binutils-gdb/gdb/gdbserver/low-nbsd.c

591 lines
17 KiB
C
Raw Normal View History

/* Low level interface to ptrace, for the remote server for GDB.
2001-03-06 09:22:02 +01:00
Copyright 1986, 1987, 1993, 2000, 2001 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "server.h"
#include <sys/types.h>
#include <sys/wait.h>
#include "frame.h"
#include "inferior.h"
#include <stdio.h>
#include <errno.h>
/***************Begin MY defs*********************/
static char my_registers[REGISTER_BYTES];
char *registers = my_registers;
/***************End MY defs*********************/
#include <sys/ptrace.h>
#include <machine/reg.h>
#define RF(dst, src) \
memcpy(&registers[REGISTER_BYTE(dst)], &src, sizeof(src))
#define RS(src, dst) \
memcpy(&dst, &registers[REGISTER_BYTE(src)], sizeof(dst))
#ifdef __i386__
struct env387
{
unsigned short control;
unsigned short r0;
unsigned short status;
unsigned short r1;
unsigned short tag;
unsigned short r2;
unsigned long eip;
unsigned short code_seg;
unsigned short opcode;
unsigned long operand;
unsigned short operand_seg;
unsigned short r3;
unsigned char regs[8][10];
};
/* i386_register_raw_size[i] is the number of bytes of storage in the
actual machine representation for register i. */
int i386_register_raw_size[MAX_NUM_REGS] = {
4, 4, 4, 4,
4, 4, 4, 4,
4, 4, 4, 4,
4, 4, 4, 4,
10, 10, 10, 10,
10, 10, 10, 10,
4, 4, 4, 4,
4, 4, 4, 4,
16, 16, 16, 16,
16, 16, 16, 16,
4
};
int i386_register_byte[MAX_NUM_REGS];
static void
2000-07-30 03:48:28 +02:00
initialize_arch (void)
{
/* Initialize the table saying where each register starts in the
register file. */
{
int i, offset;
offset = 0;
for (i = 0; i < MAX_NUM_REGS; i++)
{
i386_register_byte[i] = offset;
offset += i386_register_raw_size[i];
}
}
}
#endif /* !__i386__ */
#ifdef __m68k__
static void
initialize_arch (void)
{
}
#endif /* !__m68k__ */
#ifdef __ns32k__
static void
initialize_arch (void)
{
}
#endif /* !__ns32k__ */
#ifdef __powerpc__
#include "ppc-tdep.h"
static void
2000-07-30 03:48:28 +02:00
initialize_arch (void)
{
}
#endif /* !__powerpc__ */
/* Start an inferior process and returns its pid.
ALLARGS is a vector of program-name and args. */
int
2000-07-30 03:48:28 +02:00
create_inferior (char *program, char **allargs)
{
int pid;
pid = fork ();
if (pid < 0)
perror_with_name ("fork");
if (pid == 0)
{
ptrace (PT_TRACE_ME, 0, 0, 0);
execv (program, allargs);
fprintf (stderr, "Cannot exec %s: %s.\n", program,
errno < sys_nerr ? sys_errlist[errno] : "unknown error");
fflush (stderr);
_exit (0177);
}
return pid;
}
/* Kill the inferior process. Make us have no inferior. */
void
2000-07-30 03:48:28 +02:00
kill_inferior (void)
{
if (inferior_pid == 0)
return;
ptrace (PT_KILL, inferior_pid, 0, 0);
wait (0);
/*************inferior_died ();****VK**************/
}
/* Return nonzero if the given thread is still alive. */
int
2000-07-30 03:48:28 +02:00
mythread_alive (int pid)
{
return 1;
}
/* Wait for process, returns status */
unsigned char
2000-07-30 03:48:28 +02:00
mywait (char *status)
{
int pid;
int w;
pid = wait (&w);
if (pid != inferior_pid)
perror_with_name ("wait");
if (WIFEXITED (w))
{
fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
*status = 'W';
return ((unsigned char) WEXITSTATUS (w));
}
else if (!WIFSTOPPED (w))
{
fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
*status = 'X';
return ((unsigned char) WTERMSIG (w));
}
fetch_inferior_registers (0);
*status = 'T';
return ((unsigned char) WSTOPSIG (w));
}
/* Resume execution of the inferior process.
If STEP is nonzero, single-step it.
If SIGNAL is nonzero, give it that signal. */
void
2000-07-30 03:48:28 +02:00
myresume (int step, int signal)
{
errno = 0;
ptrace (step ? PT_STEP : PT_CONTINUE, inferior_pid,
(PTRACE_ARG3_TYPE) 1, signal);
if (errno)
perror_with_name ("ptrace");
}
#ifdef __i386__
/* Fetch one or more registers from the inferior. REGNO == -1 to get
them all. We actually fetch more than requested, when convenient,
marking them as valid so we won't fetch them again. */
void
2000-07-30 03:48:28 +02:00
fetch_inferior_registers (int ignored)
{
struct reg inferior_registers;
struct env387 inferior_fp_registers;
ptrace (PT_GETREGS, inferior_pid,
(PTRACE_ARG3_TYPE) &inferior_registers, 0);
ptrace (PT_GETFPREGS, inferior_pid,
(PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
RF ( 0, inferior_registers.r_eax);
RF ( 1, inferior_registers.r_ecx);
RF ( 2, inferior_registers.r_edx);
RF ( 3, inferior_registers.r_ebx);
RF ( 4, inferior_registers.r_esp);
RF ( 5, inferior_registers.r_ebp);
RF ( 6, inferior_registers.r_esi);
RF ( 7, inferior_registers.r_edi);
RF ( 8, inferior_registers.r_eip);
RF ( 9, inferior_registers.r_eflags);
RF (10, inferior_registers.r_cs);
RF (11, inferior_registers.r_ss);
RF (12, inferior_registers.r_ds);
RF (13, inferior_registers.r_es);
RF (14, inferior_registers.r_fs);
RF (15, inferior_registers.r_gs);
2000-11-20 20:30:29 +01:00
RF (FP0_REGNUM, inferior_fp_registers.regs[0]);
RF (FP0_REGNUM + 1, inferior_fp_registers.regs[1]);
RF (FP0_REGNUM + 2, inferior_fp_registers.regs[2]);
RF (FP0_REGNUM + 3, inferior_fp_registers.regs[3]);
RF (FP0_REGNUM + 4, inferior_fp_registers.regs[4]);
RF (FP0_REGNUM + 5, inferior_fp_registers.regs[5]);
RF (FP0_REGNUM + 6, inferior_fp_registers.regs[6]);
RF (FP0_REGNUM + 7, inferior_fp_registers.regs[7]);
2000-11-20 20:30:29 +01:00
RF (FCTRL_REGNUM, inferior_fp_registers.control);
RF (FSTAT_REGNUM, inferior_fp_registers.status);
RF (FTAG_REGNUM, inferior_fp_registers.tag);
RF (FCS_REGNUM, inferior_fp_registers.code_seg);
RF (FCOFF_REGNUM, inferior_fp_registers.eip);
RF (FDS_REGNUM, inferior_fp_registers.operand_seg);
RF (FDOFF_REGNUM, inferior_fp_registers.operand);
RF (FOP_REGNUM, inferior_fp_registers.opcode);
}
/* Store our register values back into the inferior.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
void
2000-07-30 03:48:28 +02:00
store_inferior_registers (int ignored)
{
struct reg inferior_registers;
struct env387 inferior_fp_registers;
RS ( 0, inferior_registers.r_eax);
RS ( 1, inferior_registers.r_ecx);
RS ( 2, inferior_registers.r_edx);
RS ( 3, inferior_registers.r_ebx);
RS ( 4, inferior_registers.r_esp);
RS ( 5, inferior_registers.r_ebp);
RS ( 6, inferior_registers.r_esi);
RS ( 7, inferior_registers.r_edi);
RS ( 8, inferior_registers.r_eip);
RS ( 9, inferior_registers.r_eflags);
RS (10, inferior_registers.r_cs);
RS (11, inferior_registers.r_ss);
RS (12, inferior_registers.r_ds);
RS (13, inferior_registers.r_es);
RS (14, inferior_registers.r_fs);
RS (15, inferior_registers.r_gs);
2000-11-20 20:30:29 +01:00
RS (FP0_REGNUM, inferior_fp_registers.regs[0]);
RS (FP0_REGNUM + 1, inferior_fp_registers.regs[1]);
RS (FP0_REGNUM + 2, inferior_fp_registers.regs[2]);
RS (FP0_REGNUM + 3, inferior_fp_registers.regs[3]);
RS (FP0_REGNUM + 4, inferior_fp_registers.regs[4]);
RS (FP0_REGNUM + 5, inferior_fp_registers.regs[5]);
RS (FP0_REGNUM + 6, inferior_fp_registers.regs[6]);
RS (FP0_REGNUM + 7, inferior_fp_registers.regs[7]);
2000-11-20 20:30:29 +01:00
RS (FCTRL_REGNUM, inferior_fp_registers.control);
RS (FSTAT_REGNUM, inferior_fp_registers.status);
RS (FTAG_REGNUM, inferior_fp_registers.tag);
RS (FCS_REGNUM, inferior_fp_registers.code_seg);
RS (FCOFF_REGNUM, inferior_fp_registers.eip);
RS (FDS_REGNUM, inferior_fp_registers.operand_seg);
RS (FDOFF_REGNUM, inferior_fp_registers.operand);
RS (FOP_REGNUM, inferior_fp_registers.opcode);
ptrace (PT_SETREGS, inferior_pid,
(PTRACE_ARG3_TYPE) &inferior_registers, 0);
ptrace (PT_SETFPREGS, inferior_pid,
(PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
}
#endif /* !__i386__ */
#ifdef __m68k__
/* Fetch one or more registers from the inferior. REGNO == -1 to get
them all. We actually fetch more than requested, when convenient,
marking them as valid so we won't fetch them again. */
void
fetch_inferior_registers (int regno)
{
struct reg inferior_registers;
struct fpreg inferior_fp_registers;
ptrace (PT_GETREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_registers, 0);
memcpy (&registers[REGISTER_BYTE (0)], &inferior_registers,
sizeof (inferior_registers));
ptrace (PT_GETFPREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
sizeof (inferior_fp_registers));
}
/* Store our register values back into the inferior.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
void
store_inferior_registers (int regno)
{
struct reg inferior_registers;
struct fpreg inferior_fp_registers;
memcpy (&inferior_registers, &registers[REGISTER_BYTE (0)],
sizeof (inferior_registers));
ptrace (PT_SETREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_registers, 0);
memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
sizeof (inferior_fp_registers));
ptrace (PT_SETFPREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
}
#endif /* !__m68k__ */
#ifdef __ns32k__
/* Fetch one or more registers from the inferior. REGNO == -1 to get
them all. We actually fetch more than requested, when convenient,
marking them as valid so we won't fetch them again. */
void
fetch_inferior_registers (int regno)
{
struct reg inferior_registers;
struct fpreg inferior_fpregisters;
ptrace (PT_GETREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_registers, 0);
ptrace (PT_GETFPREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_fpregisters, 0);
RF (R0_REGNUM + 0, inferior_registers.r_r0);
RF (R0_REGNUM + 1, inferior_registers.r_r1);
RF (R0_REGNUM + 2, inferior_registers.r_r2);
RF (R0_REGNUM + 3, inferior_registers.r_r3);
RF (R0_REGNUM + 4, inferior_registers.r_r4);
RF (R0_REGNUM + 5, inferior_registers.r_r5);
RF (R0_REGNUM + 6, inferior_registers.r_r6);
RF (R0_REGNUM + 7, inferior_registers.r_r7);
RF (SP_REGNUM, inferior_registers.r_sp);
RF (FP_REGNUM, inferior_registers.r_fp);
RF (PC_REGNUM, inferior_registers.r_pc);
RF (PS_REGNUM, inferior_registers.r_psr);
RF (FPS_REGNUM, inferior_fpregisters.r_fsr);
RF (FP0_REGNUM + 0, inferior_fpregisters.r_freg[0]);
RF (FP0_REGNUM + 2, inferior_fpregisters.r_freg[2]);
RF (FP0_REGNUM + 4, inferior_fpregisters.r_freg[4]);
RF (FP0_REGNUM + 6, inferior_fpregisters.r_freg[6]);
RF (LP0_REGNUM + 1, inferior_fpregisters.r_freg[1]);
RF (LP0_REGNUM + 3, inferior_fpregisters.r_freg[3]);
RF (LP0_REGNUM + 5, inferior_fpregisters.r_freg[5]);
RF (LP0_REGNUM + 7, inferior_fpregisters.r_freg[7]);
}
/* Store our register values back into the inferior.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
void
store_inferior_registers (int regno)
{
struct reg inferior_registers;
struct fpreg inferior_fpregisters;
RS (R0_REGNUM + 0, inferior_registers.r_r0);
RS (R0_REGNUM + 1, inferior_registers.r_r1);
RS (R0_REGNUM + 2, inferior_registers.r_r2);
RS (R0_REGNUM + 3, inferior_registers.r_r3);
RS (R0_REGNUM + 4, inferior_registers.r_r4);
RS (R0_REGNUM + 5, inferior_registers.r_r5);
RS (R0_REGNUM + 6, inferior_registers.r_r6);
RS (R0_REGNUM + 7, inferior_registers.r_r7);
RS (SP_REGNUM, inferior_registers.r_sp);
RS (FP_REGNUM, inferior_registers.r_fp);
RS (PC_REGNUM, inferior_registers.r_pc);
RS (PS_REGNUM, inferior_registers.r_psr);
RS (FPS_REGNUM, inferior_fpregisters.r_fsr);
RS (FP0_REGNUM + 0, inferior_fpregisters.r_freg[0]);
RS (FP0_REGNUM + 2, inferior_fpregisters.r_freg[2]);
RS (FP0_REGNUM + 4, inferior_fpregisters.r_freg[4]);
RS (FP0_REGNUM + 6, inferior_fpregisters.r_freg[6]);
RS (LP0_REGNUM + 1, inferior_fpregisters.r_freg[1]);
RS (LP0_REGNUM + 3, inferior_fpregisters.r_freg[3]);
RS (LP0_REGNUM + 5, inferior_fpregisters.r_freg[5]);
RS (LP0_REGNUM + 7, inferior_fpregisters.r_freg[7]);
ptrace (PT_SETREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_registers, 0);
ptrace (PT_SETFPREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_fpregisters, 0);
}
#endif /* !__ns32k__ */
#ifdef __powerpc__
/* Fetch one or more registers from the inferior. REGNO == -1 to get
them all. We actually fetch more than requested, when convenient,
marking them as valid so we won't fetch them again. */
void
2000-07-30 03:48:28 +02:00
fetch_inferior_registers (int regno)
{
struct reg inferior_registers;
#ifdef PT_GETFPREGS
struct fpreg inferior_fp_registers;
#endif
int i;
ptrace (PT_GETREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_registers, 0);
for (i = 0; i < 32; i++)
RF (i, inferior_registers.fixreg[i]);
RF (PPC_LR_REGNUM, inferior_registers.lr);
RF (PPC_CR_REGNUM, inferior_registers.cr);
RF (PPC_XER_REGNUM, inferior_registers.xer);
RF (PPC_CTR_REGNUM, inferior_registers.ctr);
RF (PC_REGNUM, inferior_registers.pc);
#ifdef PT_GETFPREGS
ptrace (PT_GETFPREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
for (i = 0; i < 32; i++)
RF (FP0_REGNUM + i, inferior_fp_registers.r_regs[i]);
#endif
}
/* Store our register values back into the inferior.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
void
2000-07-30 03:48:28 +02:00
store_inferior_registers (int regno)
{
struct reg inferior_registers;
#ifdef PT_SETFPREGS
struct fpreg inferior_fp_registers;
#endif
int i;
for (i = 0; i < 32; i++)
RS (i, inferior_registers.fixreg[i]);
RS (PPC_LR_REGNUM, inferior_registers.lr);
RS (PPC_CR_REGNUM, inferior_registers.cr);
RS (PPC_XER_REGNUM, inferior_registers.xer);
RS (PPC_CTR_REGNUM, inferior_registers.ctr);
RS (PC_REGNUM, inferior_registers.pc);
ptrace (PT_SETREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_registers, 0);
#ifdef PT_SETFPREGS
for (i = 0; i < 32; i++)
RS (FP0_REGNUM + i, inferior_fp_registers.r_regs[i]);
ptrace (PT_SETFPREGS, inferior_pid,
(PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
#endif
}
#endif /* !__powerpc__ */
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
in the NEW_SUN_PTRACE case.
It ought to be straightforward. But it appears that writing did
not write the data that I specified. I cannot understand where
it got the data that it actually did write. */
/* Copy LEN bytes from inferior's memory starting at MEMADDR
to debugger memory starting at MYADDR. */
void
2000-07-30 03:48:28 +02:00
read_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
{
register int i;
/* Round starting address down to longword boundary. */
register CORE_ADDR addr = memaddr & -sizeof (int);
/* Round ending address up; get number of longwords that makes. */
register int count
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
/* Allocate buffer of that many longwords. */
register int *buffer = (int *) alloca (count * sizeof (int));
/* Read all the longwords */
for (i = 0; i < count; i++, addr += sizeof (int))
{
buffer[i] = ptrace (PT_READ_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
}
/* Copy appropriate bytes out of the buffer. */
memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
}
/* Copy LEN bytes of data from debugger memory at MYADDR
to inferior's memory at MEMADDR.
On failure (cannot write the inferior)
returns the value of errno. */
int
2000-07-30 03:48:28 +02:00
write_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
{
register int i;
/* Round starting address down to longword boundary. */
register CORE_ADDR addr = memaddr & -sizeof (int);
/* Round ending address up; get number of longwords that makes. */
register int count
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
/* Allocate buffer of that many longwords. */
register int *buffer = (int *) alloca (count * sizeof (int));
extern int errno;
/* Fill start and end extra bytes of buffer with existing memory data. */
buffer[0] = ptrace (PT_READ_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
if (count > 1)
{
buffer[count - 1]
= ptrace (PT_READ_D, inferior_pid,
(PTRACE_ARG3_TYPE) addr + (count - 1) * sizeof (int), 0);
}
/* Copy data to be written over corresponding part of buffer */
memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
/* Write the entire buffer. */
for (i = 0; i < count; i++, addr += sizeof (int))
{
errno = 0;
ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
if (errno)
return errno;
}
return 0;
}
void
2000-07-30 03:48:28 +02:00
initialize_low (void)
{
initialize_arch ();
}