binutils-gdb/gdb/ns32k-tdep.c

441 lines
11 KiB
C
Raw Normal View History

/* Print NS 32000 instructions for GDB, the GNU debugger.
Copyright 1986, 1988, 1991, 1992, 1994, 1995, 1998, 1999, 2000, 2001,
2002 Free Software Foundation, Inc.
1999-07-07 22:19:36 +02:00
This file is part of GDB.
1999-07-07 22:19:36 +02:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
1999-07-07 22:19:36 +02:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
1999-07-07 22:19:36 +02:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
2001-03-28 23:26:07 +02:00
#include "gdbcore.h"
static int sign_extend (int value, int bits);
static CORE_ADDR ns32k_get_enter_addr (CORE_ADDR);
static int ns32k_localcount (CORE_ADDR enter_pc);
static void flip_bytes (void *, int);
char *
ns32k_register_name_32082 (int regno)
{
static char *register_names[] =
{
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"sp", "fp", "pc", "ps",
"l0", "l1", "l2", "l3", "xx",
};
if (regno < 0)
return NULL;
if (regno >= sizeof (register_names) / sizeof (*register_names))
return NULL;
return (register_names[regno]);
}
char *
ns32k_register_name_32382 (int regno)
{
static char *register_names[] =
{
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"sp", "fp", "pc", "ps",
"fsr",
"l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", "xx",
};
if (regno < 0)
return NULL;
if (regno >= sizeof (register_names) / sizeof (*register_names))
return NULL;
return (register_names[regno]);
}
1999-05-05 16:45:51 +02:00
int
ns32k_register_byte_32082 (int regno)
{
if (regno >= LP0_REGNUM)
return (LP0_REGNUM * 4) + ((regno - LP0_REGNUM) * 8);
return (regno * 4);
}
int
ns32k_register_byte_32382 (int regno)
{
/* This is a bit yuk. The even numbered double precision floating
point long registers occupy the same space as the even:odd numbered
single precision floating point registers, but the extra 32381 FPU
registers are at the end. Doing it this way is compatible for both
32081 and 32381 equipped machines. */
return ((regno < LP0_REGNUM ? regno
: (regno - LP0_REGNUM) & 1 ? regno - 1
: (regno - LP0_REGNUM + FP0_REGNUM)) * 4);
}
int
ns32k_register_raw_size (int regno)
{
/* All registers are 4 bytes, except for the doubled floating
registers. */
return ((regno >= LP0_REGNUM) ? 8 : 4);
}
int
ns32k_register_virtual_size (int regno)
{
return ((regno >= LP0_REGNUM) ? 8 : 4);
}
struct type *
ns32k_register_virtual_type (int regno)
{
if (regno < FP0_REGNUM)
return (builtin_type_int);
if (regno < FP0_REGNUM + 8)
return (builtin_type_float);
if (regno < LP0_REGNUM)
return (builtin_type_int);
return (builtin_type_double);
}
1999-05-05 16:45:51 +02:00
/* Advance PC across any function entry prologue instructions
to reach some "real" code. */
CORE_ADDR
2000-07-30 03:48:28 +02:00
umax_skip_prologue (CORE_ADDR pc)
1999-05-05 16:45:51 +02:00
{
register unsigned char op = read_memory_integer (pc, 1);
if (op == 0x82)
{
1999-07-07 22:19:36 +02:00
op = read_memory_integer (pc + 2, 1);
1999-05-05 16:45:51 +02:00
if ((op & 0x80) == 0)
pc += 3;
else if ((op & 0xc0) == 0x80)
pc += 4;
else
pc += 6;
1999-07-07 22:19:36 +02:00
}
1999-05-05 16:45:51 +02:00
return pc;
}
const unsigned char *
ns32k_breakpoint_from_pc (CORE_ADDR *pcp, int *lenp)
{
static const unsigned char breakpoint_insn[] = { 0xf2 };
*lenp = sizeof (breakpoint_insn);
return breakpoint_insn;
}
1999-05-05 16:45:51 +02:00
1999-06-07 21:19:32 +02:00
/* Return number of args passed to a frame.
Can return -1, meaning no way to tell.
Encore's C compiler often reuses same area on stack for args,
so this will often not work properly. If the arg names
are known, it's likely most of them will be printed. */
1999-05-25 20:09:09 +02:00
int
2000-07-30 03:48:28 +02:00
umax_frame_num_args (struct frame_info *fi)
1999-05-25 20:09:09 +02:00
{
int numargs;
CORE_ADDR pc;
CORE_ADDR enter_addr;
unsigned int insn;
unsigned int addr_mode;
int width;
numargs = -1;
enter_addr = ns32k_get_enter_addr ((fi)->pc);
if (enter_addr > 0)
{
pc = ((enter_addr == 1)
? SAVED_PC_AFTER_CALL (fi)
: FRAME_SAVED_PC (fi));
1999-07-07 22:19:36 +02:00
insn = read_memory_integer (pc, 2);
1999-05-25 20:09:09 +02:00
addr_mode = (insn >> 11) & 0x1f;
insn = insn & 0x7ff;
if ((insn & 0x7fc) == 0x57c
1999-07-07 22:19:36 +02:00
&& addr_mode == 0x14) /* immediate */
1999-05-25 20:09:09 +02:00
{
1999-07-07 22:19:36 +02:00
if (insn == 0x57c) /* adjspb */
1999-05-25 20:09:09 +02:00
width = 1;
1999-07-07 22:19:36 +02:00
else if (insn == 0x57d) /* adjspw */
1999-05-25 20:09:09 +02:00
width = 2;
1999-07-07 22:19:36 +02:00
else if (insn == 0x57f) /* adjspd */
1999-05-25 20:09:09 +02:00
width = 4;
2001-03-28 23:26:07 +02:00
else
internal_error (__FILE__, __LINE__, "bad else");
1999-07-07 22:19:36 +02:00
numargs = read_memory_integer (pc + 2, width);
1999-05-25 20:09:09 +02:00
if (width > 1)
flip_bytes (&numargs, width);
1999-07-07 22:19:36 +02:00
numargs = -sign_extend (numargs, width * 8) / 4;
1999-05-25 20:09:09 +02:00
}
}
return numargs;
}
1999-05-05 16:45:51 +02:00
2001-03-28 23:26:07 +02:00
static int
2000-07-30 03:48:28 +02:00
sign_extend (int value, int bits)
{
value = value & ((1 << bits) - 1);
1999-07-07 22:19:36 +02:00
return (value & (1 << (bits - 1))
? value | (~((1 << bits) - 1))
: value);
}
static void
2001-03-28 23:26:07 +02:00
flip_bytes (void *p, int count)
{
char tmp;
2001-03-28 23:26:07 +02:00
char *ptr = 0;
while (count > 0)
{
tmp = *ptr;
1999-07-07 22:19:36 +02:00
ptr[0] = ptr[count - 1];
ptr[count - 1] = tmp;
ptr++;
count -= 2;
}
}
/* Return the number of locals in the current frame given a
pc pointing to the enter instruction. This is used by
ns32k_frame_init_saved_regs. */
static int
2000-07-30 03:48:28 +02:00
ns32k_localcount (CORE_ADDR enter_pc)
{
unsigned char localtype;
int localcount;
1999-07-07 22:19:36 +02:00
localtype = read_memory_integer (enter_pc + 2, 1);
if ((localtype & 0x80) == 0)
localcount = localtype;
else if ((localtype & 0xc0) == 0x80)
localcount = (((localtype & 0x3f) << 8)
1999-07-07 22:19:36 +02:00
| (read_memory_integer (enter_pc + 3, 1) & 0xff));
else
localcount = (((localtype & 0x3f) << 24)
1999-07-07 22:19:36 +02:00
| ((read_memory_integer (enter_pc + 3, 1) & 0xff) << 16)
| ((read_memory_integer (enter_pc + 4, 1) & 0xff) << 8)
| (read_memory_integer (enter_pc + 5, 1) & 0xff));
return localcount;
}
/* Nonzero if instruction at PC is a return instruction. */
static int
2000-07-30 03:48:28 +02:00
ns32k_about_to_return (CORE_ADDR pc)
{
return (read_memory_integer (pc, 1) == 0x12);
}
/* Get the address of the enter opcode for this function, if it is active.
Returns positive address > 1 if pc is between enter/exit,
1 if pc before enter or after exit, 0 otherwise. */
static CORE_ADDR
2000-07-30 03:48:28 +02:00
ns32k_get_enter_addr (CORE_ADDR pc)
{
CORE_ADDR enter_addr;
unsigned char op;
if (pc == 0)
return 0;
if (ns32k_about_to_return (pc))
1999-07-07 22:19:36 +02:00
return 1; /* after exit */
enter_addr = get_pc_function_start (pc);
1999-07-07 22:19:36 +02:00
if (pc == enter_addr)
return 1; /* before enter */
op = read_memory_integer (enter_addr, 1);
if (op != 0x82)
1999-07-07 22:19:36 +02:00
return 0; /* function has no enter/exit */
1999-07-07 22:19:36 +02:00
return enter_addr; /* pc is between enter and exit */
}
CORE_ADDR
ns32k_frame_chain (struct frame_info *frame)
{
/* In the case of the NS32000 series, the frame's nominal address is the
FP value, and that address is saved at the previous FP value as a
4-byte word. */
if (inside_entry_file (frame->pc))
return 0;
return (read_memory_integer (frame->frame, 4));
}
CORE_ADDR
ns32k_frame_saved_pc (struct frame_info *frame)
{
if (frame->signal_handler_caller)
return (sigtramp_saved_pc (frame)); /* XXXJRT */
return (read_memory_integer (frame->frame + 4, 4));
}
CORE_ADDR
ns32k_frame_args_address (struct frame_info *frame)
{
if (ns32k_get_enter_addr (frame->pc) > 1)
return (frame->frame);
return (read_register (SP_REGNUM) - 4);
}
CORE_ADDR
ns32k_frame_locals_address (struct frame_info *frame)
{
return (frame->frame);
}
/* Code to initialize the addresses of the saved registers of frame described
by FRAME_INFO. This includes special registers such as pc and fp saved in
special ways in the stack frame. sp is even more special: the address we
return for it IS the sp for the next frame. */
void
ns32k_frame_init_saved_regs (struct frame_info *frame)
{
int regmask, regnum;
int localcount;
CORE_ADDR enter_addr, next_addr;
if (frame->saved_regs)
return;
frame_saved_regs_zalloc (frame);
enter_addr = ns32k_get_enter_addr (frame->pc);
if (enter_addr > 1)
{
regmask = read_memory_integer (enter_addr + 1, 1) & 0xff;
localcount = ns32k_localcount (enter_addr);
next_addr = frame->frame + localcount;
for (regnum = 0; regnum < 8; regnum++)
{
if (regmask & (1 << regnum))
frame->saved_regs[regnum] = next_addr -= 4;
}
frame->saved_regs[SP_REGNUM] = frame->frame + 4;
frame->saved_regs[PC_REGNUM] = frame->frame + 4;
frame->saved_regs[FP_REGNUM] = read_memory_integer (frame->frame, 4);
}
else if (enter_addr == 1)
{
CORE_ADDR sp = read_register (SP_REGNUM);
frame->saved_regs[PC_REGNUM] = sp;
frame->saved_regs[SP_REGNUM] = sp + 4;
}
}
void
ns32k_push_dummy_frame (void)
{
CORE_ADDR sp = read_register (SP_REGNUM);
int regnum;
sp = push_word (sp, read_register (PC_REGNUM));
sp = push_word (sp, read_register (FP_REGNUM));
write_register (FP_REGNUM, sp);
for (regnum = 0; regnum < 8; regnum++)
sp = push_word (sp, read_register (regnum));
write_register (SP_REGNUM, sp);
}
void
ns32k_pop_frame (void)
{
struct frame_info *frame = get_current_frame ();
CORE_ADDR fp;
int regnum;
fp = frame->frame;
FRAME_INIT_SAVED_REGS (frame);
for (regnum = 0; regnum < 8; regnum++)
if (frame->saved_regs[regnum])
write_register (regnum,
read_memory_integer (frame->saved_regs[regnum], 4));
write_register (FP_REGNUM, read_memory_integer (fp, 4));
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
write_register (SP_REGNUM, fp + 8);
flush_cached_frames ();
}
/* The NS32000 call dummy sequence:
enter 0xff,0 82 ff 00
jsr @0x00010203 7f ae c0 01 02 03
adjspd 0x69696969 7f a5 01 02 03 04
bpt f2
It is 16 bytes long. */
LONGEST ns32k_call_dummy_words[] =
{
0x7f00ff82,
0x0201c0ae,
0x01a57f03,
0xf2040302
};
int sizeof_ns32k_call_dummy_words = sizeof (ns32k_call_dummy_words);
#define NS32K_CALL_DUMMY_ADDR 5
#define NS32K_CALL_DUMMY_NARGS 11
void
ns32k_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
struct value **args, struct type *type, int gcc_p)
{
int flipped;
flipped = fun | 0xc0000000;
flip_bytes (&flipped, 4);
store_unsigned_integer (dummy + NS32K_CALL_DUMMY_ADDR, 4, flipped);
flipped = - nargs * 4;
flip_bytes (&flipped, 4);
store_unsigned_integer (dummy + NS32K_CALL_DUMMY_NARGS, 4, flipped);
}
void
_initialize_ns32k_tdep (void)
{
tm_print_insn = print_insn_ns32k;
}