binutils-gdb/gdb/infptrace.c

647 lines
17 KiB
C
Raw Normal View History

/* Low level Unix child interface to ptrace, for GDB when running under Unix.
2001-03-06 08:22:02 +00:00
Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
1999, 2000, 2001
Free Software Foundation, Inc.
1999-07-07 20:19:36 +00:00
This file is part of GDB.
1999-07-07 20:19:36 +00:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
1999-07-07 20:19:36 +00:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
1999-07-07 20:19:36 +00:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "target.h"
#include "gdb_string.h"
#include "regcache.h"
1999-12-22 21:45:38 +00:00
#include "gdb_wait.h"
1999-12-22 21:45:38 +00:00
#include "command.h"
#ifdef USG
#include <sys/types.h>
#endif
#include <sys/param.h>
#include "gdb_dirent.h"
#include <signal.h>
#include <sys/ioctl.h>
#ifdef HAVE_PTRACE_H
1999-07-07 20:19:36 +00:00
#include <ptrace.h>
#else
1999-07-07 20:19:36 +00:00
#ifdef HAVE_SYS_PTRACE_H
#include <sys/ptrace.h>
#endif
#endif
#if !defined (PT_READ_I)
#define PT_READ_I 1 /* Read word from text space */
#endif
#if !defined (PT_READ_D)
#define PT_READ_D 2 /* Read word from data space */
#endif
#if !defined (PT_READ_U)
#define PT_READ_U 3 /* Read word from kernel user struct */
#endif
#if !defined (PT_WRITE_I)
#define PT_WRITE_I 4 /* Write word to text space */
#endif
#if !defined (PT_WRITE_D)
#define PT_WRITE_D 5 /* Write word to data space */
#endif
#if !defined (PT_WRITE_U)
#define PT_WRITE_U 6 /* Write word to kernel user struct */
#endif
#if !defined (PT_CONTINUE)
#define PT_CONTINUE 7 /* Continue after signal */
#endif
#if !defined (PT_STEP)
#define PT_STEP 9 /* Set flag for single stepping */
#endif
#if !defined (PT_KILL)
#define PT_KILL 8 /* Send child a SIGKILL signal */
#endif
#ifndef PT_ATTACH
#define PT_ATTACH PTRACE_ATTACH
#endif
#ifndef PT_DETACH
#define PT_DETACH PTRACE_DETACH
#endif
#include "gdbcore.h"
#ifndef NO_SYS_FILE
#include <sys/file.h>
#endif
#if 0
/* Don't think this is used anymore. On the sequent (not sure whether it's
dynix or ptx or both), it is included unconditionally by sys/user.h and
not protected against multiple inclusion. */
#include "gdb_stat.h"
#endif
#if !defined (FETCH_INFERIOR_REGISTERS)
#include <sys/user.h> /* Probably need to poke the user structure */
#if defined (KERNEL_U_ADDR_BSD)
#include <a.out.h> /* For struct nlist */
#endif /* KERNEL_U_ADDR_BSD. */
#endif /* !FETCH_INFERIOR_REGISTERS */
#if !defined (CHILD_XFER_MEMORY)
2000-05-28 01:12:42 +00:00
static void udot_info (char *, int);
#endif
#if !defined (FETCH_INFERIOR_REGISTERS)
2000-05-28 01:12:42 +00:00
static void fetch_register (int);
static void store_register (int);
#endif
2000-05-28 01:12:42 +00:00
void _initialize_kernel_u_addr (void);
void _initialize_infptrace (void);
1999-07-07 20:19:36 +00:00
/* This function simply calls ptrace with the given arguments.
It exists so that all calls to ptrace are isolated in this
machine-dependent file. */
int
2000-07-30 01:48:28 +00:00
call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
{
int pt_status = 0;
#if 0
int saved_errno;
printf ("call_ptrace(request=%d, pid=%d, addr=0x%x, data=0x%x)",
request, pid, addr, data);
#endif
#if defined(PT_SETTRC)
/* If the parent can be told to attach to us, try to do it. */
1999-07-07 20:19:36 +00:00
if (request == PT_SETTRC)
{
errno = 0;
1999-12-22 21:45:38 +00:00
#if !defined (FIVE_ARG_PTRACE)
pt_status = ptrace (PT_SETTRC, pid, addr, data);
#else
1999-07-07 20:19:36 +00:00
/* Deal with HPUX 8.0 braindamage. We never use the
calls which require the fifth argument. */
1999-12-22 21:45:38 +00:00
pt_status = ptrace (PT_SETTRC, pid, addr, data, 0);
#endif
1999-07-07 20:19:36 +00:00
if (errno)
perror_with_name ("ptrace");
#if 0
1999-07-07 20:19:36 +00:00
printf (" = %d\n", pt_status);
#endif
1999-07-07 20:19:36 +00:00
if (pt_status < 0)
return pt_status;
else
return parent_attach_all (pid, addr, data);
}
#endif
#if defined(PT_CONTIN1)
/* On HPUX, PT_CONTIN1 is a form of continue that preserves pending
signals. If it's available, use it. */
if (request == PT_CONTINUE)
request = PT_CONTIN1;
#endif
#if defined(PT_SINGLE1)
/* On HPUX, PT_SINGLE1 is a form of step that preserves pending
signals. If it's available, use it. */
if (request == PT_STEP)
request = PT_SINGLE1;
#endif
#if 0
saved_errno = errno;
errno = 0;
#endif
1999-12-22 21:45:38 +00:00
#if !defined (FIVE_ARG_PTRACE)
pt_status = ptrace (request, pid, addr, data);
#else
1999-07-07 20:19:36 +00:00
/* Deal with HPUX 8.0 braindamage. We never use the
calls which require the fifth argument. */
1999-12-22 21:45:38 +00:00
pt_status = ptrace (request, pid, addr, data, 0);
#endif
1999-12-22 21:45:38 +00:00
#if 0
if (errno)
printf (" [errno = %d]", errno);
errno = saved_errno;
printf (" = 0x%x\n", pt_status);
#endif
return pt_status;
}
#if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE)
/* For the rest of the file, use an extra level of indirection */
/* This lets us breakpoint usefully on call_ptrace. */
#define ptrace call_ptrace
#endif
/* Wait for a process to finish, possibly running a target-specific
hook before returning. */
int
2001-05-04 04:15:33 +00:00
ptrace_wait (ptid_t ptid, int *status)
{
int wstate;
wstate = wait (status);
2001-05-04 04:15:33 +00:00
target_post_wait (pid_to_ptid (wstate), *status);
return wstate;
}
void
2000-07-30 01:48:28 +00:00
kill_inferior (void)
{
int status;
2001-05-04 04:15:33 +00:00
int pid = PIDGET (inferior_ptid);
2001-05-04 04:15:33 +00:00
if (pid == 0)
return;
/* This once used to call "kill" to kill the inferior just in case
the inferior was still running. As others have noted in the past
(kingdon) there shouldn't be any way to get here if the inferior
is still running -- else there's a major problem elsewere in gdb
and it needs to be fixed.
The kill call causes problems under hpux10, so it's been removed;
if this causes problems we'll deal with them as they arise. */
2001-05-04 04:15:33 +00:00
ptrace (PT_KILL, pid, (PTRACE_ARG3_TYPE) 0, 0);
ptrace_wait (null_ptid, &status);
target_mourn_inferior ();
}
#ifndef CHILD_RESUME
/* Resume execution of the inferior process.
If STEP is nonzero, single-step it.
If SIGNAL is nonzero, give it that signal. */
void
2001-05-04 04:15:33 +00:00
child_resume (ptid_t ptid, int step, enum target_signal signal)
{
2001-05-04 04:15:33 +00:00
int pid = PIDGET (ptid);
errno = 0;
if (pid == -1)
/* Resume all threads. */
/* I think this only gets used in the non-threaded case, where "resume
2001-05-04 04:15:33 +00:00
all threads" and "resume inferior_ptid" are the same. */
pid = PIDGET (inferior_ptid);
/* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
it was. (If GDB wanted it to start some other way, we have already
written a new PC value to the child.)
If this system does not support PT_STEP, a higher level function will
have called single_step() to transmute the step request into a
continue request (by setting breakpoints on all possible successor
instructions), so we don't have to worry about that here. */
if (step)
{
if (SOFTWARE_SINGLE_STEP_P ())
internal_error (__FILE__, __LINE__, "failed internal consistency check"); /* Make sure this doesn't happen. */
else
1999-07-07 20:19:36 +00:00
ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1,
target_signal_to_host (signal));
}
else
ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
target_signal_to_host (signal));
if (errno)
1999-12-22 21:45:38 +00:00
{
perror_with_name ("ptrace");
}
}
#endif /* CHILD_RESUME */
1999-07-07 20:19:36 +00:00
#ifdef ATTACH_DETACH
/* Start debugging the process whose number is PID. */
int
2000-07-30 01:48:28 +00:00
attach (int pid)
{
errno = 0;
ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
if (errno)
perror_with_name ("ptrace");
attach_flag = 1;
return pid;
}
/* Stop debugging the process whose number is PID
and continue it with signal number SIGNAL.
SIGNAL = 0 means just continue it. */
void
2000-07-30 01:48:28 +00:00
detach (int signal)
{
errno = 0;
2001-05-04 04:15:33 +00:00
ptrace (PT_DETACH, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) 1,
signal);
if (errno)
perror_with_name ("ptrace");
attach_flag = 0;
}
#endif /* ATTACH_DETACH */
/* Default the type of the ptrace transfer to int. */
#ifndef PTRACE_XFER_TYPE
#define PTRACE_XFER_TYPE int
#endif
/* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
to get the offset in the core file of the register values. */
#if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
/* Get kernel_u_addr using BSD-style nlist(). */
CORE_ADDR kernel_u_addr;
#endif /* KERNEL_U_ADDR_BSD. */
void
2000-07-30 01:48:28 +00:00
_initialize_kernel_u_addr (void)
{
#if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
struct nlist names[2];
names[0].n_un.n_name = "_u";
names[1].n_un.n_name = NULL;
if (nlist ("/vmunix", names) == 0)
kernel_u_addr = names[0].n_value;
else
internal_error (__FILE__, __LINE__,
"Unable to get kernel u area address.");
#endif /* KERNEL_U_ADDR_BSD. */
}
#if !defined (FETCH_INFERIOR_REGISTERS)
#if !defined (offsetof)
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
#endif
/* U_REGS_OFFSET is the offset of the registers within the u area. */
#if !defined (U_REGS_OFFSET)
#define U_REGS_OFFSET \
2001-05-04 04:15:33 +00:00
ptrace (PT_READ_U, PIDGET (inferior_ptid), \
(PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
- KERNEL_U_ADDR
#endif
/* Registers we shouldn't try to fetch. */
#if !defined (CANNOT_FETCH_REGISTER)
#define CANNOT_FETCH_REGISTER(regno) 0
#endif
/* Fetch one register. */
static void
2000-07-30 01:48:28 +00:00
fetch_register (int regno)
{
/* This isn't really an address. But ptrace thinks of it as one. */
CORE_ADDR regaddr;
1999-07-07 20:19:36 +00:00
char mess[128]; /* For messages */
register int i;
1999-07-07 20:19:36 +00:00
unsigned int offset; /* Offset of registers within the u area. */
char buf[MAX_REGISTER_RAW_SIZE];
1999-12-22 21:45:38 +00:00
int tid;
if (CANNOT_FETCH_REGISTER (regno))
{
memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
supply_register (regno, buf);
return;
}
1999-12-22 21:45:38 +00:00
/* Overload thread id onto process id */
2001-05-04 04:15:33 +00:00
if ((tid = TIDGET (inferior_ptid)) == 0)
tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
1999-12-22 21:45:38 +00:00
offset = U_REGS_OFFSET;
regaddr = register_addr (regno, offset);
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
{
errno = 0;
1999-12-22 21:45:38 +00:00
*(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
(PTRACE_ARG3_TYPE) regaddr, 0);
regaddr += sizeof (PTRACE_XFER_TYPE);
if (errno != 0)
{
1999-12-22 21:45:38 +00:00
sprintf (mess, "reading register %s (#%d)",
REGISTER_NAME (regno), regno);
perror_with_name (mess);
}
}
supply_register (regno, buf);
}
/* Fetch register values from the inferior.
If REGNO is negative, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
void
2000-07-30 01:48:28 +00:00
fetch_inferior_registers (int regno)
{
if (regno >= 0)
{
fetch_register (regno);
}
else
{
2001-03-13 23:31:14 +00:00
for (regno = 0; regno < NUM_REGS; regno++)
{
fetch_register (regno);
}
}
}
/* Registers we shouldn't try to store. */
#if !defined (CANNOT_STORE_REGISTER)
#define CANNOT_STORE_REGISTER(regno) 0
#endif
/* Store one register. */
static void
2000-07-30 01:48:28 +00:00
store_register (int regno)
{
/* This isn't really an address. But ptrace thinks of it as one. */
CORE_ADDR regaddr;
1999-07-07 20:19:36 +00:00
char mess[128]; /* For messages */
register int i;
1999-07-07 20:19:36 +00:00
unsigned int offset; /* Offset of registers within the u area. */
1999-12-22 21:45:38 +00:00
int tid;
if (CANNOT_STORE_REGISTER (regno))
{
return;
}
1999-12-22 21:45:38 +00:00
/* Overload thread id onto process id */
2001-05-04 04:15:33 +00:00
if ((tid = TIDGET (inferior_ptid)) == 0)
tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
1999-12-22 21:45:38 +00:00
offset = U_REGS_OFFSET;
regaddr = register_addr (regno, offset);
1999-07-07 20:19:36 +00:00
for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
{
errno = 0;
1999-12-22 21:45:38 +00:00
ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
1999-07-07 20:19:36 +00:00
*(PTRACE_XFER_TYPE *) & registers[REGISTER_BYTE (regno) + i]);
regaddr += sizeof (PTRACE_XFER_TYPE);
if (errno != 0)
{
1999-12-22 21:45:38 +00:00
sprintf (mess, "writing register %s (#%d)",
REGISTER_NAME (regno), regno);
perror_with_name (mess);
}
}
}
/* Store our register values back into the inferior.
If REGNO is negative, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
void
2000-07-30 01:48:28 +00:00
store_inferior_registers (int regno)
{
if (regno >= 0)
{
store_register (regno);
}
else
{
2001-03-13 23:31:14 +00:00
for (regno = 0; regno < NUM_REGS; regno++)
{
store_register (regno);
}
}
}
#endif /* !defined (FETCH_INFERIOR_REGISTERS). */
#if !defined (CHILD_XFER_MEMORY)
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
in the NEW_SUN_PTRACE case.
It ought to be straightforward. But it appears that writing did
not write the data that I specified. I cannot understand where
it got the data that it actually did write. */
/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
to debugger memory starting at MYADDR. Copy to inferior if
2000-09-09 01:38:49 +00:00
WRITE is nonzero. TARGET is ignored.
1999-07-07 20:19:36 +00:00
Returns the length copied, which is either the LEN argument or zero.
This xfer function does not do partial moves, since child_ops
doesn't allow memory operations to cross below us in the target stack
anyway. */
int
2000-09-09 01:38:49 +00:00
child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
* exec.c (xfer_memory): Add attrib argument. * infptrace.c (child_xfer_memory): Likewise. * monitor.c (monitor_xfer_memory): Likewise. * remote-adapt.c (adapt_xfer_inferior_memory): Likewise. * remote-array.c (array_xfer_memory): Likewise. * remote-bug.c (bug_xfer_memory): Likewise. * remote-e7000.c (e7000_xfer_inferior_memory): Likewise. * remote-eb.c (eb_xfer_inferior_memory): Likewise. * remote-es.c (es1800_xfer_inferior_memory): Likewise. * remote-mips.c (mips_xfer_memory): Likewise. * remote-mm.c (mm_xfer_inferior_memory): Likewise. * remote-nindy.c (nindy_xfer_inferior_memory): Likewise. * remote-os9k.c (rombug_xfer_inferior_memory): Likewise. * remote-rdi.c (arm_rdi_xfer_memory): Likewise. * remote-rdp.c (remote_rdp_xfer_inferior_memory): Likewise. * remote-sds.c (sds_xfer_memory): Likewise. * remote-sim.c (gdbsim_xfer_inferior_memory): Likewise. * remote-st.c (st2000_xfer_inferior_memory): Likewise. * remote-udi.c (udi_xfer_inferior_memory): Likewise. * remote-vx.c (vx_xfer_memory): Likewise. * remote.c (remote_xfer_memory): Likewise. * target.c (debug_to_xfer_memory, do_xfer_memory): Likewise. * target.h (child_xfer_memory, do_xfer_memory, xfer_memory): Likewise. * target.h (#include "memattr.h"): Added. (target_ops.to_xfer_memory): Add attrib argument. * wince.c (_initialize_inftarg): Removed call to set_dcache_state. * dcache.h (set_dcache_state): Removed declaration. * dcache.c (set_dcache_state): Removed definition * dcache.c: Update module comment, as dcache is now enabled and disabled with memory region attributes instead of by the global variable "remotecache". Add comment describing the interaction between dcache and memory region attributes. (dcache_xfer_memory): Add comment describing benefits of moving cache writeback to a higher level. (dcache_struct): Removed cache_has_stuff field. This was used to record whether the cache had been accessed in order to invalidate it when it was disabled. However, this is not needed because the cache is write through and the code that enables, disables, and deletes memory regions invalidate the cache. Add comment which suggests that we could be more selective and only invalidate those cache lines containing data from those memory regions. (dcache_invalidate): Updated. (dcache_xfer_memory): Updated. (dcache_alloc): Don't abort() if dcache_enabled_p is clear. (dcache_xfer_memory): Removed code that called do_xfer_memory() to perform a uncached transfer if dcache_enabled_p was clear. This function is now only called if caching is enabled for the memory region. (dcache_info): Always print cache info. * target.c (do_xfer_memory): Add attrib argument. (target_xfer_memory, target_xfer_memory_partial): Break transfer into chunks defined by memory regions, pass region attributes to do_xfer_memory(). * dcache.c (dcache_read_line, dcache_write_line): Likewise. * Makefile.in (SFILES): Add memattr.c. (COMMON_OBS): Add memattr.o. (dcache.o): Add target.h to dependencies. * memattr.c: New file. * memattr.h: Likewise.
2001-01-23 22:48:56 +00:00
struct mem_attrib *attrib ATTRIBUTE_UNUSED,
2000-09-09 01:38:49 +00:00
struct target_ops *target)
{
register int i;
/* Round starting address down to longword boundary. */
1999-07-07 20:19:36 +00:00
register CORE_ADDR addr = memaddr & -sizeof (PTRACE_XFER_TYPE);
/* Round ending address up; get number of longwords that makes. */
register int count
1999-07-07 20:19:36 +00:00
= (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
/ sizeof (PTRACE_XFER_TYPE);
/* Allocate buffer of that many longwords. */
register PTRACE_XFER_TYPE *buffer
1999-07-07 20:19:36 +00:00
= (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
if (write)
{
/* Fill start and end extra bytes of buffer with existing memory data. */
1999-07-07 20:19:36 +00:00
if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
{
/* Need part of initial word -- fetch it. */
2001-05-04 04:15:33 +00:00
buffer[0] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
1999-12-22 21:45:38 +00:00
(PTRACE_ARG3_TYPE) addr, 0);
1999-07-07 20:19:36 +00:00
}
if (count > 1) /* FIXME, avoid if even boundary */
{
1999-12-22 21:45:38 +00:00
buffer[count - 1]
2001-05-04 04:15:33 +00:00
= ptrace (PT_READ_I, PIDGET (inferior_ptid),
((PTRACE_ARG3_TYPE)
(addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
0);
}
/* Copy data to be written over corresponding part of buffer */
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
myaddr,
len);
/* Write the entire buffer. */
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
{
errno = 0;
2001-05-04 04:15:33 +00:00
ptrace (PT_WRITE_D, PIDGET (inferior_ptid),
1999-12-22 21:45:38 +00:00
(PTRACE_ARG3_TYPE) addr, buffer[i]);
if (errno)
1999-07-07 20:19:36 +00:00
{
/* Using the appropriate one (I or D) is necessary for
1999-07-07 20:19:36 +00:00
Gould NP1, at least. */
errno = 0;
2001-05-04 04:15:33 +00:00
ptrace (PT_WRITE_I, PIDGET (inferior_ptid),
1999-12-22 21:45:38 +00:00
(PTRACE_ARG3_TYPE) addr, buffer[i]);
}
if (errno)
return 0;
}
#ifdef CLEAR_INSN_CACHE
1999-07-07 20:19:36 +00:00
CLEAR_INSN_CACHE ();
#endif
}
else
{
/* Read all the longwords */
for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
{
errno = 0;
2001-05-04 04:15:33 +00:00
buffer[i] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
(PTRACE_ARG3_TYPE) addr, 0);
if (errno)
return 0;
QUIT;
}
/* Copy appropriate bytes out of the buffer. */
memcpy (myaddr,
(char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
len);
}
return len;
}
1999-07-07 20:19:36 +00:00
static void
2000-07-30 01:48:28 +00:00
udot_info (char *dummy1, int dummy2)
{
#if defined (KERNEL_U_SIZE)
1999-07-07 20:19:36 +00:00
int udot_off; /* Offset into user struct */
int udot_val; /* Value from user struct at udot_off */
char mess[128]; /* For messages */
#endif
1999-07-07 20:19:36 +00:00
if (!target_has_execution)
{
error ("The program is not being run.");
}
#if !defined (KERNEL_U_SIZE)
/* Adding support for this command is easy. Typically you just add a
routine, called "kernel_u_size" that returns the size of the user
struct, to the appropriate *-nat.c file and then add to the native
config file "#define KERNEL_U_SIZE kernel_u_size()" */
error ("Don't know how large ``struct user'' is in this version of gdb.");
#else
for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
{
if ((udot_off % 24) == 0)
{
if (udot_off > 0)
{
printf_filtered ("\n");
}
printf_filtered ("%04x:", udot_off);
}
2001-05-04 04:15:33 +00:00
udot_val = ptrace (PT_READ_U, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) udot_off, 0);
if (errno != 0)
{
sprintf (mess, "\nreading user struct at offset 0x%x", udot_off);
perror_with_name (mess);
}
/* Avoid using nonportable (?) "*" in print specs */
printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
}
printf_filtered ("\n");
#endif
}
#endif /* !defined (CHILD_XFER_MEMORY). */
1999-07-07 20:19:36 +00:00
void
2000-07-30 01:48:28 +00:00
_initialize_infptrace (void)
{
#if !defined (CHILD_XFER_MEMORY)
add_info ("udot", udot_info,
"Print contents of kernel ``struct user'' for current child.");
#endif
}