binutils-gdb/gdb/ChangeLog

119 lines
4.1 KiB
Plaintext
Raw Normal View History

2018-01-05 Jerome Guitton <guitton@adacore.com>
* ada-lang.c (ada_array_length): Use ada_index_type instead of
TYPE_INDEX_TYPE.
memory error printing component of record from convenience variable Consider the following situation Ada code: type Kind_T is (One, Two, Three); type Time_Set_T is array (Kind_T) of Integer; type T is record Started : Time_Set_T; end record; Null_T : constant T := (Started => (others => 0)); My_Item : Pck.T := Pck.Null_T; Trying to print the value of My_Item.Started is no problem: (gdb) p item.started $1 = (0, 0, 0) However, if you save My_Item into a convenience variable first, and then try to print a component of that record, you get an unexpected memory error, instead of getting the same result. For instance: (gdb) set variable $item := item (gdb) p $item.started Cannot access memory at address 0x0 The issue occurs when, after we extracted the component from the convenience variable, we next try to "fix" it (which is ada-lang speak for resolving the type into a static type). This is done in ada_to_fixed_value, which delegates to ada_to_fixed_value_create via: val = ada_to_fixed_value_create (value_type (val), value_address (val), val); And looking at ada_to_fixed_value_create, we see that: struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); if (type == type0 && val0 != NULL) return val0; else return value_from_contents_and_address (type, 0, address); The part that interests us, in this case, is the "else" branch, where we obviously make the implicit assumption that our object has an address, which is not true, in this case, because we are actually dealing with a convenience variable. This patch plugs that hole by adding special handing for situations where val does not live in memory. In that case, we just create a not_lval value using val's contents. gdb/ChangeLog: * ada-lang.c (ada_to_fixed_value_create): Add handling of the case where VALUE_LVAL (val0) is not lval_memory. gdb/testsuite/ChangeLog: * gdb.ada/convvar_comp: New testcase. Tested on x86_64-linux.
2018-01-05 08:37:38 +01:00
2018-01-05 Joel Brobecker <brobecker@adacore.com>
* ada-lang.c (ada_to_fixed_value_create): Add handling of
the case where VALUE_LVAL (val0) is not lval_memory.
2018-01-05 08:39:10 +01:00
2018-01-05 Xavier Roirand <roirand@adacore.com>
* ada-valprint.c (print_optional_low_bound): Handle
character-indexed array printing like boolean-indexed array
printing.
2018-01-05 Joel Brobecker <brobecker@adacore.com>
* NEWS: Create a new section for the next release branch.
Rename the section of the current branch, now that it has
been cut.
2018-01-05 Joel Brobecker <brobecker@adacore.com>
GDB 8.1 branch created (5219ac6237c272b938c28517bf371429260c71e7):
* version.in: Bump version to 8.1.50.DATE-git.
(Ada) New command to stop at start of exception handler. When using gdb for debugging Ada source code, there are several catchpoint types you can define in order to stop upon certain conditions. Let's use this small example: procedure Foo is begin begin raise Constraint_Error; exception when Program_Error => null; when Constraint_Error => null; when others => null; end; end Foo; One can stop when the exception is being raised by using the exception catchpoint like below: (gdb) catch exception Catchpoint 1: all Ada exceptions (gdb) In that case, when running Foo, gdb will stop at the line where the exception was raised: begin >>> raise Constraint_Error; exception This patch introduces new type of catchpoint, when the user wants to stop at the location of the exception handling. Imagine we want to stop on any exception handled by the program, we can do: (gdb) catch handlers Catchpoint 1: all Ada exceptions handlers (gdb) r Starting program: /tmp/foo By doing so, when running Foo, gdb will stop here: Catchpoint 1, exception at 0x000000000040255a in foo () at foo.adb:25 25 when Constraint_Error => (gdb) It is also possible to stop when the Constraint_Error exception is being handled in this program. With this patch, we can use: (gdb) catch handlers Constraint_Error Catchpoint 1: `Constraint_Error' Ada exception handlers (gdb) Like for other catchpoint, you can set a condition when adding a catchpoint on exception handlers. Here the handlers catchpoint checks Global_Var: (gdb) catch handlers Constraint_Error if Global_Var /= 0 gdb/ChangeLog: * ada-lang.h (ada_exception_catchpoint_kind) <ada_catch_handlers>: Add field. * ada-lang.c (struct exception_support_info) <catch_handlers_sym>: Add field. (default_exception_support_info) <catch_handlers_sym>: Add field. (exception_support_info_fallback) <catch_handlers_sym>: Add field. (ada_exception_name_addr_1): Add "catch handlers" handling. (ada_exception_catchpoint_cond_string) <ex>: New parameter. Update all callers. (create_excep_cond_exprs) <ex>: Add parameter. (re_set_exception): Update create_excep_cond_exprs call. (print_it_exception, print_one_exception, print_mention_exception) (print_recreate_exception): Add "catch handler" handling. (allocate_location_catch_handlers, re_set_catch_handlers) (check_status_catch_handlers, print_it_catch_handlers) (print_one_catch_handlers, print_mention_catch_handlers) (print_recreate_catch_handlers): New function. (catch_handlers_breakpoint_ops): New variable. (catch_ada_exception_command_split) <is_catch_handlers_cmd>: Add parameter. Add "catch handler" handling. (ada_exception_sym_name, ada_exception_breakpoint_ops): Add "catch handler" handling. (ada_exception_catchpoint_cond_string): Add "catch handler" handling. (create_ada_exception_catchpoint): Update create_excep_cond_exprs call. (catch_ada_handlers_command): New function. (initialize_ada_catchpoint_ops): Initialize "catch handlers" operations structure. (_initialize_ada_language): Add "catch handlers" command entry. * NEWS: Document "catch handlers" feature. gdb/doc/ChangeLog: * gdb.texinfo (Set Catchpoints): Add documentation for new "catch handlers" action. gdb/testsuite/ChangeLog: * gdb.ada/excep_handle.exp: New testcase. * gdb.ada/excep_handle/foo.adb: New file. * gdb.ada/excep_handle/pck.ads: New file. Tested on x86_64-linux.
2017-11-22 10:40:39 +01:00
2018-01-03 Xavier Roirand <roirand@adacore.com>
* ada-lang.h (ada_exception_catchpoint_kind) <ada_catch_handlers>:
Add field.
* ada-lang.c (struct exception_support_info) <catch_handlers_sym>:
Add field.
(default_exception_support_info) <catch_handlers_sym>: Add field.
(exception_support_info_fallback) <catch_handlers_sym>: Add field.
(ada_exception_name_addr_1): Add "catch handlers" handling.
(ada_exception_catchpoint_cond_string) <ex>: New parameter.
Update all callers.
(create_excep_cond_exprs) <ex>: Add parameter.
(re_set_exception): Update create_excep_cond_exprs call.
(print_it_exception, print_one_exception, print_mention_exception)
(print_recreate_exception): Add "catch handler" handling.
(allocate_location_catch_handlers, re_set_catch_handlers)
(check_status_catch_handlers, print_it_catch_handlers)
(print_one_catch_handlers, print_mention_catch_handlers)
(print_recreate_catch_handlers): New function.
(catch_handlers_breakpoint_ops): New variable.
(catch_ada_exception_command_split) <is_catch_handlers_cmd>:
Add parameter. Add "catch handler" handling.
(ada_exception_sym_name, ada_exception_breakpoint_ops):
Add "catch handler" handling.
(ada_exception_catchpoint_cond_string): Add "catch handler"
handling.
(create_ada_exception_catchpoint): Update create_excep_cond_exprs
call.
(catch_ada_handlers_command): New function.
(initialize_ada_catchpoint_ops): Initialize "catch handlers"
operations structure.
(_initialize_ada_language): Add "catch handlers" command entry.
* NEWS: Document "catch handlers" feature.
[gdb/Ada] slices of arrays with dynamic strides Consider the following Ada code: procedure Nested (L, U : Integer) is subtype Small_Type is Integer range L .. U; type Record_Type (I : Small_Type := L) is record S : String (1 .. I); end record; type Array_Type is array (Integer range <>) of Record_Type; A1 : Array_Type := (1 => (I => 0, S => <>), 2 => (I => 1, S => "A"), 3 => (I => 2, S => "AB")); procedure Discard (R : Record_Type) is begin null; end Discard; begin Discard (A1 (1)); -- STOP end; Trying to print a slice of that array currently yields: (gdb) p a1(1..3) $1 = ((i => 0, s => ""), (i => 0, s => ""), (i => 0, s => "")) We expected instead: (gdb) p a1(1..3) $1 = ((i => 0, s => ""), (i => 1, s => "A"), (i => 2, s => "AB")) This is because the functions we use in ada-lang.c to create the type of the array slice (ada_value_slice and ada_value_slice_from_ptr) was not taking into account the stride of the array. This patch fixes this. gdb/ChangeLog: * ada-lang.c (ada_value_slice_from_ptr): Take array stride into account when creating the array type of the slice. (ada_value_slice): Likewise. gdb/testsuite/ChangeLog: * gdb.ada/dyn_stride.exp: Add slice test. Note that, with the current use of ada_value_slice, the enhancement to handle dynamic array strides seems unnecessary, because I do not see how an array with a dynamic stride can be referenced by either by reference or pointer. Since references are coerced to array pointers, in both cases, the slice is performed by ada_value_slice_from_ptr. But ada_value_slice is enhanced nonetheless, in the spirit of making the code more robust, in case we missed something, and also as similar as possible with its from_ptr counterpart. tested on x86_64-linux.
2018-01-02 04:53:55 +01:00
2018-01-02 Joel Brobecker <brobecker@adacore.com>
* ada-lang.c (ada_value_slice_from_ptr): Take array stride into
account when creating the array type of the slice.
(ada_value_slice): Likewise.
Add support for dynamic DW_AT_byte_stride. This patch adds support for DW_AT_byte_stride, using Ada as one example of where this would be useful. However, the implementation is language-agnostic. Consider the following Ada code: procedure Nested (L, U : Integer) is subtype Small_Type is Integer range L .. U; type Record_Type (I : Small_Type := L) is record S : String (1 .. I); end record; type Array_Type is array (Integer range <>) of Record_Type; A1 : Array_Type := (1 => (I => 0, S => <>), 2 => (I => 1, S => "A"), 3 => (I => 2, S => "AB")); procedure Discard (R : Record_Type) is begin null; end Discard; begin Discard (A1 (1)); -- STOP end; It defines an array A1 of Record_Type, which is a variant record type whose maximum size actually depends on the value of the parameters passed when calling Nested. As a result, the stride of the array A1 cannot be known statically, which leads the compiler to generate a dynamic DW_AT_byte_stride attribute for our type. Here is what the debugging info looks like with GNAT: .uleb128 0x10 # (DIE (0x14e) DW_TAG_array_type) .long .LASF17 # DW_AT_name: "foo__nested__T18b" .long 0x141 # DW_AT_byte_stride .long 0xdc # DW_AT_type .uleb128 0x11 # (DIE (0x15f) DW_TAG_subrange_type) .long 0x166 # DW_AT_type .byte 0x3 # DW_AT_upper_bound .byte 0 # end of children of DIE 0x14e There DW_AT_byte_stride is a reference to a local (internal) variable: .uleb128 0x9 # (DIE (0x141) DW_TAG_variable) .long .LASF6 # DW_AT_name: "foo__nested__T18b___PAD___XVZ" This patch enhances GDB to handle this dynamic byte stride attribute by first adding a new dynamic_prop_node_kind (DYN_PROP_BYTE_STRIDE) to store the array dynamic stride info (when dynamic). It then enhances the dynamic type resolver to handle this dynamic property. Before applying this patch, trying to print the value of some of A1's elements after having stopped at the "STOP" comment does not work. For instance: (gdb) p a1(2) Cannot access memory at address 0x80000268dec0 With this patch applied, GDB now prints the value of all 3 elements correctly: (gdb) print A1(1) $1 = (i => 0, s => "") (gdb) print A1(2) $2 = (i => 1, s => "A") (gdb) print A1(3) $3 = (i => 2, s => "AB") gdb/ChangeLog: * gdbtypes.h (enum dynamic_prop_node_kind) <DYN_PROP_BYTE_STRIDE>: New enum value. (create_array_type_with_stride): Add byte_stride_prop parameter. * gdbtypes.c (create_array_type_with_stride) <byte_stride_prop>: New parameter. Update all callers in this file. (array_type_has_dynamic_stride): New function. (is_dynamic_type_internal, resolve_dynamic_array): Add handling of arrays with dynamic byte strides. * dwarf2read.c (read_array_type): Add support for dynamic DW_AT_byte_stride attributes. gdb/testsuite/ChangeLog: * gdb.ada/dyn_stride: New testcase. Tested on x86_64-linux.
2018-01-02 04:47:18 +01:00
2018-01-02 Joel Brobecker <brobecker@adacore.com>
* gdbtypes.h (enum dynamic_prop_node_kind) <DYN_PROP_BYTE_STRIDE>:
New enum value.
(create_array_type_with_stride): Add byte_stride_prop parameter.
* gdbtypes.c (create_array_type_with_stride) <byte_stride_prop>:
New parameter. Update all callers in this file.
(array_type_has_dynamic_stride): New function.
(is_dynamic_type_internal, resolve_dynamic_array): Add handling
of arrays with dynamic byte strides.
* dwarf2read.c (read_array_type): Add support for dynamic
DW_AT_byte_stride attributes.
2018-01-02 Joel Brobecker <brobecker@adacore.com>
* dwarf2read.c (read_unspecified_type): Treat
DW_TAG_enumeration_type DIEs from Ada units as stubs.
2018-01-01 Joel Brobecker <brobecker@adacore.com>
Update copyright year range in all GDB files.
2018-01-01 Joel Brobecker <brobecker@adacore.com>
* copyright.py (BY_HAND): Remove gdb/testsuite/gdb.base/step-line.inp
and gdb/testsuite/gdb.base/step-line.c.
2018-01-01 Joel Brobecker <brobecker@adacore.com>
* copyright.py (main): Dump the contents of
MULTIPLE_COPYRIGHT_HEADERS (separately) from BY_HAND,
even if BY_HAND is empty.
2018-01-01 Joel Brobecker <brobecker@adacore.com>
* top.c (print_gdb_version): Update Copyright year in version
message.
2018-01-01 Joel Brobecker <brobecker@adacore.com>
* config/djgpp/fnchange.lst: Add entry for gdb/ChangeLog-2017.
For older changes see ChangeLog-2017.
Local Variables:
mode: change-log
left-margin: 8
fill-column: 74
version-control: never
2007-08-10 00:44:38 +02:00
coding: utf-8
End: