order_head;
|
|
|
|
|
p != (struct bfd_link_order *) NULL;
|
|
|
|
|
p = p->next)
|
|
|
|
|
{
|
|
|
|
|
if (p->type == bfd_indirect_link_order
|
|
|
|
|
&& (bfd_get_flavour (p->u.indirect.section->owner)
|
|
|
|
|
== bfd_target_aout_flavour))
|
|
|
|
|
{
|
|
|
|
|
bfd *input_bfd;
|
|
|
|
|
|
|
|
|
|
input_bfd = p->u.indirect.section->owner;
|
|
|
|
|
if (! input_bfd->output_has_begun)
|
|
|
|
|
{
|
|
|
|
|
if (! aout_link_input_bfd (&aout_info, input_bfd))
|
|
|
|
|
goto error_return;
|
|
|
|
|
input_bfd->output_has_begun = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (p->type == bfd_section_reloc_link_order
|
|
|
|
|
|| p->type == bfd_symbol_reloc_link_order)
|
|
|
|
|
{
|
|
|
|
|
/* These are handled below. */
|
|
|
|
|
have_link_order_relocs = true;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (! _bfd_default_link_order (abfd, info, o, p))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Write out any symbols that we have not already written out. */
|
|
|
|
|
aout_link_hash_traverse (aout_hash_table (info),
|
|
|
|
|
aout_link_write_other_symbol,
|
|
|
|
|
(PTR) &aout_info);
|
|
|
|
|
|
|
|
|
|
/* Now handle any relocs we were asked to create by the linker.
|
|
|
|
|
These did not come from any input file. We must do these after
|
|
|
|
|
we have written out all the symbols, so that we know the symbol
|
|
|
|
|
indices to use. */
|
|
|
|
|
if (have_link_order_relocs)
|
|
|
|
|
{
|
|
|
|
|
for (o = abfd->sections; o != (asection *) NULL; o = o->next)
|
|
|
|
|
{
|
|
|
|
|
for (p = o->link_order_head;
|
|
|
|
|
p != (struct bfd_link_order *) NULL;
|
|
|
|
|
p = p->next)
|
|
|
|
|
{
|
|
|
|
|
if (p->type == bfd_section_reloc_link_order
|
|
|
|
|
|| p->type == bfd_symbol_reloc_link_order)
|
|
|
|
|
{
|
|
|
|
|
if (! aout_link_reloc_link_order (&aout_info, o, p))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (aout_info.contents != NULL)
|
|
|
|
|
{
|
|
|
|
|
free (aout_info.contents);
|
|
|
|
|
aout_info.contents = NULL;
|
|
|
|
|
}
|
|
|
|
|
if (aout_info.relocs != NULL)
|
|
|
|
|
{
|
|
|
|
|
free (aout_info.relocs);
|
|
|
|
|
aout_info.relocs = NULL;
|
|
|
|
|
}
|
|
|
|
|
if (aout_info.symbol_map != NULL)
|
|
|
|
|
{
|
|
|
|
|
free (aout_info.symbol_map);
|
|
|
|
|
aout_info.symbol_map = NULL;
|
|
|
|
|
}
|
|
|
|
|
if (aout_info.output_syms != NULL)
|
|
|
|
|
{
|
|
|
|
|
free (aout_info.output_syms);
|
|
|
|
|
aout_info.output_syms = NULL;
|
|
|
|
|
}
|
|
|
|
|
if (includes_hash_initialized)
|
|
|
|
|
{
|
|
|
|
|
bfd_hash_table_free (&aout_info.includes.root);
|
|
|
|
|
includes_hash_initialized = false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Finish up any dynamic linking we may be doing. */
|
|
|
|
|
if (aout_backend_info (abfd)->finish_dynamic_link != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (! (*aout_backend_info (abfd)->finish_dynamic_link) (abfd, info))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Update the header information. */
|
|
|
|
|
abfd->symcount = obj_aout_external_sym_count (abfd);
|
|
|
|
|
exec_hdr (abfd)->a_syms = abfd->symcount * EXTERNAL_NLIST_SIZE;
|
|
|
|
|
obj_str_filepos (abfd) = obj_sym_filepos (abfd) + exec_hdr (abfd)->a_syms;
|
|
|
|
|
obj_textsec (abfd)->reloc_count =
|
|
|
|
|
exec_hdr (abfd)->a_trsize / obj_reloc_entry_size (abfd);
|
|
|
|
|
obj_datasec (abfd)->reloc_count =
|
|
|
|
|
exec_hdr (abfd)->a_drsize / obj_reloc_entry_size (abfd);
|
|
|
|
|
|
|
|
|
|
/* Write out the string table, unless there are no symbols. */
|
|
|
|
|
if (abfd->symcount > 0)
|
|
|
|
|
{
|
|
|
|
|
if (bfd_seek (abfd, obj_str_filepos (abfd), SEEK_SET) != 0
|
|
|
|
|
|| ! emit_stringtab (abfd, aout_info.strtab))
|
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
else if (obj_textsec (abfd)->reloc_count == 0
|
|
|
|
|
&& obj_datasec (abfd)->reloc_count == 0)
|
|
|
|
|
{
|
|
|
|
|
bfd_byte b;
|
|
|
|
|
|
|
|
|
|
b = 0;
|
|
|
|
|
if (bfd_seek (abfd,
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
(file_ptr) (obj_datasec (abfd)->filepos
|
|
|
|
|
+ exec_hdr (abfd)->a_data
|
|
|
|
|
- 1),
|
2001-02-18 23:33:11 +00:00
|
|
|
|
SEEK_SET) != 0
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|| bfd_bwrite (&b, (bfd_size_type) 1, abfd) != 1)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
goto error_return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
error_return:
|
|
|
|
|
if (aout_info.contents != NULL)
|
|
|
|
|
free (aout_info.contents);
|
|
|
|
|
if (aout_info.relocs != NULL)
|
|
|
|
|
free (aout_info.relocs);
|
|
|
|
|
if (aout_info.symbol_map != NULL)
|
|
|
|
|
free (aout_info.symbol_map);
|
|
|
|
|
if (aout_info.output_syms != NULL)
|
|
|
|
|
free (aout_info.output_syms);
|
|
|
|
|
if (includes_hash_initialized)
|
|
|
|
|
bfd_hash_table_free (&aout_info.includes.root);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Link an a.out input BFD into the output file. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
aout_link_input_bfd (finfo, input_bfd)
|
|
|
|
|
struct aout_final_link_info *finfo;
|
|
|
|
|
bfd *input_bfd;
|
|
|
|
|
{
|
|
|
|
|
bfd_size_type sym_count;
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT (bfd_get_format (input_bfd) == bfd_object);
|
|
|
|
|
|
|
|
|
|
/* If this is a dynamic object, it may need special handling. */
|
|
|
|
|
if ((input_bfd->flags & DYNAMIC) != 0
|
|
|
|
|
&& aout_backend_info (input_bfd)->link_dynamic_object != NULL)
|
|
|
|
|
{
|
|
|
|
|
return ((*aout_backend_info (input_bfd)->link_dynamic_object)
|
|
|
|
|
(finfo->info, input_bfd));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Get the symbols. We probably have them already, unless
|
|
|
|
|
finfo->info->keep_memory is false. */
|
|
|
|
|
if (! aout_get_external_symbols (input_bfd))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
sym_count = obj_aout_external_sym_count (input_bfd);
|
|
|
|
|
|
|
|
|
|
/* Write out the symbols and get a map of the new indices. The map
|
|
|
|
|
is placed into finfo->symbol_map. */
|
|
|
|
|
if (! aout_link_write_symbols (finfo, input_bfd))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Relocate and write out the sections. These functions use the
|
|
|
|
|
symbol map created by aout_link_write_symbols. The linker_mark
|
|
|
|
|
field will be set if these sections are to be included in the
|
|
|
|
|
link, which will normally be the case. */
|
|
|
|
|
if (obj_textsec (input_bfd)->linker_mark)
|
|
|
|
|
{
|
|
|
|
|
if (! aout_link_input_section (finfo, input_bfd,
|
|
|
|
|
obj_textsec (input_bfd),
|
|
|
|
|
&finfo->treloff,
|
|
|
|
|
exec_hdr (input_bfd)->a_trsize))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
if (obj_datasec (input_bfd)->linker_mark)
|
|
|
|
|
{
|
|
|
|
|
if (! aout_link_input_section (finfo, input_bfd,
|
|
|
|
|
obj_datasec (input_bfd),
|
|
|
|
|
&finfo->dreloff,
|
|
|
|
|
exec_hdr (input_bfd)->a_drsize))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we are not keeping memory, we don't need the symbols any
|
|
|
|
|
longer. We still need them if we are keeping memory, because the
|
|
|
|
|
strings in the hash table point into them. */
|
|
|
|
|
if (! finfo->info->keep_memory)
|
|
|
|
|
{
|
|
|
|
|
if (! aout_link_free_symbols (input_bfd))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Adjust and write out the symbols for an a.out file. Set the new
|
|
|
|
|
symbol indices into a symbol_map. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
aout_link_write_symbols (finfo, input_bfd)
|
|
|
|
|
struct aout_final_link_info *finfo;
|
|
|
|
|
bfd *input_bfd;
|
|
|
|
|
{
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
bfd_size_type sym_count;
|
|
|
|
|
char *strings;
|
|
|
|
|
enum bfd_link_strip strip;
|
|
|
|
|
enum bfd_link_discard discard;
|
|
|
|
|
struct external_nlist *outsym;
|
|
|
|
|
bfd_size_type strtab_index;
|
|
|
|
|
register struct external_nlist *sym;
|
|
|
|
|
struct external_nlist *sym_end;
|
|
|
|
|
struct aout_link_hash_entry **sym_hash;
|
|
|
|
|
int *symbol_map;
|
|
|
|
|
boolean pass;
|
|
|
|
|
boolean skip_next;
|
|
|
|
|
|
|
|
|
|
output_bfd = finfo->output_bfd;
|
|
|
|
|
sym_count = obj_aout_external_sym_count (input_bfd);
|
|
|
|
|
strings = obj_aout_external_strings (input_bfd);
|
|
|
|
|
strip = finfo->info->strip;
|
|
|
|
|
discard = finfo->info->discard;
|
|
|
|
|
outsym = finfo->output_syms;
|
|
|
|
|
|
|
|
|
|
/* First write out a symbol for this object file, unless we are
|
|
|
|
|
discarding such symbols. */
|
|
|
|
|
if (strip != strip_all
|
|
|
|
|
&& (strip != strip_some
|
|
|
|
|
|| bfd_hash_lookup (finfo->info->keep_hash, input_bfd->filename,
|
|
|
|
|
false, false) != NULL)
|
|
|
|
|
&& discard != discard_all)
|
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
H_PUT_8 (output_bfd, N_TEXT, outsym->e_type);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
strtab_index = add_to_stringtab (output_bfd, finfo->strtab,
|
|
|
|
|
input_bfd->filename, false);
|
|
|
|
|
if (strtab_index == (bfd_size_type) -1)
|
|
|
|
|
return false;
|
|
|
|
|
PUT_WORD (output_bfd, strtab_index, outsym->e_strx);
|
|
|
|
|
PUT_WORD (output_bfd,
|
|
|
|
|
(bfd_get_section_vma (output_bfd,
|
|
|
|
|
obj_textsec (input_bfd)->output_section)
|
|
|
|
|
+ obj_textsec (input_bfd)->output_offset),
|
|
|
|
|
outsym->e_value);
|
|
|
|
|
++obj_aout_external_sym_count (output_bfd);
|
|
|
|
|
++outsym;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
pass = false;
|
|
|
|
|
skip_next = false;
|
|
|
|
|
sym = obj_aout_external_syms (input_bfd);
|
|
|
|
|
sym_end = sym + sym_count;
|
|
|
|
|
sym_hash = obj_aout_sym_hashes (input_bfd);
|
|
|
|
|
symbol_map = finfo->symbol_map;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
memset (symbol_map, 0, (size_t) sym_count * sizeof *symbol_map);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
for (; sym < sym_end; sym++, sym_hash++, symbol_map++)
|
|
|
|
|
{
|
|
|
|
|
const char *name;
|
|
|
|
|
int type;
|
|
|
|
|
struct aout_link_hash_entry *h;
|
|
|
|
|
boolean skip;
|
|
|
|
|
asection *symsec;
|
|
|
|
|
bfd_vma val = 0;
|
|
|
|
|
boolean copy;
|
|
|
|
|
|
|
|
|
|
/* We set *symbol_map to 0 above for all symbols. If it has
|
|
|
|
|
already been set to -1 for this symbol, it means that we are
|
|
|
|
|
discarding it because it appears in a duplicate header file.
|
|
|
|
|
See the N_BINCL code below. */
|
|
|
|
|
if (*symbol_map == -1)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
/* Initialize *symbol_map to -1, which means that the symbol was
|
|
|
|
|
not copied into the output file. We will change it later if
|
|
|
|
|
we do copy the symbol over. */
|
|
|
|
|
*symbol_map = -1;
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
type = H_GET_8 (input_bfd, sym->e_type);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
name = strings + GET_WORD (input_bfd, sym->e_strx);
|
|
|
|
|
|
|
|
|
|
h = NULL;
|
|
|
|
|
|
|
|
|
|
if (pass)
|
|
|
|
|
{
|
|
|
|
|
/* Pass this symbol through. It is the target of an
|
|
|
|
|
indirect or warning symbol. */
|
|
|
|
|
val = GET_WORD (input_bfd, sym->e_value);
|
|
|
|
|
pass = false;
|
|
|
|
|
}
|
|
|
|
|
else if (skip_next)
|
|
|
|
|
{
|
|
|
|
|
/* Skip this symbol, which is the target of an indirect
|
|
|
|
|
symbol that we have changed to no longer be an indirect
|
|
|
|
|
symbol. */
|
|
|
|
|
skip_next = false;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
struct aout_link_hash_entry *hresolve;
|
|
|
|
|
|
|
|
|
|
/* We have saved the hash table entry for this symbol, if
|
|
|
|
|
there is one. Note that we could just look it up again
|
|
|
|
|
in the hash table, provided we first check that it is an
|
|
|
|
|
external symbol. */
|
|
|
|
|
h = *sym_hash;
|
|
|
|
|
|
|
|
|
|
/* Use the name from the hash table, in case the symbol was
|
|
|
|
|
wrapped. */
|
|
|
|
|
if (h != NULL)
|
|
|
|
|
name = h->root.root.string;
|
|
|
|
|
|
|
|
|
|
/* If this is an indirect or warning symbol, then change
|
|
|
|
|
hresolve to the base symbol. We also change *sym_hash so
|
|
|
|
|
that the relocation routines relocate against the real
|
|
|
|
|
symbol. */
|
|
|
|
|
hresolve = h;
|
|
|
|
|
if (h != (struct aout_link_hash_entry *) NULL
|
|
|
|
|
&& (h->root.type == bfd_link_hash_indirect
|
|
|
|
|
|| h->root.type == bfd_link_hash_warning))
|
|
|
|
|
{
|
|
|
|
|
hresolve = (struct aout_link_hash_entry *) h->root.u.i.link;
|
|
|
|
|
while (hresolve->root.type == bfd_link_hash_indirect
|
|
|
|
|
|| hresolve->root.type == bfd_link_hash_warning)
|
|
|
|
|
hresolve = ((struct aout_link_hash_entry *)
|
|
|
|
|
hresolve->root.u.i.link);
|
|
|
|
|
*sym_hash = hresolve;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If the symbol has already been written out, skip it. */
|
|
|
|
|
if (h != (struct aout_link_hash_entry *) NULL
|
|
|
|
|
&& h->root.type != bfd_link_hash_warning
|
|
|
|
|
&& h->written)
|
|
|
|
|
{
|
|
|
|
|
if ((type & N_TYPE) == N_INDR
|
|
|
|
|
|| type == N_WARNING)
|
|
|
|
|
skip_next = true;
|
|
|
|
|
*symbol_map = h->indx;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* See if we are stripping this symbol. */
|
|
|
|
|
skip = false;
|
|
|
|
|
switch (strip)
|
|
|
|
|
{
|
|
|
|
|
case strip_none:
|
|
|
|
|
break;
|
|
|
|
|
case strip_debugger:
|
|
|
|
|
if ((type & N_STAB) != 0)
|
|
|
|
|
skip = true;
|
|
|
|
|
break;
|
|
|
|
|
case strip_some:
|
|
|
|
|
if (bfd_hash_lookup (finfo->info->keep_hash, name, false, false)
|
|
|
|
|
== NULL)
|
|
|
|
|
skip = true;
|
|
|
|
|
break;
|
|
|
|
|
case strip_all:
|
|
|
|
|
skip = true;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
if (skip)
|
|
|
|
|
{
|
|
|
|
|
if (h != (struct aout_link_hash_entry *) NULL)
|
|
|
|
|
h->written = true;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Get the value of the symbol. */
|
|
|
|
|
if ((type & N_TYPE) == N_TEXT
|
|
|
|
|
|| type == N_WEAKT)
|
|
|
|
|
symsec = obj_textsec (input_bfd);
|
|
|
|
|
else if ((type & N_TYPE) == N_DATA
|
|
|
|
|
|| type == N_WEAKD)
|
|
|
|
|
symsec = obj_datasec (input_bfd);
|
|
|
|
|
else if ((type & N_TYPE) == N_BSS
|
|
|
|
|
|| type == N_WEAKB)
|
|
|
|
|
symsec = obj_bsssec (input_bfd);
|
|
|
|
|
else if ((type & N_TYPE) == N_ABS
|
|
|
|
|
|| type == N_WEAKA)
|
|
|
|
|
symsec = bfd_abs_section_ptr;
|
|
|
|
|
else if (((type & N_TYPE) == N_INDR
|
|
|
|
|
&& (hresolve == (struct aout_link_hash_entry *) NULL
|
|
|
|
|
|| (hresolve->root.type != bfd_link_hash_defined
|
|
|
|
|
&& hresolve->root.type != bfd_link_hash_defweak
|
|
|
|
|
&& hresolve->root.type != bfd_link_hash_common)))
|
|
|
|
|
|| type == N_WARNING)
|
|
|
|
|
{
|
|
|
|
|
/* Pass the next symbol through unchanged. The
|
|
|
|
|
condition above for indirect symbols is so that if
|
|
|
|
|
the indirect symbol was defined, we output it with
|
|
|
|
|
the correct definition so the debugger will
|
|
|
|
|
understand it. */
|
|
|
|
|
pass = true;
|
|
|
|
|
val = GET_WORD (input_bfd, sym->e_value);
|
|
|
|
|
symsec = NULL;
|
|
|
|
|
}
|
|
|
|
|
else if ((type & N_STAB) != 0)
|
|
|
|
|
{
|
|
|
|
|
val = GET_WORD (input_bfd, sym->e_value);
|
|
|
|
|
symsec = NULL;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* If we get here with an indirect symbol, it means that
|
|
|
|
|
we are outputting it with a real definition. In such
|
|
|
|
|
a case we do not want to output the next symbol,
|
|
|
|
|
which is the target of the indirection. */
|
|
|
|
|
if ((type & N_TYPE) == N_INDR)
|
|
|
|
|
skip_next = true;
|
|
|
|
|
|
|
|
|
|
symsec = NULL;
|
|
|
|
|
|
|
|
|
|
/* We need to get the value from the hash table. We use
|
|
|
|
|
hresolve so that if we have defined an indirect
|
|
|
|
|
symbol we output the final definition. */
|
|
|
|
|
if (h == (struct aout_link_hash_entry *) NULL)
|
|
|
|
|
{
|
|
|
|
|
switch (type & N_TYPE)
|
|
|
|
|
{
|
|
|
|
|
case N_SETT:
|
|
|
|
|
symsec = obj_textsec (input_bfd);
|
|
|
|
|
break;
|
|
|
|
|
case N_SETD:
|
|
|
|
|
symsec = obj_datasec (input_bfd);
|
|
|
|
|
break;
|
|
|
|
|
case N_SETB:
|
|
|
|
|
symsec = obj_bsssec (input_bfd);
|
|
|
|
|
break;
|
|
|
|
|
case N_SETA:
|
|
|
|
|
symsec = bfd_abs_section_ptr;
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
val = 0;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else if (hresolve->root.type == bfd_link_hash_defined
|
|
|
|
|
|| hresolve->root.type == bfd_link_hash_defweak)
|
|
|
|
|
{
|
|
|
|
|
asection *input_section;
|
|
|
|
|
asection *output_section;
|
|
|
|
|
|
|
|
|
|
/* This case usually means a common symbol which was
|
|
|
|
|
turned into a defined symbol. */
|
|
|
|
|
input_section = hresolve->root.u.def.section;
|
|
|
|
|
output_section = input_section->output_section;
|
|
|
|
|
BFD_ASSERT (bfd_is_abs_section (output_section)
|
|
|
|
|
|| output_section->owner == output_bfd);
|
|
|
|
|
val = (hresolve->root.u.def.value
|
|
|
|
|
+ bfd_get_section_vma (output_bfd, output_section)
|
|
|
|
|
+ input_section->output_offset);
|
|
|
|
|
|
|
|
|
|
/* Get the correct type based on the section. If
|
|
|
|
|
this is a constructed set, force it to be
|
|
|
|
|
globally visible. */
|
|
|
|
|
if (type == N_SETT
|
|
|
|
|
|| type == N_SETD
|
|
|
|
|
|| type == N_SETB
|
|
|
|
|
|| type == N_SETA)
|
|
|
|
|
type |= N_EXT;
|
|
|
|
|
|
|
|
|
|
type &=~ N_TYPE;
|
|
|
|
|
|
|
|
|
|
if (output_section == obj_textsec (output_bfd))
|
|
|
|
|
type |= (hresolve->root.type == bfd_link_hash_defined
|
|
|
|
|
? N_TEXT
|
|
|
|
|
: N_WEAKT);
|
|
|
|
|
else if (output_section == obj_datasec (output_bfd))
|
|
|
|
|
type |= (hresolve->root.type == bfd_link_hash_defined
|
|
|
|
|
? N_DATA
|
|
|
|
|
: N_WEAKD);
|
|
|
|
|
else if (output_section == obj_bsssec (output_bfd))
|
|
|
|
|
type |= (hresolve->root.type == bfd_link_hash_defined
|
|
|
|
|
? N_BSS
|
|
|
|
|
: N_WEAKB);
|
|
|
|
|
else
|
|
|
|
|
type |= (hresolve->root.type == bfd_link_hash_defined
|
|
|
|
|
? N_ABS
|
|
|
|
|
: N_WEAKA);
|
|
|
|
|
}
|
|
|
|
|
else if (hresolve->root.type == bfd_link_hash_common)
|
|
|
|
|
val = hresolve->root.u.c.size;
|
|
|
|
|
else if (hresolve->root.type == bfd_link_hash_undefweak)
|
|
|
|
|
{
|
|
|
|
|
val = 0;
|
|
|
|
|
type = N_WEAKU;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
val = 0;
|
|
|
|
|
}
|
|
|
|
|
if (symsec != (asection *) NULL)
|
|
|
|
|
val = (symsec->output_section->vma
|
|
|
|
|
+ symsec->output_offset
|
|
|
|
|
+ (GET_WORD (input_bfd, sym->e_value)
|
|
|
|
|
- symsec->vma));
|
|
|
|
|
|
|
|
|
|
/* If this is a global symbol set the written flag, and if
|
|
|
|
|
it is a local symbol see if we should discard it. */
|
|
|
|
|
if (h != (struct aout_link_hash_entry *) NULL)
|
|
|
|
|
{
|
|
|
|
|
h->written = true;
|
|
|
|
|
h->indx = obj_aout_external_sym_count (output_bfd);
|
|
|
|
|
}
|
|
|
|
|
else if ((type & N_TYPE) != N_SETT
|
|
|
|
|
&& (type & N_TYPE) != N_SETD
|
|
|
|
|
&& (type & N_TYPE) != N_SETB
|
|
|
|
|
&& (type & N_TYPE) != N_SETA)
|
|
|
|
|
{
|
|
|
|
|
switch (discard)
|
|
|
|
|
{
|
|
|
|
|
case discard_none:
|
2001-04-13 00:34:36 +00:00
|
|
|
|
case discard_sec_merge:
|
2001-02-18 23:33:11 +00:00
|
|
|
|
break;
|
|
|
|
|
case discard_l:
|
|
|
|
|
if ((type & N_STAB) == 0
|
|
|
|
|
&& bfd_is_local_label_name (input_bfd, name))
|
|
|
|
|
skip = true;
|
|
|
|
|
break;
|
|
|
|
|
case discard_all:
|
|
|
|
|
skip = true;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
if (skip)
|
|
|
|
|
{
|
|
|
|
|
pass = false;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* An N_BINCL symbol indicates the start of the stabs
|
|
|
|
|
entries for a header file. We need to scan ahead to the
|
|
|
|
|
next N_EINCL symbol, ignoring nesting, adding up all the
|
|
|
|
|
characters in the symbol names, not including the file
|
|
|
|
|
numbers in types (the first number after an open
|
|
|
|
|
parenthesis). */
|
|
|
|
|
if (type == N_BINCL)
|
|
|
|
|
{
|
|
|
|
|
struct external_nlist *incl_sym;
|
|
|
|
|
int nest;
|
|
|
|
|
struct aout_link_includes_entry *incl_entry;
|
|
|
|
|
struct aout_link_includes_totals *t;
|
|
|
|
|
|
|
|
|
|
val = 0;
|
|
|
|
|
nest = 0;
|
|
|
|
|
for (incl_sym = sym + 1; incl_sym < sym_end; incl_sym++)
|
|
|
|
|
{
|
|
|
|
|
int incl_type;
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
incl_type = H_GET_8 (input_bfd, incl_sym->e_type);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (incl_type == N_EINCL)
|
|
|
|
|
{
|
|
|
|
|
if (nest == 0)
|
|
|
|
|
break;
|
|
|
|
|
--nest;
|
|
|
|
|
}
|
|
|
|
|
else if (incl_type == N_BINCL)
|
|
|
|
|
++nest;
|
|
|
|
|
else if (nest == 0)
|
|
|
|
|
{
|
|
|
|
|
const char *s;
|
|
|
|
|
|
|
|
|
|
s = strings + GET_WORD (input_bfd, incl_sym->e_strx);
|
|
|
|
|
for (; *s != '\0'; s++)
|
|
|
|
|
{
|
|
|
|
|
val += *s;
|
|
|
|
|
if (*s == '(')
|
|
|
|
|
{
|
|
|
|
|
/* Skip the file number. */
|
|
|
|
|
++s;
|
2001-09-19 05:33:36 +00:00
|
|
|
|
while (ISDIGIT (*s))
|
2001-02-18 23:33:11 +00:00
|
|
|
|
++s;
|
|
|
|
|
--s;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* If we have already included a header file with the
|
|
|
|
|
same value, then replace this one with an N_EXCL
|
|
|
|
|
symbol. */
|
|
|
|
|
copy = ! finfo->info->keep_memory;
|
|
|
|
|
incl_entry = aout_link_includes_lookup (&finfo->includes,
|
|
|
|
|
name, true, copy);
|
|
|
|
|
if (incl_entry == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
for (t = incl_entry->totals; t != NULL; t = t->next)
|
|
|
|
|
if (t->total == val)
|
|
|
|
|
break;
|
|
|
|
|
if (t == NULL)
|
|
|
|
|
{
|
|
|
|
|
/* This is the first time we have seen this header
|
|
|
|
|
file with this set of stabs strings. */
|
|
|
|
|
t = ((struct aout_link_includes_totals *)
|
|
|
|
|
bfd_hash_allocate (&finfo->includes.root,
|
|
|
|
|
sizeof *t));
|
|
|
|
|
if (t == NULL)
|
|
|
|
|
return false;
|
|
|
|
|
t->total = val;
|
|
|
|
|
t->next = incl_entry->totals;
|
|
|
|
|
incl_entry->totals = t;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
int *incl_map;
|
|
|
|
|
|
|
|
|
|
/* This is a duplicate header file. We must change
|
|
|
|
|
it to be an N_EXCL entry, and mark all the
|
|
|
|
|
included symbols to prevent outputting them. */
|
|
|
|
|
type = N_EXCL;
|
|
|
|
|
|
|
|
|
|
nest = 0;
|
|
|
|
|
for (incl_sym = sym + 1, incl_map = symbol_map + 1;
|
|
|
|
|
incl_sym < sym_end;
|
|
|
|
|
incl_sym++, incl_map++)
|
|
|
|
|
{
|
|
|
|
|
int incl_type;
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
incl_type = H_GET_8 (input_bfd, incl_sym->e_type);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (incl_type == N_EINCL)
|
|
|
|
|
{
|
|
|
|
|
if (nest == 0)
|
|
|
|
|
{
|
|
|
|
|
*incl_map = -1;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
--nest;
|
|
|
|
|
}
|
|
|
|
|
else if (incl_type == N_BINCL)
|
|
|
|
|
++nest;
|
|
|
|
|
else if (nest == 0)
|
|
|
|
|
*incl_map = -1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Copy this symbol into the list of symbols we are going to
|
|
|
|
|
write out. */
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
H_PUT_8 (output_bfd, type, outsym->e_type);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
copy = false;
|
|
|
|
|
if (! finfo->info->keep_memory)
|
|
|
|
|
{
|
|
|
|
|
/* name points into a string table which we are going to
|
|
|
|
|
free. If there is a hash table entry, use that string.
|
|
|
|
|
Otherwise, copy name into memory. */
|
|
|
|
|
if (h != (struct aout_link_hash_entry *) NULL)
|
|
|
|
|
name = h->root.root.string;
|
|
|
|
|
else
|
|
|
|
|
copy = true;
|
|
|
|
|
}
|
|
|
|
|
strtab_index = add_to_stringtab (output_bfd, finfo->strtab,
|
|
|
|
|
name, copy);
|
|
|
|
|
if (strtab_index == (bfd_size_type) -1)
|
|
|
|
|
return false;
|
|
|
|
|
PUT_WORD (output_bfd, strtab_index, outsym->e_strx);
|
|
|
|
|
PUT_WORD (output_bfd, val, outsym->e_value);
|
|
|
|
|
*symbol_map = obj_aout_external_sym_count (output_bfd);
|
|
|
|
|
++obj_aout_external_sym_count (output_bfd);
|
|
|
|
|
++outsym;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Write out the output symbols we have just constructed. */
|
|
|
|
|
if (outsym > finfo->output_syms)
|
|
|
|
|
{
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type size;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
if (bfd_seek (output_bfd, finfo->symoff, SEEK_SET) != 0)
|
|
|
|
|
return false;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
size = outsym - finfo->output_syms;
|
|
|
|
|
size *= EXTERNAL_NLIST_SIZE;
|
|
|
|
|
if (bfd_bwrite ((PTR) finfo->output_syms, size, output_bfd) != size)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return false;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
finfo->symoff += size;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Write out a symbol that was not associated with an a.out input
|
|
|
|
|
object. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
aout_link_write_other_symbol (h, data)
|
|
|
|
|
struct aout_link_hash_entry *h;
|
|
|
|
|
PTR data;
|
|
|
|
|
{
|
|
|
|
|
struct aout_final_link_info *finfo = (struct aout_final_link_info *) data;
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
int type;
|
|
|
|
|
bfd_vma val;
|
|
|
|
|
struct external_nlist outsym;
|
|
|
|
|
bfd_size_type indx;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type amt;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
2002-03-28 03:27:46 +00:00
|
|
|
|
if (h->root.type == bfd_link_hash_warning)
|
|
|
|
|
{
|
|
|
|
|
h = (struct aout_link_hash_entry *) h->root.u.i.link;
|
|
|
|
|
if (h->root.type == bfd_link_hash_new)
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
2001-02-18 23:33:11 +00:00
|
|
|
|
output_bfd = finfo->output_bfd;
|
|
|
|
|
|
|
|
|
|
if (aout_backend_info (output_bfd)->write_dynamic_symbol != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (! ((*aout_backend_info (output_bfd)->write_dynamic_symbol)
|
|
|
|
|
(output_bfd, finfo->info, h)))
|
|
|
|
|
{
|
|
|
|
|
/* FIXME: No way to handle errors. */
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (h->written)
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
h->written = true;
|
|
|
|
|
|
|
|
|
|
/* An indx of -2 means the symbol must be written. */
|
|
|
|
|
if (h->indx != -2
|
|
|
|
|
&& (finfo->info->strip == strip_all
|
|
|
|
|
|| (finfo->info->strip == strip_some
|
|
|
|
|
&& bfd_hash_lookup (finfo->info->keep_hash, h->root.root.string,
|
|
|
|
|
false, false) == NULL)))
|
|
|
|
|
return true;
|
|
|
|
|
|
|
|
|
|
switch (h->root.type)
|
|
|
|
|
{
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
/* Avoid variable not initialized warnings. */
|
|
|
|
|
return true;
|
|
|
|
|
case bfd_link_hash_new:
|
|
|
|
|
/* This can happen for set symbols when sets are not being
|
|
|
|
|
built. */
|
|
|
|
|
return true;
|
|
|
|
|
case bfd_link_hash_undefined:
|
|
|
|
|
type = N_UNDF | N_EXT;
|
|
|
|
|
val = 0;
|
|
|
|
|
break;
|
|
|
|
|
case bfd_link_hash_defined:
|
|
|
|
|
case bfd_link_hash_defweak:
|
|
|
|
|
{
|
|
|
|
|
asection *sec;
|
|
|
|
|
|
|
|
|
|
sec = h->root.u.def.section->output_section;
|
|
|
|
|
BFD_ASSERT (bfd_is_abs_section (sec)
|
|
|
|
|
|| sec->owner == output_bfd);
|
|
|
|
|
if (sec == obj_textsec (output_bfd))
|
|
|
|
|
type = h->root.type == bfd_link_hash_defined ? N_TEXT : N_WEAKT;
|
|
|
|
|
else if (sec == obj_datasec (output_bfd))
|
|
|
|
|
type = h->root.type == bfd_link_hash_defined ? N_DATA : N_WEAKD;
|
|
|
|
|
else if (sec == obj_bsssec (output_bfd))
|
|
|
|
|
type = h->root.type == bfd_link_hash_defined ? N_BSS : N_WEAKB;
|
|
|
|
|
else
|
|
|
|
|
type = h->root.type == bfd_link_hash_defined ? N_ABS : N_WEAKA;
|
|
|
|
|
type |= N_EXT;
|
|
|
|
|
val = (h->root.u.def.value
|
|
|
|
|
+ sec->vma
|
|
|
|
|
+ h->root.u.def.section->output_offset);
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
case bfd_link_hash_common:
|
|
|
|
|
type = N_UNDF | N_EXT;
|
|
|
|
|
val = h->root.u.c.size;
|
|
|
|
|
break;
|
|
|
|
|
case bfd_link_hash_undefweak:
|
|
|
|
|
type = N_WEAKU;
|
|
|
|
|
val = 0;
|
|
|
|
|
case bfd_link_hash_indirect:
|
|
|
|
|
case bfd_link_hash_warning:
|
|
|
|
|
/* FIXME: Ignore these for now. The circumstances under which
|
|
|
|
|
they should be written out are not clear to me. */
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
H_PUT_8 (output_bfd, type, outsym.e_type);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
indx = add_to_stringtab (output_bfd, finfo->strtab, h->root.root.string,
|
|
|
|
|
false);
|
|
|
|
|
if (indx == (bfd_size_type) -1)
|
|
|
|
|
{
|
|
|
|
|
/* FIXME: No way to handle errors. */
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
PUT_WORD (output_bfd, indx, outsym.e_strx);
|
|
|
|
|
PUT_WORD (output_bfd, val, outsym.e_value);
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
amt = EXTERNAL_NLIST_SIZE;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (bfd_seek (output_bfd, finfo->symoff, SEEK_SET) != 0
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|| bfd_bwrite ((PTR) &outsym, amt, output_bfd) != amt)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
{
|
|
|
|
|
/* FIXME: No way to handle errors. */
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
finfo->symoff += amt;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
h->indx = obj_aout_external_sym_count (output_bfd);
|
|
|
|
|
++obj_aout_external_sym_count (output_bfd);
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Link an a.out section into the output file. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
aout_link_input_section (finfo, input_bfd, input_section, reloff_ptr,
|
|
|
|
|
rel_size)
|
|
|
|
|
struct aout_final_link_info *finfo;
|
|
|
|
|
bfd *input_bfd;
|
|
|
|
|
asection *input_section;
|
|
|
|
|
file_ptr *reloff_ptr;
|
|
|
|
|
bfd_size_type rel_size;
|
|
|
|
|
{
|
|
|
|
|
bfd_size_type input_size;
|
|
|
|
|
PTR relocs;
|
|
|
|
|
|
|
|
|
|
/* Get the section contents. */
|
|
|
|
|
input_size = bfd_section_size (input_bfd, input_section);
|
|
|
|
|
if (! bfd_get_section_contents (input_bfd, input_section,
|
|
|
|
|
(PTR) finfo->contents,
|
|
|
|
|
(file_ptr) 0, input_size))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Read in the relocs if we haven't already done it. */
|
|
|
|
|
if (aout_section_data (input_section) != NULL
|
|
|
|
|
&& aout_section_data (input_section)->relocs != NULL)
|
|
|
|
|
relocs = aout_section_data (input_section)->relocs;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
relocs = finfo->relocs;
|
|
|
|
|
if (rel_size > 0)
|
|
|
|
|
{
|
|
|
|
|
if (bfd_seek (input_bfd, input_section->rel_filepos, SEEK_SET) != 0
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|| bfd_bread (relocs, rel_size, input_bfd) != rel_size)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Relocate the section contents. */
|
|
|
|
|
if (! pdp11_aout_link_input_section (finfo, input_bfd, input_section,
|
|
|
|
|
(struct pdp11_aout_reloc_external *) relocs,
|
|
|
|
|
rel_size, finfo->contents))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* Write out the section contents. */
|
|
|
|
|
if (! bfd_set_section_contents (finfo->output_bfd,
|
|
|
|
|
input_section->output_section,
|
|
|
|
|
(PTR) finfo->contents,
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
(file_ptr) input_section->output_offset,
|
2001-02-18 23:33:11 +00:00
|
|
|
|
input_size))
|
|
|
|
|
return false;
|
|
|
|
|
|
|
|
|
|
/* If we are producing relocateable output, the relocs were
|
|
|
|
|
modified, and we now write them out. */
|
|
|
|
|
if (finfo->info->relocateable && rel_size > 0)
|
|
|
|
|
{
|
|
|
|
|
if (bfd_seek (finfo->output_bfd, *reloff_ptr, SEEK_SET) != 0)
|
|
|
|
|
return false;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
if (bfd_bwrite (relocs, rel_size, finfo->output_bfd) != rel_size)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return false;
|
|
|
|
|
*reloff_ptr += rel_size;
|
|
|
|
|
|
|
|
|
|
/* Assert that the relocs have not run into the symbols, and
|
|
|
|
|
that if these are the text relocs they have not run into the
|
|
|
|
|
data relocs. */
|
|
|
|
|
BFD_ASSERT (*reloff_ptr <= obj_sym_filepos (finfo->output_bfd)
|
|
|
|
|
&& (reloff_ptr != &finfo->treloff
|
|
|
|
|
|| (*reloff_ptr
|
|
|
|
|
<= obj_datasec (finfo->output_bfd)->rel_filepos)));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Get the section corresponding to a reloc index. */
|
|
|
|
|
|
|
|
|
|
static INLINE asection *
|
|
|
|
|
aout_reloc_type_to_section (abfd, type)
|
|
|
|
|
bfd *abfd;
|
|
|
|
|
int type;
|
|
|
|
|
{
|
|
|
|
|
switch (type)
|
|
|
|
|
{
|
|
|
|
|
case RTEXT:
|
|
|
|
|
return obj_textsec (abfd);
|
|
|
|
|
case RDATA:
|
|
|
|
|
return obj_datasec (abfd);
|
|
|
|
|
case RBSS:
|
|
|
|
|
return obj_bsssec (abfd);
|
|
|
|
|
case RABS:
|
|
|
|
|
return bfd_abs_section_ptr;
|
|
|
|
|
case REXT:
|
|
|
|
|
return bfd_und_section_ptr;
|
|
|
|
|
default:
|
|
|
|
|
abort ();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
pdp11_aout_link_input_section (finfo, input_bfd, input_section, relocs,
|
|
|
|
|
rel_size, contents)
|
|
|
|
|
struct aout_final_link_info *finfo;
|
|
|
|
|
bfd *input_bfd;
|
|
|
|
|
asection *input_section;
|
|
|
|
|
struct pdp11_aout_reloc_external *relocs;
|
|
|
|
|
bfd_size_type rel_size;
|
|
|
|
|
bfd_byte *contents;
|
|
|
|
|
{
|
|
|
|
|
boolean (*check_dynamic_reloc) PARAMS ((struct bfd_link_info *,
|
|
|
|
|
bfd *, asection *,
|
|
|
|
|
struct aout_link_hash_entry *,
|
|
|
|
|
PTR, bfd_byte *, boolean *,
|
|
|
|
|
bfd_vma *));
|
|
|
|
|
bfd *output_bfd;
|
|
|
|
|
boolean relocateable;
|
|
|
|
|
struct external_nlist *syms;
|
|
|
|
|
char *strings;
|
|
|
|
|
struct aout_link_hash_entry **sym_hashes;
|
|
|
|
|
int *symbol_map;
|
|
|
|
|
bfd_size_type reloc_count;
|
|
|
|
|
register struct pdp11_aout_reloc_external *rel;
|
|
|
|
|
struct pdp11_aout_reloc_external *rel_end;
|
|
|
|
|
|
|
|
|
|
output_bfd = finfo->output_bfd;
|
|
|
|
|
check_dynamic_reloc = aout_backend_info (output_bfd)->check_dynamic_reloc;
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT (obj_reloc_entry_size (input_bfd) == RELOC_SIZE);
|
|
|
|
|
BFD_ASSERT (input_bfd->xvec->header_byteorder
|
|
|
|
|
== output_bfd->xvec->header_byteorder);
|
|
|
|
|
|
|
|
|
|
relocateable = finfo->info->relocateable;
|
|
|
|
|
syms = obj_aout_external_syms (input_bfd);
|
|
|
|
|
strings = obj_aout_external_strings (input_bfd);
|
|
|
|
|
sym_hashes = obj_aout_sym_hashes (input_bfd);
|
|
|
|
|
symbol_map = finfo->symbol_map;
|
|
|
|
|
|
|
|
|
|
reloc_count = rel_size / RELOC_SIZE;
|
|
|
|
|
rel = relocs;
|
|
|
|
|
rel_end = (struct pdp11_aout_reloc_external *)(((char *)rel) + rel_size);
|
|
|
|
|
for (; rel < rel_end; ((char *)rel) += RELOC_SIZE)
|
|
|
|
|
{
|
|
|
|
|
bfd_vma r_addr;
|
|
|
|
|
int r_index;
|
|
|
|
|
int r_type;
|
|
|
|
|
int r_pcrel;
|
|
|
|
|
int r_extern;
|
|
|
|
|
reloc_howto_type *howto;
|
|
|
|
|
struct aout_link_hash_entry *h = NULL;
|
|
|
|
|
bfd_vma relocation;
|
|
|
|
|
bfd_reloc_status_type r;
|
|
|
|
|
int reloc_entry;
|
|
|
|
|
|
|
|
|
|
reloc_entry = GET_WORD (input_bfd, (PTR)rel);
|
|
|
|
|
if (reloc_entry == 0)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
unsigned int howto_idx;
|
|
|
|
|
|
|
|
|
|
r_index = (reloc_entry & RIDXMASK) >> 4;
|
|
|
|
|
r_type = reloc_entry & RTYPE;
|
|
|
|
|
r_pcrel = reloc_entry & RELFLG;
|
|
|
|
|
r_addr = (char *)rel - (char *)relocs;
|
|
|
|
|
|
|
|
|
|
r_extern = (r_type == REXT);
|
|
|
|
|
|
|
|
|
|
howto_idx = r_pcrel;
|
|
|
|
|
BFD_ASSERT (howto_idx < TABLE_SIZE (howto_table_pdp11));
|
|
|
|
|
howto = howto_table_pdp11 + howto_idx;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (relocateable)
|
|
|
|
|
{
|
|
|
|
|
/* We are generating a relocateable output file, and must
|
|
|
|
|
modify the reloc accordingly. */
|
|
|
|
|
if (r_extern)
|
|
|
|
|
{
|
|
|
|
|
/* If we know the symbol this relocation is against,
|
|
|
|
|
convert it into a relocation against a section. This
|
|
|
|
|
is what the native linker does. */
|
|
|
|
|
h = sym_hashes[r_index];
|
|
|
|
|
if (h != (struct aout_link_hash_entry *) NULL
|
|
|
|
|
&& (h->root.type == bfd_link_hash_defined
|
|
|
|
|
|| h->root.type == bfd_link_hash_defweak))
|
|
|
|
|
{
|
|
|
|
|
asection *output_section;
|
|
|
|
|
|
|
|
|
|
/* Compute a new r_index. */
|
|
|
|
|
output_section = h->root.u.def.section->output_section;
|
|
|
|
|
if (output_section == obj_textsec (output_bfd))
|
|
|
|
|
r_type = N_TEXT;
|
|
|
|
|
else if (output_section == obj_datasec (output_bfd))
|
|
|
|
|
r_type = N_DATA;
|
|
|
|
|
else if (output_section == obj_bsssec (output_bfd))
|
|
|
|
|
r_type = N_BSS;
|
|
|
|
|
else
|
|
|
|
|
r_type = N_ABS;
|
|
|
|
|
|
|
|
|
|
/* Add the symbol value and the section VMA to the
|
|
|
|
|
addend stored in the contents. */
|
|
|
|
|
relocation = (h->root.u.def.value
|
|
|
|
|
+ output_section->vma
|
|
|
|
|
+ h->root.u.def.section->output_offset);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
/* We must change r_index according to the symbol
|
|
|
|
|
map. */
|
|
|
|
|
r_index = symbol_map[r_index];
|
|
|
|
|
|
|
|
|
|
if (r_index == -1)
|
|
|
|
|
{
|
|
|
|
|
if (h != NULL)
|
|
|
|
|
{
|
|
|
|
|
/* We decided to strip this symbol, but it
|
|
|
|
|
turns out that we can't. Note that we
|
|
|
|
|
lose the other and desc information here.
|
|
|
|
|
I don't think that will ever matter for a
|
|
|
|
|
global symbol. */
|
|
|
|
|
if (h->indx < 0)
|
|
|
|
|
{
|
|
|
|
|
h->indx = -2;
|
|
|
|
|
h->written = false;
|
|
|
|
|
if (! aout_link_write_other_symbol (h,
|
|
|
|
|
(PTR) finfo))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
r_index = h->indx;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
const char *name;
|
|
|
|
|
|
|
|
|
|
name = strings + GET_WORD (input_bfd,
|
|
|
|
|
syms[r_index].e_strx);
|
|
|
|
|
if (! ((*finfo->info->callbacks->unattached_reloc)
|
|
|
|
|
(finfo->info, name, input_bfd, input_section,
|
|
|
|
|
r_addr)))
|
|
|
|
|
return false;
|
|
|
|
|
r_index = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
relocation = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Write out the new r_index value. */
|
|
|
|
|
reloc_entry = GET_WORD (input_bfd, rel->e_reloc_entry);
|
|
|
|
|
reloc_entry &= RIDXMASK;
|
|
|
|
|
reloc_entry |= r_index << 4;
|
|
|
|
|
PUT_WORD (input_bfd, reloc_entry, rel->e_reloc_entry);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
asection *section;
|
|
|
|
|
|
|
|
|
|
/* This is a relocation against a section. We must
|
|
|
|
|
adjust by the amount that the section moved. */
|
|
|
|
|
section = aout_reloc_type_to_section (input_bfd, r_type);
|
|
|
|
|
relocation = (section->output_section->vma
|
|
|
|
|
+ section->output_offset
|
|
|
|
|
- section->vma);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Change the address of the relocation. */
|
|
|
|
|
#if 0
|
|
|
|
|
PUT_WORD (output_bfd,
|
|
|
|
|
r_addr + input_section->output_offset,
|
|
|
|
|
rel->r_address);
|
|
|
|
|
#else
|
|
|
|
|
fprintf (stderr, "TODO: change the address of the relocation\n");
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/* Adjust a PC relative relocation by removing the reference
|
|
|
|
|
to the original address in the section and including the
|
|
|
|
|
reference to the new address. */
|
|
|
|
|
if (r_pcrel)
|
|
|
|
|
relocation -= (input_section->output_section->vma
|
|
|
|
|
+ input_section->output_offset
|
|
|
|
|
- input_section->vma);
|
|
|
|
|
|
|
|
|
|
#ifdef MY_relocatable_reloc
|
|
|
|
|
MY_relocatable_reloc (howto, output_bfd, rel, relocation, r_addr);
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
if (relocation == 0)
|
|
|
|
|
r = bfd_reloc_ok;
|
|
|
|
|
else
|
|
|
|
|
r = MY_relocate_contents (howto,
|
|
|
|
|
input_bfd, relocation,
|
|
|
|
|
contents + r_addr);
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
boolean hundef;
|
|
|
|
|
|
|
|
|
|
/* We are generating an executable, and must do a full
|
|
|
|
|
relocation. */
|
|
|
|
|
hundef = false;
|
|
|
|
|
if (r_extern)
|
|
|
|
|
{
|
|
|
|
|
h = sym_hashes[r_index];
|
|
|
|
|
|
|
|
|
|
if (h != (struct aout_link_hash_entry *) NULL
|
|
|
|
|
&& (h->root.type == bfd_link_hash_defined
|
|
|
|
|
|| h->root.type == bfd_link_hash_defweak))
|
|
|
|
|
{
|
|
|
|
|
relocation = (h->root.u.def.value
|
|
|
|
|
+ h->root.u.def.section->output_section->vma
|
|
|
|
|
+ h->root.u.def.section->output_offset);
|
|
|
|
|
}
|
|
|
|
|
else if (h != (struct aout_link_hash_entry *) NULL
|
|
|
|
|
&& h->root.type == bfd_link_hash_undefweak)
|
|
|
|
|
relocation = 0;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
hundef = true;
|
|
|
|
|
relocation = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
asection *section;
|
|
|
|
|
|
|
|
|
|
section = aout_reloc_type_to_section (input_bfd, r_type);
|
|
|
|
|
relocation = (section->output_section->vma
|
|
|
|
|
+ section->output_offset
|
|
|
|
|
- section->vma);
|
|
|
|
|
if (r_pcrel)
|
|
|
|
|
relocation += input_section->vma;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (check_dynamic_reloc != NULL)
|
|
|
|
|
{
|
|
|
|
|
boolean skip;
|
|
|
|
|
|
|
|
|
|
if (! ((*check_dynamic_reloc)
|
|
|
|
|
(finfo->info, input_bfd, input_section, h,
|
|
|
|
|
(PTR) rel, contents, &skip, &relocation)))
|
|
|
|
|
return false;
|
|
|
|
|
if (skip)
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Now warn if a global symbol is undefined. We could not
|
|
|
|
|
do this earlier, because check_dynamic_reloc might want
|
|
|
|
|
to skip this reloc. */
|
|
|
|
|
if (hundef && ! finfo->info->shared)
|
|
|
|
|
{
|
|
|
|
|
const char *name;
|
|
|
|
|
|
|
|
|
|
if (h != NULL)
|
|
|
|
|
name = h->root.root.string;
|
|
|
|
|
else
|
|
|
|
|
name = strings + GET_WORD (input_bfd, syms[r_index].e_strx);
|
|
|
|
|
if (! ((*finfo->info->callbacks->undefined_symbol)
|
|
|
|
|
(finfo->info, name, input_bfd, input_section,
|
|
|
|
|
r_addr, true)))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
r = MY_final_link_relocate (howto,
|
|
|
|
|
input_bfd, input_section,
|
|
|
|
|
contents, r_addr, relocation,
|
|
|
|
|
(bfd_vma) 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (r != bfd_reloc_ok)
|
|
|
|
|
{
|
|
|
|
|
switch (r)
|
|
|
|
|
{
|
|
|
|
|
default:
|
|
|
|
|
case bfd_reloc_outofrange:
|
|
|
|
|
abort ();
|
|
|
|
|
case bfd_reloc_overflow:
|
|
|
|
|
{
|
|
|
|
|
const char *name;
|
|
|
|
|
|
|
|
|
|
if (h != NULL)
|
|
|
|
|
name = h->root.root.string;
|
|
|
|
|
else if (r_extern)
|
|
|
|
|
name = strings + GET_WORD (input_bfd,
|
|
|
|
|
syms[r_index].e_strx);
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
asection *s;
|
|
|
|
|
|
|
|
|
|
s = aout_reloc_type_to_section (input_bfd, r_type);
|
|
|
|
|
name = bfd_section_name (input_bfd, s);
|
|
|
|
|
}
|
|
|
|
|
if (! ((*finfo->info->callbacks->reloc_overflow)
|
|
|
|
|
(finfo->info, name, howto->name,
|
|
|
|
|
(bfd_vma) 0, input_bfd, input_section, r_addr)))
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Handle a link order which is supposed to generate a reloc. */
|
|
|
|
|
|
|
|
|
|
static boolean
|
|
|
|
|
aout_link_reloc_link_order (finfo, o, p)
|
|
|
|
|
struct aout_final_link_info *finfo;
|
|
|
|
|
asection *o;
|
|
|
|
|
struct bfd_link_order *p;
|
|
|
|
|
{
|
|
|
|
|
struct bfd_link_order_reloc *pr;
|
|
|
|
|
int r_index;
|
|
|
|
|
int r_extern;
|
|
|
|
|
reloc_howto_type *howto;
|
|
|
|
|
file_ptr *reloff_ptr;
|
|
|
|
|
struct reloc_std_external srel;
|
|
|
|
|
PTR rel_ptr;
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
bfd_size_type rel_size;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
pr = p->u.reloc.p;
|
|
|
|
|
|
|
|
|
|
if (p->type == bfd_section_reloc_link_order)
|
|
|
|
|
{
|
|
|
|
|
r_extern = 0;
|
|
|
|
|
if (bfd_is_abs_section (pr->u.section))
|
|
|
|
|
r_index = N_ABS | N_EXT;
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
BFD_ASSERT (pr->u.section->owner == finfo->output_bfd);
|
|
|
|
|
r_index = pr->u.section->target_index;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
struct aout_link_hash_entry *h;
|
|
|
|
|
|
|
|
|
|
BFD_ASSERT (p->type == bfd_symbol_reloc_link_order);
|
|
|
|
|
r_extern = 1;
|
|
|
|
|
h = ((struct aout_link_hash_entry *)
|
|
|
|
|
bfd_wrapped_link_hash_lookup (finfo->output_bfd, finfo->info,
|
|
|
|
|
pr->u.name, false, false, true));
|
|
|
|
|
if (h != (struct aout_link_hash_entry *) NULL
|
|
|
|
|
&& h->indx >= 0)
|
|
|
|
|
r_index = h->indx;
|
|
|
|
|
else if (h != NULL)
|
|
|
|
|
{
|
|
|
|
|
/* We decided to strip this symbol, but it turns out that we
|
|
|
|
|
can't. Note that we lose the other and desc information
|
|
|
|
|
here. I don't think that will ever matter for a global
|
|
|
|
|
symbol. */
|
|
|
|
|
h->indx = -2;
|
|
|
|
|
h->written = false;
|
|
|
|
|
if (! aout_link_write_other_symbol (h, (PTR) finfo))
|
|
|
|
|
return false;
|
|
|
|
|
r_index = h->indx;
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
if (! ((*finfo->info->callbacks->unattached_reloc)
|
|
|
|
|
(finfo->info, pr->u.name, (bfd *) NULL,
|
|
|
|
|
(asection *) NULL, (bfd_vma) 0)))
|
|
|
|
|
return false;
|
|
|
|
|
r_index = 0;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
howto = bfd_reloc_type_lookup (finfo->output_bfd, pr->reloc);
|
|
|
|
|
if (howto == 0)
|
|
|
|
|
{
|
|
|
|
|
bfd_set_error (bfd_error_bad_value);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (o == obj_textsec (finfo->output_bfd))
|
|
|
|
|
reloff_ptr = &finfo->treloff;
|
|
|
|
|
else if (o == obj_datasec (finfo->output_bfd))
|
|
|
|
|
reloff_ptr = &finfo->dreloff;
|
|
|
|
|
else
|
|
|
|
|
abort ();
|
|
|
|
|
|
|
|
|
|
#ifdef MY_put_reloc
|
|
|
|
|
MY_put_reloc(finfo->output_bfd, r_extern, r_index, p->offset, howto,
|
|
|
|
|
&srel);
|
|
|
|
|
#else
|
|
|
|
|
{
|
|
|
|
|
int r_pcrel;
|
|
|
|
|
int r_baserel;
|
|
|
|
|
int r_jmptable;
|
|
|
|
|
int r_relative;
|
|
|
|
|
int r_length;
|
|
|
|
|
|
|
|
|
|
fprintf (stderr, "TODO: line %d in bfd/pdp11.c\n", __LINE__);
|
|
|
|
|
|
|
|
|
|
r_pcrel = howto->pc_relative;
|
|
|
|
|
r_baserel = (howto->type & 8) != 0;
|
|
|
|
|
r_jmptable = (howto->type & 16) != 0;
|
|
|
|
|
r_relative = (howto->type & 32) != 0;
|
|
|
|
|
r_length = howto->size;
|
|
|
|
|
|
|
|
|
|
PUT_WORD (finfo->output_bfd, p->offset, srel.r_address);
|
|
|
|
|
if (bfd_header_big_endian (finfo->output_bfd))
|
|
|
|
|
{
|
|
|
|
|
srel.r_index[0] = r_index >> 16;
|
|
|
|
|
srel.r_index[1] = r_index >> 8;
|
|
|
|
|
srel.r_index[2] = r_index;
|
|
|
|
|
srel.r_type[0] =
|
|
|
|
|
((r_extern ? RELOC_STD_BITS_EXTERN_BIG : 0)
|
|
|
|
|
| (r_pcrel ? RELOC_STD_BITS_PCREL_BIG : 0)
|
|
|
|
|
| (r_baserel ? RELOC_STD_BITS_BASEREL_BIG : 0)
|
|
|
|
|
| (r_jmptable ? RELOC_STD_BITS_JMPTABLE_BIG : 0)
|
|
|
|
|
| (r_relative ? RELOC_STD_BITS_RELATIVE_BIG : 0)
|
|
|
|
|
| (r_length << RELOC_STD_BITS_LENGTH_SH_BIG));
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
srel.r_index[2] = r_index >> 16;
|
|
|
|
|
srel.r_index[1] = r_index >> 8;
|
|
|
|
|
srel.r_index[0] = r_index;
|
|
|
|
|
srel.r_type[0] =
|
|
|
|
|
((r_extern ? RELOC_STD_BITS_EXTERN_LITTLE : 0)
|
|
|
|
|
| (r_pcrel ? RELOC_STD_BITS_PCREL_LITTLE : 0)
|
|
|
|
|
| (r_baserel ? RELOC_STD_BITS_BASEREL_LITTLE : 0)
|
|
|
|
|
| (r_jmptable ? RELOC_STD_BITS_JMPTABLE_LITTLE : 0)
|
|
|
|
|
| (r_relative ? RELOC_STD_BITS_RELATIVE_LITTLE : 0)
|
|
|
|
|
| (r_length << RELOC_STD_BITS_LENGTH_SH_LITTLE));
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
rel_ptr = (PTR) &srel;
|
|
|
|
|
|
|
|
|
|
/* We have to write the addend into the object file, since
|
|
|
|
|
standard a.out relocs are in place. It would be more
|
|
|
|
|
reliable if we had the current contents of the file here,
|
|
|
|
|
rather than assuming zeroes, but we can't read the file since
|
|
|
|
|
it was opened using bfd_openw. */
|
|
|
|
|
if (pr->addend != 0)
|
|
|
|
|
{
|
|
|
|
|
bfd_size_type size;
|
|
|
|
|
bfd_reloc_status_type r;
|
|
|
|
|
bfd_byte *buf;
|
|
|
|
|
boolean ok;
|
|
|
|
|
|
|
|
|
|
size = bfd_get_reloc_size (howto);
|
|
|
|
|
buf = (bfd_byte *) bfd_zmalloc (size);
|
|
|
|
|
if (buf == (bfd_byte *) NULL)
|
|
|
|
|
return false;
|
|
|
|
|
r = MY_relocate_contents (howto, finfo->output_bfd,
|
|
|
|
|
pr->addend, buf);
|
|
|
|
|
switch (r)
|
|
|
|
|
{
|
|
|
|
|
case bfd_reloc_ok:
|
|
|
|
|
break;
|
|
|
|
|
default:
|
|
|
|
|
case bfd_reloc_outofrange:
|
|
|
|
|
abort ();
|
|
|
|
|
case bfd_reloc_overflow:
|
|
|
|
|
if (! ((*finfo->info->callbacks->reloc_overflow)
|
|
|
|
|
(finfo->info,
|
|
|
|
|
(p->type == bfd_section_reloc_link_order
|
|
|
|
|
? bfd_section_name (finfo->output_bfd,
|
|
|
|
|
pr->u.section)
|
|
|
|
|
: pr->u.name),
|
|
|
|
|
howto->name, pr->addend, (bfd *) NULL,
|
|
|
|
|
(asection *) NULL, (bfd_vma) 0)))
|
|
|
|
|
{
|
|
|
|
|
free (buf);
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
ok = bfd_set_section_contents (finfo->output_bfd, o,
|
|
|
|
|
(PTR) buf,
|
|
|
|
|
(file_ptr) p->offset,
|
|
|
|
|
size);
|
|
|
|
|
free (buf);
|
|
|
|
|
if (! ok)
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
rel_size = obj_reloc_entry_size (finfo->output_bfd);
|
2001-02-18 23:33:11 +00:00
|
|
|
|
if (bfd_seek (finfo->output_bfd, *reloff_ptr, SEEK_SET) != 0
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
|| bfd_bwrite (rel_ptr, rel_size, finfo->output_bfd) != rel_size)
|
2001-02-18 23:33:11 +00:00
|
|
|
|
return false;
|
|
|
|
|
|
Touches most files in bfd/, so likely will be blamed for everything..
o bfd_read and bfd_write lose an unnecessary param and become
bfd_bread and bfd_bwrite.
o bfd_*alloc now all take a bfd_size_type arg, and will error if
size_t is too small. eg. 32 bit host, 64 bit bfd, verrry big files
or bugs in linker scripts etc.
o file_ptr becomes a bfd_signed_vma. Besides matching sizes with
various other types involved in handling sections, this should make
it easier for bfd to support a 64 bit off_t on 32 bit hosts that
provide it.
o I've made the H_GET_* and H_PUT_* macros (which invoke bfd_h_{get,put}_*)
generally available. They now cast their args to bfd_vma and
bfd_byte * as appropriate, which removes a swag of casts from the
source.
o Bug fixes to bfd_get8, aix386_core_vec, elf32_h8_relax_section, and
aout-encap.c.
o Zillions of formatting and -Wconversion fixes.
2001-09-18 09:57:26 +00:00
|
|
|
|
*reloff_ptr += rel_size;
|
2001-02-18 23:33:11 +00:00
|
|
|
|
|
|
|
|
|
/* Assert that the relocs have not run into the symbols, and that n
|
|
|
|
|
the text relocs have not run into the data relocs. */
|
|
|
|
|
BFD_ASSERT (*reloff_ptr <= obj_sym_filepos (finfo->output_bfd)
|
|
|
|
|
&& (reloff_ptr != &finfo->treloff
|
|
|
|
|
|| (*reloff_ptr
|
|
|
|
|
<= obj_datasec (finfo->output_bfd)->rel_filepos)));
|
|
|
|
|
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
/* end of modified aoutx.h */
|
|
|
|
|
|
|
|
|
|
bfd_vma
|
|
|
|
|
bfd_getp32 (addr)
|
|
|
|
|
const bfd_byte *addr;
|
|
|
|
|
{
|
|
|
|
|
return (((((bfd_vma)addr[1] << 8) | addr[0]) << 8)
|
|
|
|
|
| addr[3]) << 8 | addr[2];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#define COERCE32(x) (((bfd_signed_vma) (x) ^ 0x80000000) - 0x80000000)
|
|
|
|
|
|
|
|
|
|
bfd_signed_vma
|
|
|
|
|
bfd_getp_signed_32 (addr)
|
|
|
|
|
const bfd_byte *addr;
|
|
|
|
|
{
|
|
|
|
|
return COERCE32((((((bfd_vma)addr[1] << 8) | addr[0]) << 8)
|
|
|
|
|
| addr[3]) << 8 | addr[2]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
|
bfd_putp32 (data, addr)
|
|
|
|
|
bfd_vma data;
|
|
|
|
|
bfd_byte *addr;
|
|
|
|
|
{
|
|
|
|
|
addr[0] = (bfd_byte)(data >> 16);
|
|
|
|
|
addr[1] = (bfd_byte)(data >> 24);
|
|
|
|
|
addr[2] = (bfd_byte)data;
|
|
|
|
|
addr[3] = (bfd_byte)(data >> 8);
|
|
|
|
|
}
|