binutils-gdb/gdb/symfile.c

3265 lines
100 KiB
C
Raw Normal View History

/* Generic symbol file reading for the GNU debugger, GDB.
2001-03-06 09:22:02 +01:00
Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
2000, 2001 Free Software Foundation, Inc.
Contributed by Cygnus Support, using pieces from other GDB modules.
1999-07-07 22:19:36 +02:00
This file is part of GDB.
1999-07-07 22:19:36 +02:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
1999-07-07 22:19:36 +02:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
1999-07-07 22:19:36 +02:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcore.h"
#include "frame.h"
#include "target.h"
#include "value.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbcmd.h"
#include "breakpoint.h"
#include "language.h"
#include "complaints.h"
#include "demangle.h"
1999-07-07 22:19:36 +02:00
#include "inferior.h" /* for write_pc */
#include "gdb-stabs.h"
#include "obstack.h"
#include "completer.h"
#include <sys/types.h>
#include <fcntl.h>
#include "gdb_string.h"
#include "gdb_stat.h"
#include <ctype.h>
#include <time.h>
#ifndef O_BINARY
#define O_BINARY 0
#endif
#ifdef HPUXHPPA
/* Some HP-UX related globals to clear when a new "main"
symbol file is loaded. HP-specific. */
extern int hp_som_som_object_present;
extern int hp_cxx_exception_support_initialized;
#define RESET_HP_UX_GLOBALS() do {\
hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
} while (0)
#endif
1999-10-19 04:47:02 +02:00
int (*ui_load_progress_hook) (const char *section, unsigned long num);
1999-12-07 04:56:43 +01:00
void (*show_load_progress) (const char *section,
unsigned long section_sent,
unsigned long section_size,
unsigned long total_sent,
unsigned long total_size);
void (*pre_add_symbol_hook) (char *);
void (*post_add_symbol_hook) (void);
void (*target_new_objfile_hook) (struct objfile *);
2000-05-22 11:02:23 +02:00
static void clear_symtab_users_cleanup (void *ignore);
/* Global variables owned by this file */
1999-07-07 22:19:36 +02:00
int readnow_symbol_files; /* Read full symbols immediately */
1999-07-07 22:19:36 +02:00
struct complaint oldsyms_complaint =
{
"Replacing old symbols for `%s'", 0, 0
};
1999-07-07 22:19:36 +02:00
struct complaint empty_symtab_complaint =
{
"Empty symbol table found for `%s'", 0, 0
};
1999-10-06 01:13:56 +02:00
struct complaint unknown_option_complaint =
{
"Unknown option `%s' ignored", 0, 0
};
/* External variables and functions referenced. */
extern int info_verbose;
2000-05-28 03:12:42 +02:00
extern void report_transfer_performance (unsigned long, time_t, time_t);
/* Functions this file defines */
#if 0
2000-05-28 03:12:42 +02:00
static int simple_read_overlay_region_table (void);
static void simple_free_overlay_region_table (void);
#endif
2000-05-28 03:12:42 +02:00
static void set_initial_language (void);
2000-05-28 03:12:42 +02:00
static void load_command (char *, int);
static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
2000-05-28 03:12:42 +02:00
static void add_symbol_file_command (char *, int);
2000-05-28 03:12:42 +02:00
static void add_shared_symbol_files_command (char *, int);
2000-05-28 03:12:42 +02:00
static void cashier_psymtab (struct partial_symtab *);
2000-05-28 03:12:42 +02:00
bfd *symfile_bfd_open (char *);
2000-05-28 03:12:42 +02:00
static void find_sym_fns (struct objfile *);
2000-05-28 03:12:42 +02:00
static void decrement_reading_symtab (void *);
2000-05-28 03:12:42 +02:00
static void overlay_invalidate_all (void);
2000-05-28 03:12:42 +02:00
static int overlay_is_mapped (struct obj_section *);
2000-05-28 03:12:42 +02:00
void list_overlays_command (char *, int);
2000-05-28 03:12:42 +02:00
void map_overlay_command (char *, int);
2000-05-28 03:12:42 +02:00
void unmap_overlay_command (char *, int);
2000-05-28 03:12:42 +02:00
static void overlay_auto_command (char *, int);
2000-05-28 03:12:42 +02:00
static void overlay_manual_command (char *, int);
2000-05-28 03:12:42 +02:00
static void overlay_off_command (char *, int);
2000-05-28 03:12:42 +02:00
static void overlay_load_command (char *, int);
2000-05-28 03:12:42 +02:00
static void overlay_command (char *, int);
2000-05-28 03:12:42 +02:00
static void simple_free_overlay_table (void);
2000-05-28 03:12:42 +02:00
static void read_target_long_array (CORE_ADDR, unsigned int *, int);
2000-05-28 03:12:42 +02:00
static int simple_read_overlay_table (void);
2000-05-28 03:12:42 +02:00
static int simple_overlay_update_1 (struct obj_section *);
2000-05-28 03:12:42 +02:00
static void add_filename_language (char *ext, enum language lang);
1999-05-25 20:09:09 +02:00
2000-05-28 03:12:42 +02:00
static void set_ext_lang_command (char *args, int from_tty);
1999-05-25 20:09:09 +02:00
2000-05-28 03:12:42 +02:00
static void info_ext_lang_command (char *args, int from_tty);
1999-05-25 20:09:09 +02:00
2000-05-28 03:12:42 +02:00
static void init_filename_language_table (void);
1999-05-25 20:09:09 +02:00
2000-05-28 03:12:42 +02:00
void _initialize_symfile (void);
/* List of all available sym_fns. On gdb startup, each object file reader
calls add_symtab_fns() to register information on each format it is
prepared to read. */
static struct sym_fns *symtab_fns = NULL;
/* Flag for whether user will be reloading symbols multiple times.
Defaults to ON for VxWorks, otherwise OFF. */
#ifdef SYMBOL_RELOADING_DEFAULT
int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
#else
int symbol_reloading = 0;
#endif
/* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
this variable is interpreted as a threshhold. If adding a new
library's symbol table to those already known to the debugger would
exceed this threshhold, then the shlib's symbols are not added.
If non-zero on other platforms, shared library symbols will be added
automatically when the inferior is created, new libraries are loaded,
or when attaching to the inferior. This is almost always what users
will want to have happen; but for very large programs, the startup
time will be excessive, and so if this is a problem, the user can
clear this flag and then add the shared library symbols as needed.
Note that there is a potential for confusion, since if the shared
library symbols are not loaded, commands like "info fun" will *not*
report all the functions that are actually present.
Note that HP-UX interprets this variable to mean, "threshhold size
in megabytes, where zero means never add". Other platforms interpret
this variable to mean, "always add if non-zero, never add if zero."
1999-07-07 22:19:36 +02:00
*/
int auto_solib_add = 1;
1999-07-07 22:19:36 +02:00
/* Since this function is called from within qsort, in an ANSI environment
it must conform to the prototype for qsort, which specifies that the
comparison function takes two "void *" pointers. */
static int
2001-06-06 19:12:30 +02:00
compare_symbols (const void *s1p, const void *s2p)
{
register struct symbol **s1, **s2;
s1 = (struct symbol **) s1p;
s2 = (struct symbol **) s2p;
2001-01-19 09:01:47 +01:00
return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
}
/*
1999-07-07 22:19:36 +02:00
LOCAL FUNCTION
1999-07-07 22:19:36 +02:00
compare_psymbols -- compare two partial symbols by name
1999-07-07 22:19:36 +02:00
DESCRIPTION
1999-07-07 22:19:36 +02:00
Given pointers to pointers to two partial symbol table entries,
compare them by name and return -N, 0, or +N (ala strcmp).
Typically used by sorting routines like qsort().
1999-07-07 22:19:36 +02:00
NOTES
1999-07-07 22:19:36 +02:00
Does direct compare of first two characters before punting
and passing to strcmp for longer compares. Note that the
original version had a bug whereby two null strings or two
identically named one character strings would return the
comparison of memory following the null byte.
*/
static int
2001-06-06 19:12:30 +02:00
compare_psymbols (const void *s1p, const void *s2p)
{
register struct partial_symbol **s1, **s2;
register char *st1, *st2;
s1 = (struct partial_symbol **) s1p;
s2 = (struct partial_symbol **) s2p;
st1 = SYMBOL_SOURCE_NAME (*s1);
st2 = SYMBOL_SOURCE_NAME (*s2);
if ((st1[0] - st2[0]) || !st1[0])
{
return (st1[0] - st2[0]);
}
else if ((st1[1] - st2[1]) || !st1[1])
{
return (st1[1] - st2[1]);
}
else
{
1999-07-07 22:19:36 +02:00
return (strcmp (st1, st2));
}
}
void
2000-07-30 03:48:28 +02:00
sort_pst_symbols (struct partial_symtab *pst)
{
/* Sort the global list; don't sort the static list */
1999-07-07 22:19:36 +02:00
qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
pst->n_global_syms, sizeof (struct partial_symbol *),
compare_psymbols);
}
/* Call sort_block_syms to sort alphabetically the symbols of one block. */
void
2000-07-30 03:48:28 +02:00
sort_block_syms (register struct block *b)
{
qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
sizeof (struct symbol *), compare_symbols);
}
/* Call sort_symtab_syms to sort alphabetically
the symbols of each block of one symtab. */
void
2000-07-30 03:48:28 +02:00
sort_symtab_syms (register struct symtab *s)
{
register struct blockvector *bv;
int nbl;
int i;
register struct block *b;
if (s == 0)
return;
bv = BLOCKVECTOR (s);
nbl = BLOCKVECTOR_NBLOCKS (bv);
for (i = 0; i < nbl; i++)
{
b = BLOCKVECTOR_BLOCK (bv, i);
if (BLOCK_SHOULD_SORT (b))
sort_block_syms (b);
}
}
/* Make a null terminated copy of the string at PTR with SIZE characters in
the obstack pointed to by OBSTACKP . Returns the address of the copy.
Note that the string at PTR does not have to be null terminated, I.E. it
may be part of a larger string and we are only saving a substring. */
char *
2000-07-30 03:48:28 +02:00
obsavestring (char *ptr, int size, struct obstack *obstackp)
{
register char *p = (char *) obstack_alloc (obstackp, size + 1);
/* Open-coded memcpy--saves function call time. These strings are usually
short. FIXME: Is this really still true with a compiler that can
inline memcpy? */
{
register char *p1 = ptr;
register char *p2 = p;
char *end = ptr + size;
while (p1 != end)
*p2++ = *p1++;
}
p[size] = 0;
return p;
}
/* Concatenate strings S1, S2 and S3; return the new string. Space is found
in the obstack pointed to by OBSTACKP. */
char *
2000-07-30 03:48:28 +02:00
obconcat (struct obstack *obstackp, const char *s1, const char *s2,
const char *s3)
{
register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
register char *val = (char *) obstack_alloc (obstackp, len);
strcpy (val, s1);
strcat (val, s2);
strcat (val, s3);
return val;
}
/* True if we are nested inside psymtab_to_symtab. */
int currently_reading_symtab = 0;
static void
2000-07-30 03:48:28 +02:00
decrement_reading_symtab (void *dummy)
{
currently_reading_symtab--;
}
/* Get the symbol table that corresponds to a partial_symtab.
This is fast after the first time you do it. In fact, there
is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
case inline. */
struct symtab *
2000-07-30 03:48:28 +02:00
psymtab_to_symtab (register struct partial_symtab *pst)
{
/* If it's been looked up before, return it. */
if (pst->symtab)
return pst->symtab;
/* If it has not yet been read in, read it. */
if (!pst->readin)
1999-07-07 22:19:36 +02:00
{
struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
currently_reading_symtab++;
(*pst->read_symtab) (pst);
do_cleanups (back_to);
}
return pst->symtab;
}
/* Initialize entry point information for this objfile. */
void
2000-07-30 03:48:28 +02:00
init_entry_point_info (struct objfile *objfile)
{
/* Save startup file's range of PC addresses to help blockframe.c
decide where the bottom of the stack is. */
1999-07-07 22:19:36 +02:00
if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
{
/* Executable file -- record its entry point so we'll recognize
1999-07-07 22:19:36 +02:00
the startup file because it contains the entry point. */
objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
}
else
{
/* Examination of non-executable.o files. Short-circuit this stuff. */
1999-07-07 22:19:36 +02:00
objfile->ei.entry_point = INVALID_ENTRY_POINT;
}
1999-07-07 22:19:36 +02:00
objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
}
/* Get current entry point address. */
CORE_ADDR
2000-07-30 03:48:28 +02:00
entry_point_address (void)
{
return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
}
/* Remember the lowest-addressed loadable section we've seen.
This function is called via bfd_map_over_sections.
In case of equal vmas, the section with the largest size becomes the
lowest-addressed loadable section.
If the vmas and sizes are equal, the last section is considered the
lowest-addressed loadable section. */
void
2000-07-30 03:48:28 +02:00
find_lowest_section (bfd *abfd, asection *sect, PTR obj)
{
1999-07-07 22:19:36 +02:00
asection **lowest = (asection **) obj;
if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
return;
if (!*lowest)
*lowest = sect; /* First loadable section */
else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
*lowest = sect; /* A lower loadable section */
else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
&& (bfd_section_size (abfd, (*lowest))
<= bfd_section_size (abfd, sect)))
*lowest = sect;
}
/* Build (allocate and populate) a section_addr_info struct from
an existing section table. */
extern struct section_addr_info *
build_section_addr_info_from_section_table (const struct section_table *start,
const struct section_table *end)
{
struct section_addr_info *sap;
const struct section_table *stp;
int oidx;
sap = xmalloc (sizeof (struct section_addr_info));
memset (sap, 0, sizeof (struct section_addr_info));
for (stp = start, oidx = 0; stp != end; stp++)
{
if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
&& oidx < MAX_SECTIONS)
{
sap->other[oidx].addr = stp->addr;
sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
sap->other[oidx].sectindex = stp->the_bfd_section->index;
oidx++;
}
}
return sap;
}
/* Free all memory allocated by build_section_addr_info_from_section_table. */
extern void
free_section_addr_info (struct section_addr_info *sap)
{
int idx;
for (idx = 0; idx < MAX_SECTIONS; idx++)
if (sap->other[idx].name)
2000-12-15 02:01:51 +01:00
xfree (sap->other[idx].name);
xfree (sap);
}
/* Parse the user's idea of an offset for dynamic linking, into our idea
of how to represent it for fast symbol reading. This is the default
version of the sym_fns.sym_offsets function for symbol readers that
don't need to do anything special. It allocates a section_offsets table
for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
1999-09-09 02:02:17 +02:00
void
2000-07-30 03:48:28 +02:00
default_symfile_offsets (struct objfile *objfile,
struct section_addr_info *addrs)
{
int i;
asection *sect = NULL;
objfile->num_sections = SECT_OFF_MAX;
1999-09-09 02:02:17 +02:00
objfile->section_offsets = (struct section_offsets *)
1999-07-07 22:19:36 +02:00
obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1999-09-09 02:02:17 +02:00
memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
/* Now calculate offsets for section that were specified by the
caller. */
1999-10-06 01:13:56 +02:00
for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
{
struct other_sections *osp ;
osp = &addrs->other[i] ;
if (osp->addr == 0)
1999-10-06 01:13:56 +02:00
continue;
1999-10-06 01:13:56 +02:00
/* Record all sections in offsets */
/* The section_offsets in the objfile are here filled in using
the BFD index. */
(objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
1999-10-06 01:13:56 +02:00
}
/* Remember the bfd indexes for the .text, .data, .bss and
.rodata sections. */
sect = bfd_get_section_by_name (objfile->obfd, ".text");
if (sect)
objfile->sect_index_text = sect->index;
sect = bfd_get_section_by_name (objfile->obfd, ".data");
if (sect)
objfile->sect_index_data = sect->index;
sect = bfd_get_section_by_name (objfile->obfd, ".bss");
if (sect)
objfile->sect_index_bss = sect->index;
sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
if (sect)
objfile->sect_index_rodata = sect->index;
}
/* Process a symbol file, as either the main file or as a dynamically
loaded file.
1999-08-09 23:36:23 +02:00
OBJFILE is where the symbols are to be read from.
ADDR is the address where the text segment was loaded, unless the
objfile is the main symbol file, in which case it is zero.
MAINLINE is nonzero if this is the main symbol file, or zero if
it's an extra symbol file such as dynamically loaded code.
VERBO is nonzero if the caller has printed a verbose message about
the symbol reading (and complaints can be more terse about it). */
void
2000-07-30 03:48:28 +02:00
syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
int mainline, int verbo)
{
1999-10-06 01:13:56 +02:00
asection *lower_sect;
asection *sect;
CORE_ADDR lower_offset;
struct section_addr_info local_addr;
struct cleanup *old_chain;
1999-10-06 01:13:56 +02:00
int i;
/* If ADDRS is NULL, initialize the local section_addr_info struct and
point ADDRS to it. We now establish the convention that an addr of
zero means no load address was specified. */
if (addrs == NULL)
{
memset (&local_addr, 0, sizeof (local_addr));
addrs = &local_addr;
}
init_entry_point_info (objfile);
find_sym_fns (objfile);
/* Make sure that partially constructed symbol tables will be cleaned up
if an error occurs during symbol reading. */
2000-05-22 11:02:23 +02:00
old_chain = make_cleanup_free_objfile (objfile);
1999-07-07 22:19:36 +02:00
if (mainline)
{
/* We will modify the main symbol table, make sure that all its users
1999-07-07 22:19:36 +02:00
will be cleaned up if an error occurs during symbol reading. */
2000-05-22 11:02:23 +02:00
make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
/* Since no error yet, throw away the old symbol table. */
if (symfile_objfile != NULL)
{
free_objfile (symfile_objfile);
symfile_objfile = NULL;
}
/* Currently we keep symbols from the add-symbol-file command.
1999-07-07 22:19:36 +02:00
If the user wants to get rid of them, they should do "symbol-file"
without arguments first. Not sure this is the best behavior
(PR 2207). */
1999-07-07 22:19:36 +02:00
(*objfile->sf->sym_new_init) (objfile);
}
/* Convert addr into an offset rather than an absolute address.
We find the lowest address of a loaded segment in the objfile,
1999-08-24 00:40:00 +02:00
and assume that <addr> is where that got loaded.
1999-08-24 00:40:00 +02:00
We no longer warn if the lowest section is not a text segment (as
happens for the PA64 port. */
if (!mainline)
{
1999-10-06 01:13:56 +02:00
/* Find lowest loadable section to be used as starting point for
continguous sections. FIXME!! won't work without call to find
.text first, but this assumes text is lowest section. */
lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
if (lower_sect == NULL)
bfd_map_over_sections (objfile->obfd, find_lowest_section,
1999-10-06 01:13:56 +02:00
(PTR) &lower_sect);
if (lower_sect == NULL)
warning ("no loadable sections found in added symbol-file %s",
objfile->name);
else
if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
warning ("Lowest section in %s is %s at %s",
objfile->name,
bfd_section_name (objfile->obfd, lower_sect),
paddr (bfd_section_vma (objfile->obfd, lower_sect)));
1999-10-06 01:13:56 +02:00
if (lower_sect != NULL)
lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
else
lower_offset = 0;
/* Calculate offsets for the loadable sections.
FIXME! Sections must be in order of increasing loadable section
so that contiguous sections can use the lower-offset!!!
Adjust offsets if the segments are not contiguous.
If the section is contiguous, its offset should be set to
the offset of the highest loadable section lower than it
(the loadable section directly below it in memory).
this_offset = lower_offset = lower_addr - lower_orig_addr */
/* Calculate offsets for sections. */
1999-10-06 01:13:56 +02:00
for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
{
if (addrs->other[i].addr != 0)
1999-10-06 01:13:56 +02:00
{
sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
1999-10-06 01:13:56 +02:00
if (sect)
{
addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
lower_offset = addrs->other[i].addr;
/* This is the index used by BFD. */
1999-10-06 01:13:56 +02:00
addrs->other[i].sectindex = sect->index ;
}
else
{
warning ("section %s not found in %s", addrs->other[i].name,
objfile->name);
addrs->other[i].addr = 0;
}
}
else
addrs->other[i].addr = lower_offset;
}
}
/* Initialize symbol reading routines for this objfile, allow complaints to
appear for this new file, and record how verbose to be, then do the
initial symbol reading for this file. */
1999-07-07 22:19:36 +02:00
(*objfile->sf->sym_init) (objfile);
clear_complaints (1, verbo);
1999-10-06 01:13:56 +02:00
(*objfile->sf->sym_offsets) (objfile, addrs);
#ifndef IBM6000_TARGET
/* This is a SVR4/SunOS specific hack, I think. In any event, it
screws RS/6000. sym_offsets should be doing this sort of thing,
because it knows the mapping between bfd sections and
section_offsets. */
/* This is a hack. As far as I can tell, section offsets are not
target dependent. They are all set to addr with a couple of
exceptions. The exceptions are sysvr4 shared libraries, whose
offsets are kept in solib structures anyway and rs6000 xcoff
which handles shared libraries in a completely unique way.
Section offsets are built similarly, except that they are built
by adding addr in all cases because there is no clear mapping
from section_offsets into actual sections. Note that solib.c
1999-08-09 23:36:23 +02:00
has a different algorithm for finding section offsets.
These should probably all be collapsed into some target
independent form of shared library support. FIXME. */
1999-10-06 01:13:56 +02:00
if (addrs)
{
struct obj_section *s;
1999-10-06 01:13:56 +02:00
/* Map section offsets in "addr" back to the object's
sections by comparing the section names with bfd's
section names. Then adjust the section address by
the offset. */ /* for gdb/13815 */
1999-08-09 23:36:23 +02:00
ALL_OBJFILE_OSECTIONS (objfile, s)
{
1999-10-06 01:13:56 +02:00
CORE_ADDR s_addr = 0;
int i;
for (i = 0;
!s_addr && i < MAX_SECTIONS && addrs->other[i].name;
i++)
1999-10-06 01:13:56 +02:00
if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
s->addr -= s->offset;
1999-10-06 01:13:56 +02:00
s->addr += s_addr;
s->endaddr -= s->offset;
1999-10-06 01:13:56 +02:00
s->endaddr += s_addr;
s->offset += s_addr;
}
}
#endif /* not IBM6000_TARGET */
1999-08-09 23:36:23 +02:00
(*objfile->sf->sym_read) (objfile, mainline);
if (!have_partial_symbols () && !have_full_symbols ())
{
wrap_here ("");
printf_filtered ("(no debugging symbols found)...");
wrap_here ("");
}
/* Don't allow char * to have a typename (else would get caddr_t).
Ditto void *. FIXME: Check whether this is now done by all the
symbol readers themselves (many of them now do), and if so remove
it from here. */
TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
/* Mark the objfile has having had initial symbol read attempted. Note
that this does not mean we found any symbols... */
1999-07-07 22:19:36 +02:00
objfile->flags |= OBJF_SYMS;
/* Discard cleanups as symbol reading was successful. */
discard_cleanups (old_chain);
1999-08-09 23:36:23 +02:00
/* Call this after reading in a new symbol table to give target
dependent code a crack at the new symbols. For instance, this
1999-08-09 23:36:23 +02:00
could be used to update the values of target-specific symbols GDB
needs to keep track of (such as _sigtramp, or whatever). */
TARGET_SYMFILE_POSTREAD (objfile);
}
/* Perform required actions after either reading in the initial
symbols for a new objfile, or mapping in the symbols from a reusable
objfile. */
1999-07-07 22:19:36 +02:00
void
2000-07-30 03:48:28 +02:00
new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
{
/* If this is the main symbol file we have to clean up all users of the
old main symbol file. Otherwise it is sufficient to fixup all the
breakpoints that may have been redefined by this symbol file. */
if (mainline)
{
/* OK, make it the "real" symbol file. */
symfile_objfile = objfile;
clear_symtab_users ();
}
else
{
breakpoint_re_set ();
}
/* We're done reading the symbol file; finish off complaints. */
clear_complaints (0, verbo);
}
/* Process a symbol file, as either the main file or as a dynamically
loaded file.
NAME is the file name (which will be tilde-expanded and made
absolute herein) (but we don't free or modify NAME itself).
FROM_TTY says how verbose to be. MAINLINE specifies whether this
is the main symbol file, or whether it's an extra symbol file such
as dynamically loaded code. If !mainline, ADDR is the address
where the text segment was loaded.
Upon success, returns a pointer to the objfile that was added.
Upon failure, jumps back to command level (never returns). */
struct objfile *
2000-07-30 03:48:28 +02:00
symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
int mainline, int flags)
{
struct objfile *objfile;
struct partial_symtab *psymtab;
bfd *abfd;
/* Open a bfd for the file, and give user a chance to burp if we'd be
interactively wiping out any existing symbols. */
abfd = symfile_bfd_open (name);
if ((have_full_symbols () || have_partial_symbols ())
&& mainline
&& from_tty
&& !query ("Load new symbol table from \"%s\"? ", name))
1999-07-07 22:19:36 +02:00
error ("Not confirmed.");
1999-10-12 06:37:53 +02:00
objfile = allocate_objfile (abfd, flags);
/* If the objfile uses a mapped symbol file, and we have a psymtab for
it, then skip reading any symbols at this time. */
1999-07-07 22:19:36 +02:00
if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
{
/* We mapped in an existing symbol table file that already has had
1999-07-07 22:19:36 +02:00
initial symbol reading performed, so we can skip that part. Notify
the user that instead of reading the symbols, they have been mapped.
*/
if (from_tty || info_verbose)
{
printf_filtered ("Mapped symbols for %s...", name);
wrap_here ("");
gdb_flush (gdb_stdout);
}
init_entry_point_info (objfile);
find_sym_fns (objfile);
}
else
{
/* We either created a new mapped symbol table, mapped an existing
1999-07-07 22:19:36 +02:00
symbol table file which has not had initial symbol reading
performed, or need to read an unmapped symbol table. */
if (from_tty || info_verbose)
{
if (pre_add_symbol_hook)
pre_add_symbol_hook (name);
else
{
printf_filtered ("Reading symbols from %s...", name);
wrap_here ("");
gdb_flush (gdb_stdout);
}
}
1999-10-06 01:13:56 +02:00
syms_from_objfile (objfile, addrs, mainline, from_tty);
}
/* We now have at least a partial symbol table. Check to see if the
user requested that all symbols be read on initial access via either
the gdb startup command line or on a per symbol file basis. Expand
all partial symbol tables for this objfile if so. */
1999-10-06 01:13:56 +02:00
if ((flags & OBJF_READNOW) || readnow_symbol_files)
{
if (from_tty || info_verbose)
{
printf_filtered ("expanding to full symbols...");
wrap_here ("");
gdb_flush (gdb_stdout);
}
1999-07-07 22:19:36 +02:00
for (psymtab = objfile->psymtabs;
psymtab != NULL;
1999-07-07 22:19:36 +02:00
psymtab = psymtab->next)
{
psymtab_to_symtab (psymtab);
}
}
if (from_tty || info_verbose)
{
if (post_add_symbol_hook)
1999-07-07 22:19:36 +02:00
post_add_symbol_hook ();
else
1999-07-07 22:19:36 +02:00
{
printf_filtered ("done.\n");
gdb_flush (gdb_stdout);
}
}
new_symfile_objfile (objfile, mainline, from_tty);
1999-11-09 02:23:30 +01:00
if (target_new_objfile_hook)
target_new_objfile_hook (objfile);
return (objfile);
}
/* Call symbol_file_add() with default values and update whatever is
affected by the loading of a new main().
Used when the file is supplied in the gdb command line
and by some targets with special loading requirements.
The auxiliary function, symbol_file_add_main_1(), has the flags
argument for the switches that can only be specified in the symbol_file
command itself. */
2001-01-26 Fernando Nasser <fnasser@redhat.com> Fix double parsing of filenames passed as command line arguments to GDB (causes weird handling of escape characters). Also, remove dependencies on the CLI from libgdb. * call-cmds.h: Remove declaration of exec_file_command(). * gdbcore.h: Remove declaration of exec_file_command(). Add declarations for exec_open() and exec_file_clear(). * symfile.h: Add declarations for symbol_file_add_main() and symbol_file_clear(). * exec.c (exec_open): New function. Implements to_open for exec targets. (exec_file_clear): New function. Makes GDB forget about a previously specified executable file. (exec_file_attach): Move parsing of arguments from here ... (exec_file_command): ... to here. (init_exec_ops): Use exec_open(), not exec_file_command() to implement to_open for exec targets. * symfile.c (symbol_file_add_main): New function. Call symbol_file_add() with default values. Used when the file name has already been parsed. (symbol_file_clear): New function. Makes GDB forget about previously read symbols. (symbol_file_command): Call the above function instead of inline code. * main.c: Include "symfile.h" and "gdbcore.h" instead of the deprecated "call-cmds.h". (captured_main): Call exec_file_attach() and symbol_file_add_main() instead of exec_file_command() and symbol_file_command(). (captured_main): Add comment. * corefile.c: Include "symfile.h". (core_file_command): Call symbol_file_add_main() instead of symbol_file_command(). (reopen_exec_file): Call exec_open() instead of exec_file_command(). * infcmd.c: Include "symfile.h". (attach_command): Call symbol_file_add_main() instead of symbol_file_command(). * infrun.c: Remove comment about the inclusion of "symfile.h", not any longer appropriate. (follow_exec): Call symbol_file_add_main() instead of symbol_file_command(). * remote-es.c: Include "symfile.h". (es1800_load): Call symbol_file_add_main() instead of symbol_file_command(). * remote-vx.c: Remove comment about the inclusion of "symfile.h", not any longer appropriate. (vx-wait): Call symbol_file_add_main() instead of symbol_file_command(). * solib-svr4.c (open_symbol_file_object): Call symbol_file_add_main() instead of symbol_file_command(). * v850ice.c (ice_file): Call exec_open(), exec_file_attach() and symbol_file_add_main() instead of exec_file_command() and symbol_file_command(). * Makefile.in: Update dependencies.
2001-01-27 01:43:26 +01:00
void
symbol_file_add_main (char *args, int from_tty)
{
symbol_file_add_main_1 (args, from_tty, 0);
}
static void
symbol_file_add_main_1 (char *args, int from_tty, int flags)
{
symbol_file_add (args, from_tty, NULL, 1, flags);
#ifdef HPUXHPPA
RESET_HP_UX_GLOBALS ();
#endif
/* Getting new symbols may change our opinion about
what is frameless. */
reinit_frame_cache ();
set_initial_language ();
2001-01-26 Fernando Nasser <fnasser@redhat.com> Fix double parsing of filenames passed as command line arguments to GDB (causes weird handling of escape characters). Also, remove dependencies on the CLI from libgdb. * call-cmds.h: Remove declaration of exec_file_command(). * gdbcore.h: Remove declaration of exec_file_command(). Add declarations for exec_open() and exec_file_clear(). * symfile.h: Add declarations for symbol_file_add_main() and symbol_file_clear(). * exec.c (exec_open): New function. Implements to_open for exec targets. (exec_file_clear): New function. Makes GDB forget about a previously specified executable file. (exec_file_attach): Move parsing of arguments from here ... (exec_file_command): ... to here. (init_exec_ops): Use exec_open(), not exec_file_command() to implement to_open for exec targets. * symfile.c (symbol_file_add_main): New function. Call symbol_file_add() with default values. Used when the file name has already been parsed. (symbol_file_clear): New function. Makes GDB forget about previously read symbols. (symbol_file_command): Call the above function instead of inline code. * main.c: Include "symfile.h" and "gdbcore.h" instead of the deprecated "call-cmds.h". (captured_main): Call exec_file_attach() and symbol_file_add_main() instead of exec_file_command() and symbol_file_command(). (captured_main): Add comment. * corefile.c: Include "symfile.h". (core_file_command): Call symbol_file_add_main() instead of symbol_file_command(). (reopen_exec_file): Call exec_open() instead of exec_file_command(). * infcmd.c: Include "symfile.h". (attach_command): Call symbol_file_add_main() instead of symbol_file_command(). * infrun.c: Remove comment about the inclusion of "symfile.h", not any longer appropriate. (follow_exec): Call symbol_file_add_main() instead of symbol_file_command(). * remote-es.c: Include "symfile.h". (es1800_load): Call symbol_file_add_main() instead of symbol_file_command(). * remote-vx.c: Remove comment about the inclusion of "symfile.h", not any longer appropriate. (vx-wait): Call symbol_file_add_main() instead of symbol_file_command(). * solib-svr4.c (open_symbol_file_object): Call symbol_file_add_main() instead of symbol_file_command(). * v850ice.c (ice_file): Call exec_open(), exec_file_attach() and symbol_file_add_main() instead of exec_file_command() and symbol_file_command(). * Makefile.in: Update dependencies.
2001-01-27 01:43:26 +01:00
}
void
symbol_file_clear (int from_tty)
{
if ((have_full_symbols () || have_partial_symbols ())
&& from_tty
&& !query ("Discard symbol table from `%s'? ",
symfile_objfile->name))
error ("Not confirmed.");
free_all_objfiles ();
/* solib descriptors may have handles to objfiles. Since their
storage has just been released, we'd better wipe the solib
descriptors as well.
*/
#if defined(SOLIB_RESTART)
SOLIB_RESTART ();
#endif
symfile_objfile = NULL;
if (from_tty)
printf_unfiltered ("No symbol file now.\n");
#ifdef HPUXHPPA
RESET_HP_UX_GLOBALS ();
#endif
}
/* This is the symbol-file command. Read the file, analyze its
symbols, and add a struct symtab to a symtab list. The syntax of
the command is rather bizarre--(1) buildargv implements various
quoting conventions which are undocumented and have little or
nothing in common with the way things are quoted (or not quoted)
elsewhere in GDB, (2) options are used, which are not generally
used in GDB (perhaps "set mapped on", "set readnow on" would be
better), (3) the order of options matters, which is contrary to GNU
conventions (because it is confusing and inconvenient). */
/* Note: ezannoni 2000-04-17. This function used to have support for
rombug (see remote-os9k.c). It consisted of a call to target_link()
(target.c) to get the address of the text segment from the target,
and pass that to symbol_file_add(). This is no longer supported. */
void
2000-07-30 03:48:28 +02:00
symbol_file_command (char *args, int from_tty)
{
char **argv;
char *name = NULL;
struct cleanup *cleanups;
1999-10-12 06:37:53 +02:00
int flags = OBJF_USERLOADED;
dont_repeat ();
if (args == NULL)
{
2001-01-26 Fernando Nasser <fnasser@redhat.com> Fix double parsing of filenames passed as command line arguments to GDB (causes weird handling of escape characters). Also, remove dependencies on the CLI from libgdb. * call-cmds.h: Remove declaration of exec_file_command(). * gdbcore.h: Remove declaration of exec_file_command(). Add declarations for exec_open() and exec_file_clear(). * symfile.h: Add declarations for symbol_file_add_main() and symbol_file_clear(). * exec.c (exec_open): New function. Implements to_open for exec targets. (exec_file_clear): New function. Makes GDB forget about a previously specified executable file. (exec_file_attach): Move parsing of arguments from here ... (exec_file_command): ... to here. (init_exec_ops): Use exec_open(), not exec_file_command() to implement to_open for exec targets. * symfile.c (symbol_file_add_main): New function. Call symbol_file_add() with default values. Used when the file name has already been parsed. (symbol_file_clear): New function. Makes GDB forget about previously read symbols. (symbol_file_command): Call the above function instead of inline code. * main.c: Include "symfile.h" and "gdbcore.h" instead of the deprecated "call-cmds.h". (captured_main): Call exec_file_attach() and symbol_file_add_main() instead of exec_file_command() and symbol_file_command(). (captured_main): Add comment. * corefile.c: Include "symfile.h". (core_file_command): Call symbol_file_add_main() instead of symbol_file_command(). (reopen_exec_file): Call exec_open() instead of exec_file_command(). * infcmd.c: Include "symfile.h". (attach_command): Call symbol_file_add_main() instead of symbol_file_command(). * infrun.c: Remove comment about the inclusion of "symfile.h", not any longer appropriate. (follow_exec): Call symbol_file_add_main() instead of symbol_file_command(). * remote-es.c: Include "symfile.h". (es1800_load): Call symbol_file_add_main() instead of symbol_file_command(). * remote-vx.c: Remove comment about the inclusion of "symfile.h", not any longer appropriate. (vx-wait): Call symbol_file_add_main() instead of symbol_file_command(). * solib-svr4.c (open_symbol_file_object): Call symbol_file_add_main() instead of symbol_file_command(). * v850ice.c (ice_file): Call exec_open(), exec_file_attach() and symbol_file_add_main() instead of exec_file_command() and symbol_file_command(). * Makefile.in: Update dependencies.
2001-01-27 01:43:26 +01:00
symbol_file_clear (from_tty);
}
else
{
if ((argv = buildargv (args)) == NULL)
{
nomem (0);
}
1999-04-26 20:34:20 +02:00
cleanups = make_cleanup_freeargv (argv);
while (*argv != NULL)
{
if (STREQ (*argv, "-mapped"))
flags |= OBJF_MAPPED;
else
if (STREQ (*argv, "-readnow"))
1999-10-06 01:13:56 +02:00
flags |= OBJF_READNOW;
else
if (**argv == '-')
error ("unknown option `%s'", *argv);
1999-07-07 22:19:36 +02:00
else
{
name = *argv;
symbol_file_add_main_1 (name, from_tty, flags);
}
argv++;
}
if (name == NULL)
{
error ("no symbol file name was specified");
}
do_cleanups (cleanups);
}
}
/* Set the initial language.
A better solution would be to record the language in the psymtab when reading
partial symbols, and then use it (if known) to set the language. This would
be a win for formats that encode the language in an easily discoverable place,
such as DWARF. For stabs, we can jump through hoops looking for specially
named symbols or try to intuit the language from the specific type of stabs
we find, but we can't do that until later when we read in full symbols.
FIXME. */
static void
2000-07-30 03:48:28 +02:00
set_initial_language (void)
{
struct partial_symtab *pst;
1999-07-07 22:19:36 +02:00
enum language lang = language_unknown;
pst = find_main_psymtab ();
if (pst != NULL)
{
1999-07-07 22:19:36 +02:00
if (pst->filename != NULL)
{
1999-07-07 22:19:36 +02:00
lang = deduce_language_from_filename (pst->filename);
}
if (lang == language_unknown)
{
1999-07-07 22:19:36 +02:00
/* Make C the default language */
lang = language_c;
}
set_language (lang);
expected_language = current_language; /* Don't warn the user */
}
}
/* Open file specified by NAME and hand it off to BFD for preliminary
analysis. Result is a newly initialized bfd *, which includes a newly
malloc'd` copy of NAME (tilde-expanded and made absolute).
In case of trouble, error() is called. */
bfd *
2000-07-30 03:48:28 +02:00
symfile_bfd_open (char *name)
{
bfd *sym_bfd;
int desc;
char *absolute_name;
name = tilde_expand (name); /* Returns 1st new malloc'd copy */
/* Look down path for it, allocate 2nd new malloc'd copy. */
desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
#if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
if (desc < 0)
{
char *exename = alloca (strlen (name) + 5);
strcat (strcpy (exename, name), ".exe");
desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1999-07-07 22:19:36 +02:00
0, &absolute_name);
}
#endif
if (desc < 0)
{
2000-12-15 02:01:51 +01:00
make_cleanup (xfree, name);
perror_with_name (name);
}
2000-12-15 02:01:51 +01:00
xfree (name); /* Free 1st new malloc'd copy */
name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1999-07-07 22:19:36 +02:00
/* It'll be freed in free_objfile(). */
sym_bfd = bfd_fdopenr (name, gnutarget, desc);
if (!sym_bfd)
{
close (desc);
2000-12-15 02:01:51 +01:00
make_cleanup (xfree, name);
error ("\"%s\": can't open to read symbols: %s.", name,
bfd_errmsg (bfd_get_error ()));
}
sym_bfd->cacheable = true;
if (!bfd_check_format (sym_bfd, bfd_object))
{
/* FIXME: should be checking for errors from bfd_close (for one thing,
1999-07-07 22:19:36 +02:00
on error it does not free all the storage associated with the
bfd). */
bfd_close (sym_bfd); /* This also closes desc */
2000-12-15 02:01:51 +01:00
make_cleanup (xfree, name);
error ("\"%s\": can't read symbols: %s.", name,
bfd_errmsg (bfd_get_error ()));
}
return (sym_bfd);
}
/* Link a new symtab_fns into the global symtab_fns list. Called on gdb
startup by the _initialize routine in each object file format reader,
to register information about each format the the reader is prepared
to handle. */
void
2000-07-30 03:48:28 +02:00
add_symtab_fns (struct sym_fns *sf)
{
sf->next = symtab_fns;
symtab_fns = sf;
}
/* Initialize to read symbols from the symbol file sym_bfd. It either
returns or calls error(). The result is an initialized struct sym_fns
in the objfile structure, that contains cached information about the
symbol file. */
static void
2000-07-30 03:48:28 +02:00
find_sym_fns (struct objfile *objfile)
{
struct sym_fns *sf;
1999-07-07 22:19:36 +02:00
enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
char *our_target = bfd_get_target (objfile->obfd);
/* Special kludge for apollo. See dstread.c. */
if (STREQN (our_target, "apollo", 6))
1999-07-07 22:19:36 +02:00
our_flavour = (enum bfd_flavour) -2;
1999-07-07 22:19:36 +02:00
for (sf = symtab_fns; sf != NULL; sf = sf->next)
{
1999-07-07 22:19:36 +02:00
if (our_flavour == sf->sym_flavour)
{
1999-07-07 22:19:36 +02:00
objfile->sf = sf;
return;
}
}
error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1999-07-07 22:19:36 +02:00
bfd_get_target (objfile->obfd));
}
/* This function runs the load command of our current target. */
static void
2000-07-30 03:48:28 +02:00
load_command (char *arg, int from_tty)
{
if (arg == NULL)
arg = get_exec_file (1);
target_load (arg, from_tty);
/* After re-loading the executable, we don't really know which
overlays are mapped any more. */
overlay_cache_invalid = 1;
}
/* This version of "load" should be usable for any target. Currently
it is just used for remote targets, not inftarg.c or core files,
on the theory that only in that case is it useful.
Avoiding xmodem and the like seems like a win (a) because we don't have
to worry about finding it, and (b) On VMS, fork() is very slow and so
we don't want to run a subprocess. On the other hand, I'm not sure how
performance compares. */
1999-10-19 04:47:02 +02:00
static int download_write_size = 512;
static int validate_download = 0;
void
1999-10-19 04:47:02 +02:00
generic_load (char *args, int from_tty)
{
asection *s;
bfd *loadfile_bfd;
time_t start_time, end_time; /* Start and end times of download */
unsigned long data_count = 0; /* Number of bytes transferred to memory */
1999-10-19 04:47:02 +02:00
unsigned long write_count = 0; /* Number of writes needed. */
unsigned long load_offset; /* offset to add to vma for each section */
char *filename;
struct cleanup *old_cleanups;
char *offptr;
1999-12-07 04:56:43 +01:00
CORE_ADDR total_size = 0;
CORE_ADDR total_sent = 0;
1999-10-19 04:47:02 +02:00
/* Parse the input argument - the user can specify a load offset as
a second argument. */
filename = xmalloc (strlen (args) + 1);
2000-12-15 02:01:51 +01:00
old_cleanups = make_cleanup (xfree, filename);
1999-10-19 04:47:02 +02:00
strcpy (filename, args);
offptr = strchr (filename, ' ');
if (offptr != NULL)
{
char *endptr;
load_offset = strtoul (offptr, &endptr, 0);
if (offptr == endptr)
error ("Invalid download offset:%s\n", offptr);
*offptr = '\0';
}
else
load_offset = 0;
1999-10-19 04:47:02 +02:00
/* Open the file for loading. */
loadfile_bfd = bfd_openr (filename, gnutarget);
if (loadfile_bfd == NULL)
{
perror_with_name (filename);
return;
}
1999-10-19 04:47:02 +02:00
/* FIXME: should be checking for errors from bfd_close (for one thing,
on error it does not free all the storage associated with the
bfd). */
2000-05-16 04:43:39 +02:00
make_cleanup_bfd_close (loadfile_bfd);
1999-07-07 22:19:36 +02:00
if (!bfd_check_format (loadfile_bfd, bfd_object))
{
error ("\"%s\" is not an object file: %s", filename,
bfd_errmsg (bfd_get_error ()));
}
1999-07-07 22:19:36 +02:00
1999-12-07 04:56:43 +01:00
for (s = loadfile_bfd->sections; s; s = s->next)
if (s->flags & SEC_LOAD)
total_size += bfd_get_section_size_before_reloc (s);
start_time = time (NULL);
1999-07-07 22:19:36 +02:00
for (s = loadfile_bfd->sections; s; s = s->next)
{
if (s->flags & SEC_LOAD)
{
1999-10-19 04:47:02 +02:00
CORE_ADDR size = bfd_get_section_size_before_reloc (s);
1999-07-07 22:19:36 +02:00
if (size > 0)
{
char *buffer;
struct cleanup *old_chain;
1999-10-19 04:47:02 +02:00
CORE_ADDR lma = s->lma + load_offset;
CORE_ADDR block_size;
1999-07-07 22:19:36 +02:00
int err;
1999-10-19 04:47:02 +02:00
const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
CORE_ADDR sent;
1999-07-07 22:19:36 +02:00
1999-10-19 04:47:02 +02:00
if (download_write_size > 0 && size > download_write_size)
block_size = download_write_size;
else
block_size = size;
1999-07-07 22:19:36 +02:00
buffer = xmalloc (size);
2000-12-15 02:01:51 +01:00
old_chain = make_cleanup (xfree, buffer);
1999-07-07 22:19:36 +02:00
/* Is this really necessary? I guess it gives the user something
to look at during a long download. */
2000-02-03 05:14:45 +01:00
#ifdef UI_OUT
ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
sect_name, paddr_nz (size), paddr_nz (lma));
#else
1999-10-19 04:47:02 +02:00
fprintf_unfiltered (gdb_stdout,
"Loading section %s, size 0x%s lma 0x%s\n",
sect_name, paddr_nz (size), paddr_nz (lma));
2000-02-03 05:14:45 +01:00
#endif
1999-07-07 22:19:36 +02:00
bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
sent = 0;
do
{
1999-10-19 04:47:02 +02:00
CORE_ADDR len;
CORE_ADDR this_transfer = size - sent;
if (this_transfer >= block_size)
this_transfer = block_size;
len = target_write_memory_partial (lma, buffer,
this_transfer, &err);
1999-07-07 22:19:36 +02:00
if (err)
break;
1999-10-19 04:47:02 +02:00
if (validate_download)
{
/* Broken memories and broken monitors manifest
themselves here when bring new computers to
life. This doubles already slow downloads. */
/* NOTE: cagney/1999-10-18: A more efficient
implementation might add a verify_memory()
method to the target vector and then use
that. remote.c could implement that method
using the ``qCRC'' packet. */
char *check = xmalloc (len);
2000-12-15 02:01:51 +01:00
struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1999-10-19 04:47:02 +02:00
if (target_read_memory (lma, check, len) != 0)
error ("Download verify read failed at 0x%s",
paddr (lma));
if (memcmp (buffer, check, len) != 0)
error ("Download verify compare failed at 0x%s",
paddr (lma));
do_cleanups (verify_cleanups);
}
1999-07-07 22:19:36 +02:00
data_count += len;
lma += len;
buffer += len;
1999-10-19 04:47:02 +02:00
write_count += 1;
sent += len;
1999-12-07 04:56:43 +01:00
total_sent += len;
1999-10-19 04:47:02 +02:00
if (quit_flag
|| (ui_load_progress_hook != NULL
&& ui_load_progress_hook (sect_name, sent)))
error ("Canceled the download");
1999-12-07 04:56:43 +01:00
if (show_load_progress != NULL)
show_load_progress (sect_name, sent, size, total_sent, total_size);
1999-10-19 04:47:02 +02:00
}
while (sent < size);
1999-07-07 22:19:36 +02:00
if (err != 0)
1999-10-19 04:47:02 +02:00
error ("Memory access error while loading section %s.", sect_name);
1999-07-07 22:19:36 +02:00
do_cleanups (old_chain);
}
}
}
end_time = time (NULL);
{
1999-10-19 04:47:02 +02:00
CORE_ADDR entry;
1999-07-07 22:19:36 +02:00
entry = bfd_get_start_address (loadfile_bfd);
2000-02-03 05:14:45 +01:00
#ifdef UI_OUT
ui_out_text (uiout, "Start address ");
ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
ui_out_text (uiout, ", load size ");
ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
ui_out_text (uiout, "\n");
#else
1999-10-19 04:47:02 +02:00
fprintf_unfiltered (gdb_stdout,
"Start address 0x%s , load size %ld\n",
paddr_nz (entry), data_count);
2000-02-03 05:14:45 +01:00
#endif
/* We were doing this in remote-mips.c, I suspect it is right
for other targets too. */
write_pc (entry);
}
/* FIXME: are we supposed to call symbol_file_add or not? According to
a comment from remote-mips.c (where a call to symbol_file_add was
commented out), making the call confuses GDB if more than one file is
loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
does. */
1999-10-19 04:47:02 +02:00
print_transfer_performance (gdb_stdout, data_count, write_count,
end_time - start_time);
do_cleanups (old_cleanups);
}
/* Report how fast the transfer went. */
1999-10-19 04:47:02 +02:00
/* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
replaced by print_transfer_performance (with a very different
function signature). */
void
2000-07-30 03:48:28 +02:00
report_transfer_performance (unsigned long data_count, time_t start_time,
time_t end_time)
{
1999-10-19 04:47:02 +02:00
print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
}
void
2000-02-02 01:21:19 +01:00
print_transfer_performance (struct ui_file *stream,
1999-10-19 04:47:02 +02:00
unsigned long data_count,
unsigned long write_count,
unsigned long time_count)
{
2000-02-03 05:14:45 +01:00
#ifdef UI_OUT
ui_out_text (uiout, "Transfer rate: ");
if (time_count > 0)
{
ui_out_field_fmt (uiout, "transfer-rate", "%ld",
(data_count * 8) / time_count);
ui_out_text (uiout, " bits/sec");
}
else
{
ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
ui_out_text (uiout, " bits in <1 sec");
}
if (write_count > 0)
{
ui_out_text (uiout, ", ");
ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
ui_out_text (uiout, " bytes/write");
}
ui_out_text (uiout, ".\n");
#else
1999-10-19 04:47:02 +02:00
fprintf_unfiltered (stream, "Transfer rate: ");
if (time_count > 0)
fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
else
1999-10-19 04:47:02 +02:00
fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
if (write_count > 0)
fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
fprintf_unfiltered (stream, ".\n");
2000-02-03 05:14:45 +01:00
#endif
}
/* This function allows the addition of incrementally linked object files.
It does not modify any state in the target, only in the debugger. */
/* Note: ezannoni 2000-04-13 This function/command used to have a
special case syntax for the rombug target (Rombug is the boot
monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
rombug case, the user doesn't need to supply a text address,
instead a call to target_link() (in target.c) would supply the
value to use. We are now discontinuing this type of ad hoc syntax. */
/* ARGSUSED */
static void
2000-07-30 03:48:28 +02:00
add_symbol_file_command (char *args, int from_tty)
{
char *filename = NULL;
1999-10-12 06:37:53 +02:00
int flags = OBJF_USERLOADED;
char *arg;
1999-10-06 01:13:56 +02:00
int expecting_option = 0;
int section_index = 0;
1999-10-06 01:13:56 +02:00
int argcnt = 0;
int sec_num = 0;
int i;
int expecting_sec_name = 0;
int expecting_sec_addr = 0;
1999-10-06 01:13:56 +02:00
struct
{
char *name;
char *value;
} sect_opts[SECT_OFF_MAX];
1999-10-06 01:13:56 +02:00
struct section_addr_info section_addrs;
struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1999-07-07 22:19:36 +02:00
dont_repeat ();
if (args == NULL)
error ("add-symbol-file takes a file name and an address");
/* Make a copy of the string that we can safely write into. */
1999-12-07 04:56:43 +01:00
args = xstrdup (args);
1999-10-06 01:13:56 +02:00
/* Ensure section_addrs is initialized */
memset (&section_addrs, 0, sizeof (section_addrs));
while (*args != '\000')
{
/* Any leading spaces? */
1999-07-07 22:19:36 +02:00
while (isspace (*args))
args++;
/* Point arg to the beginning of the argument. */
arg = args;
/* Move args pointer over the argument. */
1999-07-07 22:19:36 +02:00
while ((*args != '\000') && !isspace (*args))
args++;
/* If there are more arguments, terminate arg and
proceed past it. */
if (*args != '\000')
*args++ = '\000';
/* Now process the argument. */
if (argcnt == 0)
{
/* The first argument is the file name. */
filename = tilde_expand (arg);
make_cleanup (xfree, filename);
}
else
* rs6000-tdep.c: Changes throughout for multi-arch 64-bit support. Incorporate most of tm-rs6000.h. (find_toc_address_hook): Rename to rs6000_find_toc_address_hook. (rs6000_set_host_arch_hook): Declare. (read_memory_addr): Define. (pop_frame): Rename to rs6000_pop_frame. (rs6000_pop_frame, rs6000_fix_call_dummy, rs6000_push_arguments, rs6000_frame_saved_pc, rs6000_frame_chain): Remove non-generic dummy frame handling. (branch_dest, rs6000_pop_frame, rs6000_skip_trampoline_code, rs6000_frame_saved_pc, frame_get_saved_regs, frame_initial_stack_address, rs6000_frame_chain, rs6000_convert_from_func_ptr_addr): Call read_memory_addr instead of read_memory_integer. (branch_dest, rs6000_pop_frame, rs6000_push_arguments, rs6000_skip_trampoline_code, rs6000_frame_saved_pc, frame_get_saved_regs, frame_initial_stack_address, rs6000_frame_chain): Replace 4 with TDEP->wordsize. (skip_prologue): Recognize some 64-bit stack adjustments. (push_dummy_frame, pop_dummy_frame, set_processor, show_processor): Delete. (frame_get_saved_regs): Manipulate saved register addresses using CORE_ADDR instead of int. (rs6000_create_inferior): New function. (register_names_*[]): Change to struct reg registers_*[]. (variants[]): Assimilate into multi-arch approach. (register_names_*[], variants[]): Refer to pre-PowerPC architectures as POWER instead of RS6000. * rs6000-nat.c: Ubiquitous changes for 64-bit support. (vmap_secs, xcoff_relocate_symtab): Cast addresses to unsigned long to avoid sign-extension errors. (set_host_arch): New function. (xcoff_relocate_symtab): Try disabling usleep(36000) workaround. (rs6000_core_fns): Use new bfd_target_xcoff_flavour. (_initialize_core_rs6000): Initialize rs6000_set_host_arch_hook. * symfile.c (find_sym_fns): Remove special xcoff kludge. * xcoffread.c (secnum_to_bfd_section): Initialize args.objfile. (process_linenos): Query line struct size from coff backend instead of using compile-time constant. (enter_line_range): Likewise. (read_xcoff_symtab): Pass "XCOFF64" instead of "XCOFF" to record_debugformat() if appropriate. (process_xcoff_symbol): Access symbol addresses using SYMBOL_VALUE_ADDRESS instead of SYMBOL_VALUE. (read_symbol_lineno): Retrieve XCOFF64 symbol names from strtbl. (scan_xcoff_symtab): Likewise. Query syment struct size from coff backend instead of using compile-time constant. (xcoff_sym_fns): Set flavour to bfd_target_xcoff_flavour. * Makefile.in (INTERNAL_LDFLAGS): Add $(MH_LDFLAGS) to list of flags that this Makefile variable get set to. (From Kevin Buettner.) * config/powerpc/aix.mh (MH_LDFLAGS): Add linker flags so that the TOC doesn't overflow. (From Kevin Buettner.) * config/powerpc/tm-ppc-aix.h: Move config decisions to multi-arched rs6000-tdep.c. * config/rs6000/tm-rs6000.h: Likewise. (GDB_MULTI_ARCH): Define. (skip_trampoline_code): Rename to rs6000_skip_trampoline_code. (is_magic_function_pointer): Replace with rs6000_convert_from_func_ptr_addr. (TARGET_CREATE_INFERIOR_HOOK): Define. (find_toc_address_hook): Rename to rs6000_find_toc_address_hook. (rs6000_set_host_arch_hook): Declare. * config/rs6000/nm-rs6000.h (CHILD_XFER_MEMORY): Define.
2000-06-16 23:02:22 +02:00
if (argcnt == 1)
{
/* The second argument is always the text address at which
to load the program. */
sect_opts[section_index].name = ".text";
sect_opts[section_index].value = arg;
section_index++;
}
else
{
/* It's an option (starting with '-') or it's an argument
to an option */
if (*arg == '-')
{
if (strcmp (arg, "-mapped") == 0)
flags |= OBJF_MAPPED;
else
if (strcmp (arg, "-readnow") == 0)
flags |= OBJF_READNOW;
else
if (strcmp (arg, "-s") == 0)
{
if (section_index >= SECT_OFF_MAX)
error ("Too many sections specified.");
expecting_sec_name = 1;
expecting_sec_addr = 1;
}
}
else
{
if (expecting_sec_name)
{
* rs6000-tdep.c: Changes throughout for multi-arch 64-bit support. Incorporate most of tm-rs6000.h. (find_toc_address_hook): Rename to rs6000_find_toc_address_hook. (rs6000_set_host_arch_hook): Declare. (read_memory_addr): Define. (pop_frame): Rename to rs6000_pop_frame. (rs6000_pop_frame, rs6000_fix_call_dummy, rs6000_push_arguments, rs6000_frame_saved_pc, rs6000_frame_chain): Remove non-generic dummy frame handling. (branch_dest, rs6000_pop_frame, rs6000_skip_trampoline_code, rs6000_frame_saved_pc, frame_get_saved_regs, frame_initial_stack_address, rs6000_frame_chain, rs6000_convert_from_func_ptr_addr): Call read_memory_addr instead of read_memory_integer. (branch_dest, rs6000_pop_frame, rs6000_push_arguments, rs6000_skip_trampoline_code, rs6000_frame_saved_pc, frame_get_saved_regs, frame_initial_stack_address, rs6000_frame_chain): Replace 4 with TDEP->wordsize. (skip_prologue): Recognize some 64-bit stack adjustments. (push_dummy_frame, pop_dummy_frame, set_processor, show_processor): Delete. (frame_get_saved_regs): Manipulate saved register addresses using CORE_ADDR instead of int. (rs6000_create_inferior): New function. (register_names_*[]): Change to struct reg registers_*[]. (variants[]): Assimilate into multi-arch approach. (register_names_*[], variants[]): Refer to pre-PowerPC architectures as POWER instead of RS6000. * rs6000-nat.c: Ubiquitous changes for 64-bit support. (vmap_secs, xcoff_relocate_symtab): Cast addresses to unsigned long to avoid sign-extension errors. (set_host_arch): New function. (xcoff_relocate_symtab): Try disabling usleep(36000) workaround. (rs6000_core_fns): Use new bfd_target_xcoff_flavour. (_initialize_core_rs6000): Initialize rs6000_set_host_arch_hook. * symfile.c (find_sym_fns): Remove special xcoff kludge. * xcoffread.c (secnum_to_bfd_section): Initialize args.objfile. (process_linenos): Query line struct size from coff backend instead of using compile-time constant. (enter_line_range): Likewise. (read_xcoff_symtab): Pass "XCOFF64" instead of "XCOFF" to record_debugformat() if appropriate. (process_xcoff_symbol): Access symbol addresses using SYMBOL_VALUE_ADDRESS instead of SYMBOL_VALUE. (read_symbol_lineno): Retrieve XCOFF64 symbol names from strtbl. (scan_xcoff_symtab): Likewise. Query syment struct size from coff backend instead of using compile-time constant. (xcoff_sym_fns): Set flavour to bfd_target_xcoff_flavour. * Makefile.in (INTERNAL_LDFLAGS): Add $(MH_LDFLAGS) to list of flags that this Makefile variable get set to. (From Kevin Buettner.) * config/powerpc/aix.mh (MH_LDFLAGS): Add linker flags so that the TOC doesn't overflow. (From Kevin Buettner.) * config/powerpc/tm-ppc-aix.h: Move config decisions to multi-arched rs6000-tdep.c. * config/rs6000/tm-rs6000.h: Likewise. (GDB_MULTI_ARCH): Define. (skip_trampoline_code): Rename to rs6000_skip_trampoline_code. (is_magic_function_pointer): Replace with rs6000_convert_from_func_ptr_addr. (TARGET_CREATE_INFERIOR_HOOK): Define. (find_toc_address_hook): Rename to rs6000_find_toc_address_hook. (rs6000_set_host_arch_hook): Declare. * config/rs6000/nm-rs6000.h (CHILD_XFER_MEMORY): Define.
2000-06-16 23:02:22 +02:00
sect_opts[section_index].name = arg;
expecting_sec_name = 0;
}
else
* rs6000-tdep.c: Changes throughout for multi-arch 64-bit support. Incorporate most of tm-rs6000.h. (find_toc_address_hook): Rename to rs6000_find_toc_address_hook. (rs6000_set_host_arch_hook): Declare. (read_memory_addr): Define. (pop_frame): Rename to rs6000_pop_frame. (rs6000_pop_frame, rs6000_fix_call_dummy, rs6000_push_arguments, rs6000_frame_saved_pc, rs6000_frame_chain): Remove non-generic dummy frame handling. (branch_dest, rs6000_pop_frame, rs6000_skip_trampoline_code, rs6000_frame_saved_pc, frame_get_saved_regs, frame_initial_stack_address, rs6000_frame_chain, rs6000_convert_from_func_ptr_addr): Call read_memory_addr instead of read_memory_integer. (branch_dest, rs6000_pop_frame, rs6000_push_arguments, rs6000_skip_trampoline_code, rs6000_frame_saved_pc, frame_get_saved_regs, frame_initial_stack_address, rs6000_frame_chain): Replace 4 with TDEP->wordsize. (skip_prologue): Recognize some 64-bit stack adjustments. (push_dummy_frame, pop_dummy_frame, set_processor, show_processor): Delete. (frame_get_saved_regs): Manipulate saved register addresses using CORE_ADDR instead of int. (rs6000_create_inferior): New function. (register_names_*[]): Change to struct reg registers_*[]. (variants[]): Assimilate into multi-arch approach. (register_names_*[], variants[]): Refer to pre-PowerPC architectures as POWER instead of RS6000. * rs6000-nat.c: Ubiquitous changes for 64-bit support. (vmap_secs, xcoff_relocate_symtab): Cast addresses to unsigned long to avoid sign-extension errors. (set_host_arch): New function. (xcoff_relocate_symtab): Try disabling usleep(36000) workaround. (rs6000_core_fns): Use new bfd_target_xcoff_flavour. (_initialize_core_rs6000): Initialize rs6000_set_host_arch_hook. * symfile.c (find_sym_fns): Remove special xcoff kludge. * xcoffread.c (secnum_to_bfd_section): Initialize args.objfile. (process_linenos): Query line struct size from coff backend instead of using compile-time constant. (enter_line_range): Likewise. (read_xcoff_symtab): Pass "XCOFF64" instead of "XCOFF" to record_debugformat() if appropriate. (process_xcoff_symbol): Access symbol addresses using SYMBOL_VALUE_ADDRESS instead of SYMBOL_VALUE. (read_symbol_lineno): Retrieve XCOFF64 symbol names from strtbl. (scan_xcoff_symtab): Likewise. Query syment struct size from coff backend instead of using compile-time constant. (xcoff_sym_fns): Set flavour to bfd_target_xcoff_flavour. * Makefile.in (INTERNAL_LDFLAGS): Add $(MH_LDFLAGS) to list of flags that this Makefile variable get set to. (From Kevin Buettner.) * config/powerpc/aix.mh (MH_LDFLAGS): Add linker flags so that the TOC doesn't overflow. (From Kevin Buettner.) * config/powerpc/tm-ppc-aix.h: Move config decisions to multi-arched rs6000-tdep.c. * config/rs6000/tm-rs6000.h: Likewise. (GDB_MULTI_ARCH): Define. (skip_trampoline_code): Rename to rs6000_skip_trampoline_code. (is_magic_function_pointer): Replace with rs6000_convert_from_func_ptr_addr. (TARGET_CREATE_INFERIOR_HOOK): Define. (find_toc_address_hook): Rename to rs6000_find_toc_address_hook. (rs6000_set_host_arch_hook): Declare. * config/rs6000/nm-rs6000.h (CHILD_XFER_MEMORY): Define.
2000-06-16 23:02:22 +02:00
if (expecting_sec_addr)
{
sect_opts[section_index].value = arg;
expecting_sec_addr = 0;
section_index++;
}
else
error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
}
}
argcnt++;
}
/* Print the prompt for the query below. And save the arguments into
a sect_addr_info structure to be passed around to other
functions. We have to split this up into separate print
statements because local_hex_string returns a local static
string. */
1999-10-06 01:13:56 +02:00
printf_filtered ("add symbol table from file \"%s\" at\n", filename);
for (i = 0; i < section_index; i++)
{
CORE_ADDR addr;
char *val = sect_opts[i].value;
char *sec = sect_opts[i].name;
val = sect_opts[i].value;
if (val[0] == '0' && val[1] == 'x')
addr = strtoul (val+2, NULL, 16);
else
addr = strtoul (val, NULL, 10);
/* Here we store the section offsets in the order they were
entered on the command line. */
section_addrs.other[sec_num].name = sec;
section_addrs.other[sec_num].addr = addr;
printf_filtered ("\t%s_addr = %s\n",
sec,
local_hex_string ((unsigned long)addr));
sec_num++;
/* The object's sections are initialized when a
call is made to build_objfile_section_table (objfile).
This happens in reread_symbols.
At this point, we don't know what file type this is,
so we can't determine what section names are valid. */
1999-10-06 01:13:56 +02:00
}
1999-10-06 01:13:56 +02:00
if (from_tty && (!query ("%s", "")))
error ("Not confirmed.");
symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
/* Getting new symbols may change our opinion about what is
frameless. */
reinit_frame_cache ();
do_cleanups (my_cleanups);
}
static void
2000-07-30 03:48:28 +02:00
add_shared_symbol_files_command (char *args, int from_tty)
{
#ifdef ADD_SHARED_SYMBOL_FILES
ADD_SHARED_SYMBOL_FILES (args, from_tty);
#else
error ("This command is not available in this configuration of GDB.");
1999-07-07 22:19:36 +02:00
#endif
}
/* Re-read symbols if a symbol-file has changed. */
void
2000-07-30 03:48:28 +02:00
reread_symbols (void)
{
struct objfile *objfile;
long new_modtime;
int reread_one = 0;
struct stat new_statbuf;
int res;
/* With the addition of shared libraries, this should be modified,
the load time should be saved in the partial symbol tables, since
different tables may come from different source files. FIXME.
This routine should then walk down each partial symbol table
and see if the symbol table that it originates from has been changed */
1999-07-07 22:19:36 +02:00
for (objfile = object_files; objfile; objfile = objfile->next)
{
if (objfile->obfd)
{
#ifdef IBM6000_TARGET
1999-07-07 22:19:36 +02:00
/* If this object is from a shared library, then you should
stat on the library name, not member name. */
1999-07-07 22:19:36 +02:00
if (objfile->obfd->my_archive)
res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
else
#endif
1999-07-07 22:19:36 +02:00
res = stat (objfile->name, &new_statbuf);
if (res != 0)
{
1999-07-07 22:19:36 +02:00
/* FIXME, should use print_sys_errmsg but it's not filtered. */
printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
objfile->name);
continue;
}
1999-07-07 22:19:36 +02:00
new_modtime = new_statbuf.st_mtime;
if (new_modtime != objfile->mtime)
{
1999-07-07 22:19:36 +02:00
struct cleanup *old_cleanups;
struct section_offsets *offsets;
int num_offsets;
char *obfd_filename;
printf_filtered ("`%s' has changed; re-reading symbols.\n",
objfile->name);
/* There are various functions like symbol_file_add,
symfile_bfd_open, syms_from_objfile, etc., which might
appear to do what we want. But they have various other
effects which we *don't* want. So we just do stuff
ourselves. We don't worry about mapped files (for one thing,
any mapped file will be out of date). */
/* If we get an error, blow away this objfile (not sure if
that is the correct response for things like shared
libraries). */
2000-05-22 11:02:23 +02:00
old_cleanups = make_cleanup_free_objfile (objfile);
1999-07-07 22:19:36 +02:00
/* We need to do this whenever any symbols go away. */
2000-05-22 11:02:23 +02:00
make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1999-07-07 22:19:36 +02:00
/* Clean up any state BFD has sitting around. We don't need
to close the descriptor but BFD lacks a way of closing the
BFD without closing the descriptor. */
obfd_filename = bfd_get_filename (objfile->obfd);
if (!bfd_close (objfile->obfd))
error ("Can't close BFD for %s: %s", objfile->name,
bfd_errmsg (bfd_get_error ()));
objfile->obfd = bfd_openr (obfd_filename, gnutarget);
if (objfile->obfd == NULL)
error ("Can't open %s to read symbols.", objfile->name);
/* bfd_openr sets cacheable to true, which is what we want. */
if (!bfd_check_format (objfile->obfd, bfd_object))
error ("Can't read symbols from %s: %s.", objfile->name,
bfd_errmsg (bfd_get_error ()));
/* Save the offsets, we will nuke them with the rest of the
psymbol_obstack. */
num_offsets = objfile->num_sections;
1999-09-09 02:02:17 +02:00
offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1999-07-07 22:19:36 +02:00
/* Nuke all the state that we will re-read. Much of the following
code which sets things to NULL really is necessary to tell
other parts of GDB that there is nothing currently there. */
/* FIXME: Do we have to free a whole linked list, or is this
enough? */
if (objfile->global_psymbols.list)
mfree (objfile->md, objfile->global_psymbols.list);
memset (&objfile->global_psymbols, 0,
sizeof (objfile->global_psymbols));
if (objfile->static_psymbols.list)
mfree (objfile->md, objfile->static_psymbols.list);
memset (&objfile->static_psymbols, 0,
sizeof (objfile->static_psymbols));
/* Free the obstacks for non-reusable objfiles */
1999-12-07 04:56:43 +01:00
free_bcache (&objfile->psymbol_cache);
1999-07-07 22:19:36 +02:00
obstack_free (&objfile->psymbol_obstack, 0);
obstack_free (&objfile->symbol_obstack, 0);
obstack_free (&objfile->type_obstack, 0);
objfile->sections = NULL;
objfile->symtabs = NULL;
objfile->psymtabs = NULL;
objfile->free_psymtabs = NULL;
objfile->msymbols = NULL;
objfile->minimal_symbol_count = 0;
memset (&objfile->msymbol_hash, 0,
sizeof (objfile->msymbol_hash));
memset (&objfile->msymbol_demangled_hash, 0,
sizeof (objfile->msymbol_demangled_hash));
1999-07-07 22:19:36 +02:00
objfile->fundamental_types = NULL;
if (objfile->sf != NULL)
{
(*objfile->sf->sym_finish) (objfile);
}
/* We never make this a mapped file. */
objfile->md = NULL;
/* obstack_specify_allocation also initializes the obstack so
it is empty. */
obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
2000-12-15 02:01:51 +01:00
xmalloc, xfree);
1999-07-07 22:19:36 +02:00
obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
2000-12-15 02:01:51 +01:00
xmalloc, xfree);
1999-07-07 22:19:36 +02:00
obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
2000-12-15 02:01:51 +01:00
xmalloc, xfree);
1999-07-07 22:19:36 +02:00
obstack_specify_allocation (&objfile->type_obstack, 0, 0,
2000-12-15 02:01:51 +01:00
xmalloc, xfree);
1999-07-07 22:19:36 +02:00
if (build_objfile_section_table (objfile))
{
error ("Can't find the file sections in `%s': %s",
objfile->name, bfd_errmsg (bfd_get_error ()));
}
/* We use the same section offsets as from last time. I'm not
sure whether that is always correct for shared libraries. */
objfile->section_offsets = (struct section_offsets *)
1999-09-09 02:02:17 +02:00
obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1999-07-07 22:19:36 +02:00
objfile->num_sections = num_offsets;
/* What the hell is sym_new_init for, anyway? The concept of
distinguishing between the main file and additional files
in this way seems rather dubious. */
if (objfile == symfile_objfile)
{
(*objfile->sf->sym_new_init) (objfile);
#ifdef HPUXHPPA
1999-07-07 22:19:36 +02:00
RESET_HP_UX_GLOBALS ();
#endif
1999-07-07 22:19:36 +02:00
}
(*objfile->sf->sym_init) (objfile);
clear_complaints (1, 1);
/* The "mainline" parameter is a hideous hack; I think leaving it
zero is OK since dbxread.c also does what it needs to do if
objfile->global_psymbols.size is 0. */
1999-08-09 23:36:23 +02:00
(*objfile->sf->sym_read) (objfile, 0);
1999-07-07 22:19:36 +02:00
if (!have_partial_symbols () && !have_full_symbols ())
{
wrap_here ("");
printf_filtered ("(no debugging symbols found)\n");
wrap_here ("");
}
objfile->flags |= OBJF_SYMS;
/* We're done reading the symbol file; finish off complaints. */
clear_complaints (0, 1);
1999-07-07 22:19:36 +02:00
/* Getting new symbols may change our opinion about what is
frameless. */
1999-07-07 22:19:36 +02:00
reinit_frame_cache ();
1999-07-07 22:19:36 +02:00
/* Discard cleanups as symbol reading was successful. */
discard_cleanups (old_cleanups);
1999-07-07 22:19:36 +02:00
/* If the mtime has changed between the time we set new_modtime
and now, we *want* this to be out of date, so don't call stat
again now. */
objfile->mtime = new_modtime;
reread_one = 1;
1999-07-07 22:19:36 +02:00
/* Call this after reading in a new symbol table to give target
dependent code a crack at the new symbols. For instance, this
1999-07-07 22:19:36 +02:00
could be used to update the values of target-specific symbols GDB
needs to keep track of (such as _sigtramp, or whatever). */
1999-07-07 22:19:36 +02:00
TARGET_SYMFILE_POSTREAD (objfile);
}
}
}
if (reread_one)
clear_symtab_users ();
}
1999-07-07 22:19:36 +02:00
typedef struct
{
char *ext;
enum language lang;
1999-07-07 22:19:36 +02:00
}
filename_language;
1999-07-07 22:19:36 +02:00
static filename_language *filename_language_table;
static int fl_table_size, fl_table_next;
static void
2000-07-30 03:48:28 +02:00
add_filename_language (char *ext, enum language lang)
{
if (fl_table_next >= fl_table_size)
{
fl_table_size += 10;
filename_language_table = xrealloc (filename_language_table,
fl_table_size);
}
2001-01-31 02:24:03 +01:00
filename_language_table[fl_table_next].ext = xstrdup (ext);
filename_language_table[fl_table_next].lang = lang;
fl_table_next++;
}
static char *ext_args;
static void
2000-07-30 03:48:28 +02:00
set_ext_lang_command (char *args, int from_tty)
{
int i;
char *cp = ext_args;
enum language lang;
/* First arg is filename extension, starting with '.' */
if (*cp != '.')
error ("'%s': Filename extension must begin with '.'", ext_args);
/* Find end of first arg. */
1999-07-07 22:19:36 +02:00
while (*cp && !isspace (*cp))
cp++;
if (*cp == '\0')
error ("'%s': two arguments required -- filename extension and language",
ext_args);
/* Null-terminate first arg */
1999-07-07 22:19:36 +02:00
*cp++ = '\0';
/* Find beginning of second arg, which should be a source language. */
while (*cp && isspace (*cp))
cp++;
if (*cp == '\0')
error ("'%s': two arguments required -- filename extension and language",
ext_args);
/* Lookup the language from among those we know. */
lang = language_enum (cp);
/* Now lookup the filename extension: do we already know it? */
for (i = 0; i < fl_table_next; i++)
if (0 == strcmp (ext_args, filename_language_table[i].ext))
break;
if (i >= fl_table_next)
{
/* new file extension */
add_filename_language (ext_args, lang);
}
else
{
/* redefining a previously known filename extension */
/* if (from_tty) */
/* query ("Really make files of type %s '%s'?", */
/* ext_args, language_str (lang)); */
2000-12-15 02:01:51 +01:00
xfree (filename_language_table[i].ext);
2001-01-31 02:24:03 +01:00
filename_language_table[i].ext = xstrdup (ext_args);
filename_language_table[i].lang = lang;
}
}
static void
2000-07-30 03:48:28 +02:00
info_ext_lang_command (char *args, int from_tty)
{
int i;
printf_filtered ("Filename extensions and the languages they represent:");
printf_filtered ("\n\n");
for (i = 0; i < fl_table_next; i++)
1999-07-07 22:19:36 +02:00
printf_filtered ("\t%s\t- %s\n",
filename_language_table[i].ext,
language_str (filename_language_table[i].lang));
}
static void
2000-07-30 03:48:28 +02:00
init_filename_language_table (void)
{
if (fl_table_size == 0) /* protect against repetition */
{
fl_table_size = 20;
fl_table_next = 0;
1999-07-07 22:19:36 +02:00
filename_language_table =
xmalloc (fl_table_size * sizeof (*filename_language_table));
1999-07-07 22:19:36 +02:00
add_filename_language (".c", language_c);
add_filename_language (".C", language_cplus);
add_filename_language (".cc", language_cplus);
add_filename_language (".cp", language_cplus);
add_filename_language (".cpp", language_cplus);
add_filename_language (".cxx", language_cplus);
add_filename_language (".c++", language_cplus);
add_filename_language (".java", language_java);
add_filename_language (".class", language_java);
1999-07-07 22:19:36 +02:00
add_filename_language (".ch", language_chill);
add_filename_language (".c186", language_chill);
add_filename_language (".c286", language_chill);
add_filename_language (".f", language_fortran);
add_filename_language (".F", language_fortran);
add_filename_language (".s", language_asm);
add_filename_language (".S", language_asm);
add_filename_language (".pas", language_pascal);
add_filename_language (".p", language_pascal);
add_filename_language (".pp", language_pascal);
}
}
enum language
2000-07-30 03:48:28 +02:00
deduce_language_from_filename (char *filename)
{
int i;
char *cp;
if (filename != NULL)
if ((cp = strrchr (filename, '.')) != NULL)
for (i = 0; i < fl_table_next; i++)
if (strcmp (cp, filename_language_table[i].ext) == 0)
return filename_language_table[i].lang;
return language_unknown;
}
/* allocate_symtab:
Allocate and partly initialize a new symbol table. Return a pointer
to it. error() if no space.
Caller must set these fields:
1999-07-07 22:19:36 +02:00
LINETABLE(symtab)
symtab->blockvector
symtab->dirname
symtab->free_code
symtab->free_ptr
possibly free_named_symtabs (symtab->filename);
*/
struct symtab *
2000-07-30 03:48:28 +02:00
allocate_symtab (char *filename, struct objfile *objfile)
{
register struct symtab *symtab;
symtab = (struct symtab *)
1999-07-07 22:19:36 +02:00
obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
memset (symtab, 0, sizeof (*symtab));
1999-07-07 22:19:36 +02:00
symtab->filename = obsavestring (filename, strlen (filename),
&objfile->symbol_obstack);
symtab->fullname = NULL;
symtab->language = deduce_language_from_filename (filename);
symtab->debugformat = obsavestring ("unknown", 7,
&objfile->symbol_obstack);
/* Hook it to the objfile it comes from */
1999-07-07 22:19:36 +02:00
symtab->objfile = objfile;
symtab->next = objfile->symtabs;
objfile->symtabs = symtab;
/* FIXME: This should go away. It is only defined for the Z8000,
and the Z8000 definition of this macro doesn't have anything to
do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
here for convenience. */
#ifdef INIT_EXTRA_SYMTAB_INFO
INIT_EXTRA_SYMTAB_INFO (symtab);
#endif
return (symtab);
}
struct partial_symtab *
2000-07-30 03:48:28 +02:00
allocate_psymtab (char *filename, struct objfile *objfile)
{
struct partial_symtab *psymtab;
1999-07-07 22:19:36 +02:00
if (objfile->free_psymtabs)
{
1999-07-07 22:19:36 +02:00
psymtab = objfile->free_psymtabs;
objfile->free_psymtabs = psymtab->next;
}
else
psymtab = (struct partial_symtab *)
1999-07-07 22:19:36 +02:00
obstack_alloc (&objfile->psymbol_obstack,
sizeof (struct partial_symtab));
memset (psymtab, 0, sizeof (struct partial_symtab));
1999-07-07 22:19:36 +02:00
psymtab->filename = obsavestring (filename, strlen (filename),
&objfile->psymbol_obstack);
psymtab->symtab = NULL;
/* Prepend it to the psymtab list for the objfile it belongs to.
Psymtabs are searched in most recent inserted -> least recent
inserted order. */
1999-07-07 22:19:36 +02:00
psymtab->objfile = objfile;
psymtab->next = objfile->psymtabs;
objfile->psymtabs = psymtab;
#if 0
{
struct partial_symtab **prev_pst;
1999-07-07 22:19:36 +02:00
psymtab->objfile = objfile;
psymtab->next = NULL;
prev_pst = &(objfile->psymtabs);
while ((*prev_pst) != NULL)
1999-07-07 22:19:36 +02:00
prev_pst = &((*prev_pst)->next);
(*prev_pst) = psymtab;
1999-07-07 22:19:36 +02:00
}
#endif
1999-07-07 22:19:36 +02:00
return (psymtab);
}
void
2000-07-30 03:48:28 +02:00
discard_psymtab (struct partial_symtab *pst)
{
struct partial_symtab **prev_pst;
/* From dbxread.c:
Empty psymtabs happen as a result of header files which don't
have any symbols in them. There can be a lot of them. But this
check is wrong, in that a psymtab with N_SLINE entries but
nothing else is not empty, but we don't realize that. Fixing
that without slowing things down might be tricky. */
/* First, snip it out of the psymtab chain */
prev_pst = &(pst->objfile->psymtabs);
while ((*prev_pst) != pst)
prev_pst = &((*prev_pst)->next);
(*prev_pst) = pst->next;
/* Next, put it on a free list for recycling */
pst->next = pst->objfile->free_psymtabs;
pst->objfile->free_psymtabs = pst;
}
1999-07-07 22:19:36 +02:00
/* Reset all data structures in gdb which may contain references to symbol
table data. */
void
2000-07-30 03:48:28 +02:00
clear_symtab_users (void)
{
/* Someday, we should do better than this, by only blowing away
the things that really need to be blown. */
clear_value_history ();
clear_displays ();
clear_internalvars ();
breakpoint_re_set ();
set_default_breakpoint (0, 0, 0, 0);
current_source_symtab = 0;
current_source_line = 0;
clear_pc_function_cache ();
1999-11-09 02:23:30 +01:00
if (target_new_objfile_hook)
target_new_objfile_hook (NULL);
}
2000-05-22 11:02:23 +02:00
static void
clear_symtab_users_cleanup (void *ignore)
{
clear_symtab_users ();
}
/* clear_symtab_users_once:
This function is run after symbol reading, or from a cleanup.
If an old symbol table was obsoleted, the old symbol table
has been blown away, but the other GDB data structures that may
reference it have not yet been cleared or re-directed. (The old
symtab was zapped, and the cleanup queued, in free_named_symtab()
below.)
This function can be queued N times as a cleanup, or called
directly; it will do all the work the first time, and then will be a
no-op until the next time it is queued. This works by bumping a
counter at queueing time. Much later when the cleanup is run, or at
the end of symbol processing (in case the cleanup is discarded), if
the queued count is greater than the "done-count", we do the work
and set the done-count to the queued count. If the queued count is
less than or equal to the done-count, we just ignore the call. This
is needed because reading a single .o file will often replace many
symtabs (one per .h file, for example), and we don't want to reset
the breakpoints N times in the user's face.
The reason we both queue a cleanup, and call it directly after symbol
reading, is because the cleanup protects us in case of errors, but is
discarded if symbol reading is successful. */
#if 0
/* FIXME: As free_named_symtabs is currently a big noop this function
is no longer needed. */
2000-05-28 03:12:42 +02:00
static void clear_symtab_users_once (void);
static int clear_symtab_users_queued;
static int clear_symtab_users_done;
static void
2000-07-30 03:48:28 +02:00
clear_symtab_users_once (void)
{
/* Enforce once-per-`do_cleanups'-semantics */
if (clear_symtab_users_queued <= clear_symtab_users_done)
return;
clear_symtab_users_done = clear_symtab_users_queued;
clear_symtab_users ();
}
#endif
/* Delete the specified psymtab, and any others that reference it. */
static void
2000-07-30 03:48:28 +02:00
cashier_psymtab (struct partial_symtab *pst)
{
struct partial_symtab *ps, *pprev = NULL;
int i;
/* Find its previous psymtab in the chain */
1999-07-07 22:19:36 +02:00
for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
{
if (ps == pst)
break;
pprev = ps;
}
1999-07-07 22:19:36 +02:00
if (ps)
{
/* Unhook it from the chain. */
if (ps == pst->objfile->psymtabs)
pst->objfile->psymtabs = ps->next;
else
pprev->next = ps->next;
/* FIXME, we can't conveniently deallocate the entries in the
partial_symbol lists (global_psymbols/static_psymbols) that
this psymtab points to. These just take up space until all
the psymtabs are reclaimed. Ditto the dependencies list and
filename, which are all in the psymbol_obstack. */
/* We need to cashier any psymtab that has this one as a dependency... */
again:
for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
{
for (i = 0; i < ps->number_of_dependencies; i++)
{
if (ps->dependencies[i] == pst)
{
cashier_psymtab (ps);
goto again; /* Must restart, chain has been munged. */
}
}
}
}
}
/* If a symtab or psymtab for filename NAME is found, free it along
with any dependent breakpoints, displays, etc.
Used when loading new versions of object modules with the "add-file"
command. This is only called on the top-level symtab or psymtab's name;
it is not called for subsidiary files such as .h files.
Return value is 1 if we blew away the environment, 0 if not.
FIXME. The return value appears to never be used.
FIXME. I think this is not the best way to do this. We should
work on being gentler to the environment while still cleaning up
all stray pointers into the freed symtab. */
int
2000-07-30 03:48:28 +02:00
free_named_symtabs (char *name)
{
#if 0
/* FIXME: With the new method of each objfile having it's own
psymtab list, this function needs serious rethinking. In particular,
why was it ever necessary to toss psymtabs with specific compilation
unit filenames, as opposed to all psymtabs from a particular symbol
file? -- fnf
Well, the answer is that some systems permit reloading of particular
compilation units. We want to blow away any old info about these
compilation units, regardless of which objfiles they arrived in. --gnu. */
register struct symtab *s;
register struct symtab *prev;
register struct partial_symtab *ps;
struct blockvector *bv;
int blewit = 0;
/* We only wack things if the symbol-reload switch is set. */
if (!symbol_reloading)
return 0;
/* Some symbol formats have trouble providing file names... */
if (name == 0 || *name == '\0')
return 0;
/* Look for a psymtab with the specified name. */
again2:
1999-07-07 22:19:36 +02:00
for (ps = partial_symtab_list; ps; ps = ps->next)
{
if (STREQ (name, ps->filename))
{
cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
goto again2; /* Must restart, chain has been munged */
}
}
/* Look for a symtab with the specified name. */
for (s = symtab_list; s; s = s->next)
{
if (STREQ (name, s->filename))
break;
prev = s;
}
if (s)
{
if (s == symtab_list)
symtab_list = s->next;
else
prev->next = s->next;
/* For now, queue a delete for all breakpoints, displays, etc., whether
1999-07-07 22:19:36 +02:00
or not they depend on the symtab being freed. This should be
changed so that only those data structures affected are deleted. */
/* But don't delete anything if the symtab is empty.
1999-07-07 22:19:36 +02:00
This test is necessary due to a bug in "dbxread.c" that
causes empty symtabs to be created for N_SO symbols that
contain the pathname of the object file. (This problem
has been fixed in GDB 3.9x). */
bv = BLOCKVECTOR (s);
if (BLOCKVECTOR_NBLOCKS (bv) > 2
|| BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
|| BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
{
complain (&oldsyms_complaint, name);
clear_symtab_users_queued++;
make_cleanup (clear_symtab_users_once, 0);
blewit = 1;
1999-07-07 22:19:36 +02:00
}
else
{
complain (&empty_symtab_complaint, name);
}
free_symtab (s);
}
else
{
/* It is still possible that some breakpoints will be affected
1999-07-07 22:19:36 +02:00
even though no symtab was found, since the file might have
been compiled without debugging, and hence not be associated
with a symtab. In order to handle this correctly, we would need
to keep a list of text address ranges for undebuggable files.
For now, we do nothing, since this is a fairly obscure case. */
;
}
/* FIXME, what about the minimal symbol table? */
return blewit;
#else
return (0);
#endif
}
/* Allocate and partially fill a partial symtab. It will be
completely filled at the end of the symbol list.
1999-09-09 02:02:17 +02:00
FILENAME is the name of the symbol-file we are reading from. */
struct partial_symtab *
2000-07-30 03:48:28 +02:00
start_psymtab_common (struct objfile *objfile,
struct section_offsets *section_offsets, char *filename,
CORE_ADDR textlow, struct partial_symbol **global_syms,
struct partial_symbol **static_syms)
{
struct partial_symtab *psymtab;
psymtab = allocate_psymtab (filename, objfile);
1999-07-07 22:19:36 +02:00
psymtab->section_offsets = section_offsets;
psymtab->textlow = textlow;
psymtab->texthigh = psymtab->textlow; /* default */
psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
return (psymtab);
}
/* Add a symbol with a long value to a psymtab.
Since one arg is a struct, we pass in a ptr and deref it (sigh). */
void
2000-07-30 03:48:28 +02:00
add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
enum address_class class,
struct psymbol_allocation_list *list, long val, /* Value as a long */
CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
enum language language, struct objfile *objfile)
{
register struct partial_symbol *psym;
char *buf = alloca (namelength + 1);
/* psymbol is static so that there will be no uninitialized gaps in the
structure which might contain random data, causing cache misses in
bcache. */
static struct partial_symbol psymbol;
/* Create local copy of the partial symbol */
memcpy (buf, name, namelength);
buf[namelength] = '\0';
SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
/* val and coreaddr are mutually exclusive, one of them *will* be zero */
if (val != 0)
{
SYMBOL_VALUE (&psymbol) = val;
}
else
{
SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
}
SYMBOL_SECTION (&psymbol) = 0;
SYMBOL_LANGUAGE (&psymbol) = language;
PSYMBOL_NAMESPACE (&psymbol) = namespace;
PSYMBOL_CLASS (&psymbol) = class;
SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
/* Stash the partial symbol away in the cache */
psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
/* Save pointer to partial symbol in psymtab, growing symtab if needed. */
if (list->next >= list->list + list->size)
{
extend_psymbol_list (list, objfile);
}
*list->next++ = psym;
OBJSTAT (objfile, n_psyms++);
}
/* Add a symbol with a long value to a psymtab. This differs from
* add_psymbol_to_list above in taking both a mangled and a demangled
* name. */
void
2000-07-30 03:48:28 +02:00
add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
int dem_namelength, namespace_enum namespace,
enum address_class class,
struct psymbol_allocation_list *list, long val, /* Value as a long */
CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
enum language language,
struct objfile *objfile)
{
register struct partial_symbol *psym;
char *buf = alloca (namelength + 1);
/* psymbol is static so that there will be no uninitialized gaps in the
structure which might contain random data, causing cache misses in
bcache. */
static struct partial_symbol psymbol;
/* Create local copy of the partial symbol */
memcpy (buf, name, namelength);
buf[namelength] = '\0';
SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
buf = alloca (dem_namelength + 1);
memcpy (buf, dem_name, dem_namelength);
buf[dem_namelength] = '\0';
1999-07-07 22:19:36 +02:00
switch (language)
{
1999-07-07 22:19:36 +02:00
case language_c:
case language_cplus:
SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
break;
case language_chill:
SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
/* FIXME What should be done for the default case? Ignoring for now. */
}
/* val and coreaddr are mutually exclusive, one of them *will* be zero */
if (val != 0)
{
SYMBOL_VALUE (&psymbol) = val;
}
else
{
SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
}
SYMBOL_SECTION (&psymbol) = 0;
SYMBOL_LANGUAGE (&psymbol) = language;
PSYMBOL_NAMESPACE (&psymbol) = namespace;
PSYMBOL_CLASS (&psymbol) = class;
SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
/* Stash the partial symbol away in the cache */
psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
/* Save pointer to partial symbol in psymtab, growing symtab if needed. */
if (list->next >= list->list + list->size)
{
extend_psymbol_list (list, objfile);
}
*list->next++ = psym;
OBJSTAT (objfile, n_psyms++);
}
/* Initialize storage for partial symbols. */
void
2000-07-30 03:48:28 +02:00
init_psymbol_list (struct objfile *objfile, int total_symbols)
{
/* Free any previously allocated psymbol lists. */
1999-07-07 22:19:36 +02:00
if (objfile->global_psymbols.list)
{
1999-07-07 22:19:36 +02:00
mfree (objfile->md, (PTR) objfile->global_psymbols.list);
}
1999-07-07 22:19:36 +02:00
if (objfile->static_psymbols.list)
{
1999-07-07 22:19:36 +02:00
mfree (objfile->md, (PTR) objfile->static_psymbols.list);
}
1999-07-07 22:19:36 +02:00
/* Current best guess is that approximately a twentieth
of the total symbols (in a debugging file) are global or static
oriented symbols */
1999-07-07 22:19:36 +02:00
objfile->global_psymbols.size = total_symbols / 10;
objfile->static_psymbols.size = total_symbols / 10;
if (objfile->global_psymbols.size > 0)
{
1999-07-07 22:19:36 +02:00
objfile->global_psymbols.next =
objfile->global_psymbols.list = (struct partial_symbol **)
xmmalloc (objfile->md, (objfile->global_psymbols.size
* sizeof (struct partial_symbol *)));
}
1999-07-07 22:19:36 +02:00
if (objfile->static_psymbols.size > 0)
{
1999-07-07 22:19:36 +02:00
objfile->static_psymbols.next =
objfile->static_psymbols.list = (struct partial_symbol **)
xmmalloc (objfile->md, (objfile->static_psymbols.size
* sizeof (struct partial_symbol *)));
}
}
/* OVERLAYS:
The following code implements an abstraction for debugging overlay sections.
The target model is as follows:
1) The gnu linker will permit multiple sections to be mapped into the
1999-07-07 22:19:36 +02:00
same VMA, each with its own unique LMA (or load address).
2) It is assumed that some runtime mechanism exists for mapping the
1999-07-07 22:19:36 +02:00
sections, one by one, from the load address into the VMA address.
3) This code provides a mechanism for gdb to keep track of which
1999-07-07 22:19:36 +02:00
sections should be considered to be mapped from the VMA to the LMA.
This information is used for symbol lookup, and memory read/write.
For instance, if a section has been mapped then its contents
should be read from the VMA, otherwise from the LMA.
Two levels of debugger support for overlays are available. One is
"manual", in which the debugger relies on the user to tell it which
overlays are currently mapped. This level of support is
implemented entirely in the core debugger, and the information about
whether a section is mapped is kept in the objfile->obj_section table.
The second level of support is "automatic", and is only available if
the target-specific code provides functionality to read the target's
overlay mapping table, and translate its contents for the debugger
(by updating the mapped state information in the obj_section tables).
The interface is as follows:
1999-07-07 22:19:36 +02:00
User commands:
overlay map <name> -- tell gdb to consider this section mapped
overlay unmap <name> -- tell gdb to consider this section unmapped
overlay list -- list the sections that GDB thinks are mapped
overlay read-target -- get the target's state of what's mapped
overlay off/manual/auto -- set overlay debugging state
Functional interface:
find_pc_mapped_section(pc): if the pc is in the range of a mapped
section, return that section.
find_pc_overlay(pc): find any overlay section that contains
the pc, either in its VMA or its LMA
overlay_is_mapped(sect): true if overlay is marked as mapped
section_is_overlay(sect): true if section's VMA != LMA
pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
pc_in_unmapped_range(...): true if pc belongs to section's LMA
sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
1999-07-07 22:19:36 +02:00
overlay_mapped_address(...): map an address from section's LMA to VMA
overlay_unmapped_address(...): map an address from section's VMA to LMA
symbol_overlayed_address(...): Return a "current" address for symbol:
either in VMA or LMA depending on whether
the symbol's section is currently mapped
*/
/* Overlay debugging state: */
int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
/* Target vector for refreshing overlay mapped state */
2000-05-28 03:12:42 +02:00
static void simple_overlay_update (struct obj_section *);
void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
/* Function: section_is_overlay (SECTION)
Returns true if SECTION has VMA not equal to LMA, ie.
SECTION is loaded at an address different from where it will "run". */
int
2000-07-30 03:48:28 +02:00
section_is_overlay (asection *section)
{
if (overlay_debugging)
if (section && section->lma != 0 &&
section->vma != section->lma)
return 1;
return 0;
}
/* Function: overlay_invalidate_all (void)
Invalidate the mapped state of all overlay sections (mark it as stale). */
static void
2000-07-30 03:48:28 +02:00
overlay_invalidate_all (void)
{
1999-07-07 22:19:36 +02:00
struct objfile *objfile;
struct obj_section *sect;
ALL_OBJSECTIONS (objfile, sect)
if (section_is_overlay (sect->the_bfd_section))
1999-07-07 22:19:36 +02:00
sect->ovly_mapped = -1;
}
/* Function: overlay_is_mapped (SECTION)
Returns true if section is an overlay, and is currently mapped.
Private: public access is thru function section_is_mapped.
Access to the ovly_mapped flag is restricted to this function, so
that we can do automatic update. If the global flag
OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
overlay_invalidate_all. If the mapped state of the particular
section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
1999-07-07 22:19:36 +02:00
static int
2000-07-30 03:48:28 +02:00
overlay_is_mapped (struct obj_section *osect)
{
if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
return 0;
1999-07-07 22:19:36 +02:00
switch (overlay_debugging)
{
default:
1999-07-07 22:19:36 +02:00
case 0:
return 0; /* overlay debugging off */
case -1: /* overlay debugging automatic */
/* Unles there is a target_overlay_update function,
1999-07-07 22:19:36 +02:00
there's really nothing useful to do here (can't really go auto) */
if (target_overlay_update)
{
if (overlay_cache_invalid)
{
overlay_invalidate_all ();
overlay_cache_invalid = 0;
}
if (osect->ovly_mapped == -1)
(*target_overlay_update) (osect);
}
/* fall thru to manual case */
case 1: /* overlay debugging manual */
return osect->ovly_mapped == 1;
}
}
/* Function: section_is_mapped
Returns true if section is an overlay, and is currently mapped. */
int
2000-07-30 03:48:28 +02:00
section_is_mapped (asection *section)
{
1999-07-07 22:19:36 +02:00
struct objfile *objfile;
struct obj_section *osect;
if (overlay_debugging)
if (section && section_is_overlay (section))
ALL_OBJSECTIONS (objfile, osect)
if (osect->the_bfd_section == section)
1999-07-07 22:19:36 +02:00
return overlay_is_mapped (osect);
return 0;
}
/* Function: pc_in_unmapped_range
If PC falls into the lma range of SECTION, return true, else false. */
CORE_ADDR
2000-07-30 03:48:28 +02:00
pc_in_unmapped_range (CORE_ADDR pc, asection *section)
{
int size;
if (overlay_debugging)
if (section && section_is_overlay (section))
{
size = bfd_get_section_size_before_reloc (section);
if (section->lma <= pc && pc < section->lma + size)
return 1;
}
return 0;
}
/* Function: pc_in_mapped_range
If PC falls into the vma range of SECTION, return true, else false. */
CORE_ADDR
2000-07-30 03:48:28 +02:00
pc_in_mapped_range (CORE_ADDR pc, asection *section)
{
int size;
if (overlay_debugging)
if (section && section_is_overlay (section))
{
size = bfd_get_section_size_before_reloc (section);
if (section->vma <= pc && pc < section->vma + size)
return 1;
}
return 0;
}
/* Return true if the mapped ranges of sections A and B overlap, false
otherwise. */
int
sections_overlap (asection *a, asection *b)
{
CORE_ADDR a_start = a->vma;
CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
CORE_ADDR b_start = b->vma;
CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
return (a_start < b_end && b_start < a_end);
}
/* Function: overlay_unmapped_address (PC, SECTION)
Returns the address corresponding to PC in the unmapped (load) range.
May be the same as PC. */
CORE_ADDR
2000-07-30 03:48:28 +02:00
overlay_unmapped_address (CORE_ADDR pc, asection *section)
{
if (overlay_debugging)
if (section && section_is_overlay (section) &&
pc_in_mapped_range (pc, section))
return pc + section->lma - section->vma;
return pc;
}
/* Function: overlay_mapped_address (PC, SECTION)
Returns the address corresponding to PC in the mapped (runtime) range.
May be the same as PC. */
CORE_ADDR
2000-07-30 03:48:28 +02:00
overlay_mapped_address (CORE_ADDR pc, asection *section)
{
if (overlay_debugging)
if (section && section_is_overlay (section) &&
pc_in_unmapped_range (pc, section))
return pc + section->vma - section->lma;
return pc;
}
/* Function: symbol_overlayed_address
Return one of two addresses (relative to the VMA or to the LMA),
depending on whether the section is mapped or not. */
1999-07-07 22:19:36 +02:00
CORE_ADDR
2000-07-30 03:48:28 +02:00
symbol_overlayed_address (CORE_ADDR address, asection *section)
{
if (overlay_debugging)
{
/* If the symbol has no section, just return its regular address. */
if (section == 0)
return address;
/* If the symbol's section is not an overlay, just return its address */
if (!section_is_overlay (section))
return address;
/* If the symbol's section is mapped, just return its address */
if (section_is_mapped (section))
return address;
/*
* HOWEVER: if the symbol is in an overlay section which is NOT mapped,
* then return its LOADED address rather than its vma address!!
*/
return overlay_unmapped_address (address, section);
}
return address;
}
/* Function: find_pc_overlay (PC)
Return the best-match overlay section for PC:
If PC matches a mapped overlay section's VMA, return that section.
Else if PC matches an unmapped section's VMA, return that section.
Else if PC matches an unmapped section's LMA, return that section. */
asection *
2000-07-30 03:48:28 +02:00
find_pc_overlay (CORE_ADDR pc)
{
1999-07-07 22:19:36 +02:00
struct objfile *objfile;
struct obj_section *osect, *best_match = NULL;
if (overlay_debugging)
ALL_OBJSECTIONS (objfile, osect)
if (section_is_overlay (osect->the_bfd_section))
1999-07-07 22:19:36 +02:00
{
if (pc_in_mapped_range (pc, osect->the_bfd_section))
{
if (overlay_is_mapped (osect))
return osect->the_bfd_section;
else
best_match = osect;
}
else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
best_match = osect;
}
return best_match ? best_match->the_bfd_section : NULL;
}
/* Function: find_pc_mapped_section (PC)
If PC falls into the VMA address range of an overlay section that is
currently marked as MAPPED, return that section. Else return NULL. */
asection *
2000-07-30 03:48:28 +02:00
find_pc_mapped_section (CORE_ADDR pc)
{
1999-07-07 22:19:36 +02:00
struct objfile *objfile;
struct obj_section *osect;
if (overlay_debugging)
ALL_OBJSECTIONS (objfile, osect)
if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
overlay_is_mapped (osect))
1999-07-07 22:19:36 +02:00
return osect->the_bfd_section;
return NULL;
}
/* Function: list_overlays_command
Print a list of mapped sections and their PC ranges */
void
2000-07-30 03:48:28 +02:00
list_overlays_command (char *args, int from_tty)
{
1999-07-07 22:19:36 +02:00
int nmapped = 0;
struct objfile *objfile;
struct obj_section *osect;
if (overlay_debugging)
ALL_OBJSECTIONS (objfile, osect)
if (overlay_is_mapped (osect))
1999-07-07 22:19:36 +02:00
{
const char *name;
bfd_vma lma, vma;
int size;
vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
printf_filtered ("Section %s, loaded at ", name);
print_address_numeric (lma, 1, gdb_stdout);
puts_filtered (" - ");
print_address_numeric (lma + size, 1, gdb_stdout);
printf_filtered (", mapped at ");
print_address_numeric (vma, 1, gdb_stdout);
puts_filtered (" - ");
print_address_numeric (vma + size, 1, gdb_stdout);
puts_filtered ("\n");
nmapped++;
}
if (nmapped == 0)
printf_filtered ("No sections are mapped.\n");
}
/* Function: map_overlay_command
Mark the named section as mapped (ie. residing at its VMA address). */
void
2000-07-30 03:48:28 +02:00
map_overlay_command (char *args, int from_tty)
{
1999-07-07 22:19:36 +02:00
struct objfile *objfile, *objfile2;
struct obj_section *sec, *sec2;
asection *bfdsec;
if (!overlay_debugging)
error ("\
Overlay debugging not enabled. Use either the 'overlay auto' or\n\
the 'overlay manual' command.");
if (args == 0 || *args == 0)
error ("Argument required: name of an overlay section");
/* First, find a section matching the user supplied argument */
ALL_OBJSECTIONS (objfile, sec)
if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
1999-07-07 22:19:36 +02:00
{
/* Now, check to see if the section is an overlay. */
bfdsec = sec->the_bfd_section;
if (!section_is_overlay (bfdsec))
continue; /* not an overlay section */
/* Mark the overlay as "mapped" */
sec->ovly_mapped = 1;
/* Next, make a pass and unmap any sections that are
overlapped by this new section: */
ALL_OBJSECTIONS (objfile2, sec2)
if (sec2->ovly_mapped
&& sec != sec2
&& sec->the_bfd_section != sec2->the_bfd_section
&& sections_overlap (sec->the_bfd_section,
sec2->the_bfd_section))
1999-07-07 22:19:36 +02:00
{
if (info_verbose)
printf_filtered ("Note: section %s unmapped by overlap\n",
bfd_section_name (objfile->obfd,
sec2->the_bfd_section));
sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
}
return;
}
error ("No overlay section called %s", args);
}
/* Function: unmap_overlay_command
Mark the overlay section as unmapped
(ie. resident in its LMA address range, rather than the VMA range). */
void
2000-07-30 03:48:28 +02:00
unmap_overlay_command (char *args, int from_tty)
{
1999-07-07 22:19:36 +02:00
struct objfile *objfile;
struct obj_section *sec;
if (!overlay_debugging)
error ("\
Overlay debugging not enabled. Use either the 'overlay auto' or\n\
the 'overlay manual' command.");
if (args == 0 || *args == 0)
error ("Argument required: name of an overlay section");
/* First, find a section matching the user supplied argument */
ALL_OBJSECTIONS (objfile, sec)
if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
1999-07-07 22:19:36 +02:00
{
if (!sec->ovly_mapped)
error ("Section %s is not mapped", args);
sec->ovly_mapped = 0;
return;
}
error ("No overlay section called %s", args);
}
/* Function: overlay_auto_command
A utility command to turn on overlay debugging.
Possibly this should be done via a set/show command. */
static void
2000-07-30 03:48:28 +02:00
overlay_auto_command (char *args, int from_tty)
{
overlay_debugging = -1;
if (info_verbose)
printf_filtered ("Automatic overlay debugging enabled.");
}
/* Function: overlay_manual_command
A utility command to turn on overlay debugging.
Possibly this should be done via a set/show command. */
static void
2000-07-30 03:48:28 +02:00
overlay_manual_command (char *args, int from_tty)
{
overlay_debugging = 1;
if (info_verbose)
printf_filtered ("Overlay debugging enabled.");
}
/* Function: overlay_off_command
A utility command to turn on overlay debugging.
Possibly this should be done via a set/show command. */
static void
2000-07-30 03:48:28 +02:00
overlay_off_command (char *args, int from_tty)
{
1999-07-07 22:19:36 +02:00
overlay_debugging = 0;
if (info_verbose)
printf_filtered ("Overlay debugging disabled.");
}
static void
2000-07-30 03:48:28 +02:00
overlay_load_command (char *args, int from_tty)
{
if (target_overlay_update)
(*target_overlay_update) (NULL);
else
error ("This target does not know how to read its overlay state.");
}
/* Function: overlay_command
A place-holder for a mis-typed command */
/* Command list chain containing all defined "overlay" subcommands. */
struct cmd_list_element *overlaylist;
static void
2000-07-30 03:48:28 +02:00
overlay_command (char *args, int from_tty)
{
1999-07-07 22:19:36 +02:00
printf_unfiltered
("\"overlay\" must be followed by the name of an overlay command.\n");
help_list (overlaylist, "overlay ", -1, gdb_stdout);
}
/* Target Overlays for the "Simplest" overlay manager:
This is GDB's default target overlay layer. It works with the
minimal overlay manager supplied as an example by Cygnus. The
entry point is via a function pointer "target_overlay_update",
so targets that use a different runtime overlay manager can
substitute their own overlay_update function and take over the
function pointer.
The overlay_update function pokes around in the target's data structures
to see what overlays are mapped, and updates GDB's overlay mapping with
this information.
In this simple implementation, the target data structures are as follows:
1999-07-07 22:19:36 +02:00
unsigned _novlys; /# number of overlay sections #/
unsigned _ovly_table[_novlys][4] = {
{VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
{..., ..., ..., ...},
}
unsigned _novly_regions; /# number of overlay regions #/
unsigned _ovly_region_table[_novly_regions][3] = {
{VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
{..., ..., ...},
}
These functions will attempt to update GDB's mappedness state in the
symbol section table, based on the target's mappedness state.
To do this, we keep a cached copy of the target's _ovly_table, and
attempt to detect when the cached copy is invalidated. The main
entry point is "simple_overlay_update(SECT), which looks up SECT in
the cached table and re-reads only the entry for that section from
the target (whenever possible).
*/
/* Cached, dynamically allocated copies of the target data structures: */
1999-07-07 22:19:36 +02:00
static unsigned (*cache_ovly_table)[4] = 0;
#if 0
1999-07-07 22:19:36 +02:00
static unsigned (*cache_ovly_region_table)[3] = 0;
#endif
1999-07-07 22:19:36 +02:00
static unsigned cache_novlys = 0;
#if 0
1999-07-07 22:19:36 +02:00
static unsigned cache_novly_regions = 0;
#endif
static CORE_ADDR cache_ovly_table_base = 0;
#if 0
static CORE_ADDR cache_ovly_region_table_base = 0;
#endif
1999-07-07 22:19:36 +02:00
enum ovly_index
{
VMA, SIZE, LMA, MAPPED
};
#define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
/* Throw away the cached copy of _ovly_table */
static void
2000-07-30 03:48:28 +02:00
simple_free_overlay_table (void)
{
if (cache_ovly_table)
2000-12-15 02:01:51 +01:00
xfree (cache_ovly_table);
1999-07-07 22:19:36 +02:00
cache_novlys = 0;
cache_ovly_table = NULL;
cache_ovly_table_base = 0;
}
#if 0
/* Throw away the cached copy of _ovly_region_table */
static void
2000-07-30 03:48:28 +02:00
simple_free_overlay_region_table (void)
{
if (cache_ovly_region_table)
2000-12-15 02:01:51 +01:00
xfree (cache_ovly_region_table);
1999-07-07 22:19:36 +02:00
cache_novly_regions = 0;
cache_ovly_region_table = NULL;
cache_ovly_region_table_base = 0;
}
#endif
/* Read an array of ints from the target into a local buffer.
Convert to host order. int LEN is number of ints */
static void
2000-07-30 03:48:28 +02:00
read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
{
char *buf = alloca (len * TARGET_LONG_BYTES);
1999-07-07 22:19:36 +02:00
int i;
read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
for (i = 0; i < len; i++)
1999-07-07 22:19:36 +02:00
myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
TARGET_LONG_BYTES);
}
/* Find and grab a copy of the target _ovly_table
(and _novlys, which is needed for the table's size) */
1999-07-07 22:19:36 +02:00
static int
2000-07-30 03:48:28 +02:00
simple_read_overlay_table (void)
{
struct minimal_symbol *msym;
simple_free_overlay_table ();
msym = lookup_minimal_symbol ("_novlys", 0, 0);
if (msym != NULL)
cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
1999-07-07 22:19:36 +02:00
else
return 0; /* failure */
cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
if (cache_ovly_table != NULL)
{
msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
if (msym != NULL)
{
cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
1999-07-07 22:19:36 +02:00
read_target_long_array (cache_ovly_table_base,
(int *) cache_ovly_table,
cache_novlys * 4);
}
1999-07-07 22:19:36 +02:00
else
return 0; /* failure */
}
1999-07-07 22:19:36 +02:00
else
return 0; /* failure */
return 1; /* SUCCESS */
}
#if 0
/* Find and grab a copy of the target _ovly_region_table
(and _novly_regions, which is needed for the table's size) */
1999-07-07 22:19:36 +02:00
static int
2000-07-30 03:48:28 +02:00
simple_read_overlay_region_table (void)
{
struct minimal_symbol *msym;
simple_free_overlay_region_table ();
msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
if (msym != NULL)
cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
1999-07-07 22:19:36 +02:00
else
return 0; /* failure */
cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
if (cache_ovly_region_table != NULL)
{
msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
if (msym != NULL)
{
cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
1999-07-07 22:19:36 +02:00
read_target_long_array (cache_ovly_region_table_base,
(int *) cache_ovly_region_table,
cache_novly_regions * 3);
}
1999-07-07 22:19:36 +02:00
else
return 0; /* failure */
}
1999-07-07 22:19:36 +02:00
else
return 0; /* failure */
return 1; /* SUCCESS */
}
#endif
/* Function: simple_overlay_update_1
A helper function for simple_overlay_update. Assuming a cached copy
of _ovly_table exists, look through it to find an entry whose vma,
lma and size match those of OSECT. Re-read the entry and make sure
it still matches OSECT (else the table may no longer be valid).
Set OSECT's mapped state to match the entry. Return: 1 for
success, 0 for failure. */
static int
2000-07-30 03:48:28 +02:00
simple_overlay_update_1 (struct obj_section *osect)
{
int i, size;
size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
for (i = 0; i < cache_novlys; i++)
1999-07-07 22:19:36 +02:00
if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
cache_ovly_table[i][SIZE] == size */ )
{
read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
(int *) cache_ovly_table[i], 4);
1999-07-07 22:19:36 +02:00
if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
cache_ovly_table[i][SIZE] == size */ )
{
osect->ovly_mapped = cache_ovly_table[i][MAPPED];
return 1;
}
1999-07-07 22:19:36 +02:00
else /* Warning! Warning! Target's ovly table has changed! */
return 0;
}
return 0;
}
/* Function: simple_overlay_update
If OSECT is NULL, then update all sections' mapped state
(after re-reading the entire target _ovly_table).
If OSECT is non-NULL, then try to find a matching entry in the
cached ovly_table and update only OSECT's mapped state.
If a cached entry can't be found or the cache isn't valid, then
re-read the entire cache, and go ahead and update all sections. */
static void
2000-07-30 03:48:28 +02:00
simple_overlay_update (struct obj_section *osect)
{
1999-07-07 22:19:36 +02:00
struct objfile *objfile;
/* Were we given an osect to look up? NULL means do all of them. */
if (osect)
/* Have we got a cached copy of the target's overlay table? */
if (cache_ovly_table != NULL)
/* Does its cached location match what's currently in the symtab? */
1999-07-07 22:19:36 +02:00
if (cache_ovly_table_base ==
SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
/* Then go ahead and try to look up this single section in the cache */
if (simple_overlay_update_1 (osect))
/* Found it! We're done. */
return;
/* Cached table no good: need to read the entire table anew.
Or else we want all the sections, in which case it's actually
more efficient to read the whole table in one block anyway. */
if (simple_read_overlay_table () == 0) /* read failed? No table? */
{
warning ("Failed to read the target overlay mapping table.");
return;
}
/* Now may as well update all sections, even if only one was requested. */
ALL_OBJSECTIONS (objfile, osect)
if (section_is_overlay (osect->the_bfd_section))
1999-07-07 22:19:36 +02:00
{
int i, size;
size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
for (i = 0; i < cache_novlys; i++)
if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
cache_ovly_table[i][SIZE] == size */ )
{ /* obj_section matches i'th entry in ovly_table */
osect->ovly_mapped = cache_ovly_table[i][MAPPED];
break; /* finished with inner for loop: break out */
}
}
}
void
2000-07-30 03:48:28 +02:00
_initialize_symfile (void)
{
struct cmd_list_element *c;
1999-07-07 22:19:36 +02:00
c = add_cmd ("symbol-file", class_files, symbol_file_command,
1999-07-07 22:19:36 +02:00
"Load symbol table from executable file FILE.\n\
The `file' command can also load symbol tables, as well as setting the file\n\
to execute.", &cmdlist);
c->completer = filename_completer;
c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
"Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
1999-10-06 01:13:56 +02:00
ADDR is the starting address of the file's text.\n\
The optional arguments are section-name section-address pairs and\n\
should be specified if the data and bss segments are not contiguous\n\
with the text. SECT is a section name to be loaded at SECT_ADDR.",
&cmdlist);
c->completer = filename_completer;
c = add_cmd ("add-shared-symbol-files", class_files,
add_shared_symbol_files_command,
"Load the symbols from shared objects in the dynamic linker's link map.",
1999-07-07 22:19:36 +02:00
&cmdlist);
c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
&cmdlist);
c = add_cmd ("load", class_files, load_command,
1999-07-07 22:19:36 +02:00
"Dynamically load FILE into the running program, and record its symbols\n\
for access from GDB.", &cmdlist);
c->completer = filename_completer;
add_show_from_set
(add_set_cmd ("symbol-reloading", class_support, var_boolean,
1999-07-07 22:19:36 +02:00
(char *) &symbol_reloading,
"Set dynamic symbol table reloading multiple times in one run.",
&setlist),
&showlist);
1999-07-07 22:19:36 +02:00
add_prefix_cmd ("overlay", class_support, overlay_command,
"Commands for debugging overlays.", &overlaylist,
"overlay ", 0, &cmdlist);
add_com_alias ("ovly", "overlay", class_alias, 1);
add_com_alias ("ov", "overlay", class_alias, 1);
1999-07-07 22:19:36 +02:00
add_cmd ("map-overlay", class_support, map_overlay_command,
"Assert that an overlay section is mapped.", &overlaylist);
1999-07-07 22:19:36 +02:00
add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
"Assert that an overlay section is unmapped.", &overlaylist);
1999-07-07 22:19:36 +02:00
add_cmd ("list-overlays", class_support, list_overlays_command,
"List mappings of overlay sections.", &overlaylist);
1999-07-07 22:19:36 +02:00
add_cmd ("manual", class_support, overlay_manual_command,
"Enable overlay debugging.", &overlaylist);
1999-07-07 22:19:36 +02:00
add_cmd ("off", class_support, overlay_off_command,
"Disable overlay debugging.", &overlaylist);
1999-07-07 22:19:36 +02:00
add_cmd ("auto", class_support, overlay_auto_command,
"Enable automatic overlay debugging.", &overlaylist);
1999-07-07 22:19:36 +02:00
add_cmd ("load-target", class_support, overlay_load_command,
"Read the overlay mapping state from the target.", &overlaylist);
/* Filename extension to source language lookup table: */
init_filename_language_table ();
c = add_set_cmd ("extension-language", class_files, var_string_noescape,
1999-07-07 22:19:36 +02:00
(char *) &ext_args,
"Set mapping between filename extension and source language.\n\
Usage: set extension-language .foo bar",
1999-07-07 22:19:36 +02:00
&setlist);
c->function.cfunc = set_ext_lang_command;
1999-07-07 22:19:36 +02:00
add_info ("extensions", info_ext_lang_command,
"All filename extensions associated with a source language.");
1999-10-19 04:47:02 +02:00
add_show_from_set
(add_set_cmd ("download-write-size", class_obscure,
var_integer, (char *) &download_write_size,
"Set the write size used when downloading a program.\n"
"Only used when downloading a program onto a remote\n"
"target. Specify zero, or a negative value, to disable\n"
"blocked writes. The actual size of each transfer is also\n"
"limited by the size of the target packet and the memory\n"
"cache.\n",
&setlist),
&showlist);
}