binutils-gdb/bfd/bfd.texinfo

493 lines
19 KiB
Plaintext
Raw Normal View History

1991-08-17 02:19:43 +02:00
\input texinfo
1991-07-16 01:43:15 +02:00
@setfilename bfdinfo
@c $Id$
@syncodeindex fn cp
1991-07-16 01:43:15 +02:00
@ifinfo
This file documents the BFD library.
Copyright (C) 1991 Free Software Foundation, Inc.
1991-07-16 01:43:15 +02:00
Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.
@ignore
Permission is granted to process this file through Tex and print the
results, provided the printed document carries copying permission
notice identical to this one except for the removal of this paragraph
(this paragraph not being relevant to the printed manual).
@end ignore
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, subject to the terms
of the GNU General Public License, which includes the provision that the
entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
1991-07-16 01:43:15 +02:00
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.
1991-07-16 01:43:15 +02:00
@end ifinfo
@iftex
@c@finalout
1991-08-20 01:03:12 +02:00
@setchapternewpage on
1991-07-16 01:43:15 +02:00
@c@setchapternewpage odd
@settitle LIB BFD, the Binary File Descriptor Library
1991-07-16 01:43:15 +02:00
@titlepage
@title{libbfd}
@subtitle{The Binary File Descriptor Library}
1991-07-16 01:43:15 +02:00
@sp 1
@subtitle First Edition---BFD version < 2.0
1991-07-16 01:43:15 +02:00
@subtitle April 1991
@author {Steve Chamberlain}
@author {Cygnus Support}
@page
@tex
\def\$#1${{#1}} % Kluge: collect RCS revision info without $...$
\xdef\manvers{\$Revision$} % For use in headers, footers too
{\parskip=0pt
\hfill Cygnus Support\par
\hfill steve\@cygnus.com\par
\hfill {\it BFD}, \manvers\par
\hfill \TeX{}info \texinfoversion\par
}
\global\parindent=0pt % Steve likes it this way
@end tex
@vskip 0pt plus 1filll
Copyright @copyright{} 1991 Free Software Foundation, Inc.
1991-07-16 01:43:15 +02:00
Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, subject to the terms
of the GNU General Public License, which includes the provision that the
entire resulting derived work is distributed under the terms of a
1991-07-16 01:43:15 +02:00
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions.
@end titlepage
@end iftex
@node Top, Overview, (dir), (dir)
@ifinfo
This file documents the binary file descriptor library libbfd.
@end ifinfo
@menu
* Overview:: Overview of BFD
* History:: History of BFD
1991-07-16 01:43:15 +02:00
* Backends:: Backends
* Porting:: Porting
* Future:: Future
* Index:: Index
BFD body:
* Memory usage::
1991-07-16 01:43:15 +02:00
* Sections::
* Symbols::
* Archives::
* Formats::
* Relocations::
* Core Files::
* Targets::
* Architecturs::
* Opening and Closing::
* Internal::
* File Caching::
BFD backends:
1991-07-16 01:43:15 +02:00
* a.out backends::
* coff backends::
@end menu
@node Overview, History, Top, Top
@chapter Introduction
@cindex BFD
@cindex what is it?
BFD is a package for manipulating binary files required for developing
programs. It implements a group of structured operations designed to
shield the programmer from the underlying representation of these
binary files. It understands object (compiled) files, archive
libraries, and core files. It is designed to work in a variety of
target environments.
Most simply put, BFD is a package which allows applications to use the
1991-07-16 01:43:15 +02:00
same routines to operate on object files whatever the object file
format.
1991-07-16 01:43:15 +02:00
BFD is split into two parts; the front end and the many back ends.
@itemize @bullet
@item
The front end of BFD provides the interface to the user. It manages
1991-07-16 01:43:15 +02:00
memory, and various canonical data structures. The front end also
decides which back end to use, and when to call back end routines.
@item
The back ends provide BFD its view of the real world. A different
object file format can be supported simply by creating a new BFD back
end and adding it to the library. Each back end provides a set of calls
which the BFD front end can use to maintain its canonical form. The back
ends also may keep around information for their own use, for greater
efficiency.
1991-07-16 01:43:15 +02:00
@end itemize
@node History, How It Works, Overview,Top
@section History
One spur behind BFD was the desire, on the part of the GNU 960 team at
Intel Oregon, for interoperability of applications on their COFF and
b.out file formats. Cygnus was providing GNU support for the team, and
Cygnus was contracted to provide the required functionality.
1991-07-16 01:43:15 +02:00
The name came from a conversation David Wallace was having with Richard
Stallman about the library: RMS said that it would be quite hard---David
said ``BFD''. Stallman was right, but the name stuck.
1991-07-16 01:43:15 +02:00
At the same time, Ready Systems wanted much the same thing, but for
different object file formats: IEEE-695, Oasys, Srecords, a.out and 68k
coff.
1991-07-16 01:43:15 +02:00
BFD was first implemented by Steve Chamberlain (steve@@cygnus.com),
John Gilmore (gnu@@cygnus.com), K. Richard Pixley (rich@@cygnus.com) and
David Wallace (gumby@@cygnus.com) at Cygnus Support in Palo Alto,
California.
1991-07-16 01:43:15 +02:00
@node How It Works, History, Porting, Top
@section How It Works
To use the library, include @code{bfd.h} and link with @code{libbfd.a}.
BFD provides a common interface to the parts of an object file
for a calling application.
1991-07-16 01:43:15 +02:00
When an application sucessfully opens a target file (object, archive or
whatever) a pointer to an internal structure is returned. This pointer
points to a structure called @code{bfd}, described in
@code{include/bfd.h}. Our convention is to call this pointer a BFD, and
instances of it within code @code{abfd}. All operations on
the target object file are applied as methods to the BFD. The mapping is
defined within @code{bfd.h} in a set of macros, all beginning
@samp{bfd_}.
In short, a BFD is a representation for a particular file. It is opened
in a manner similar to a file; code then manipulates it rather than the
raw files.
For example, this sequence would do what you would probably expect:
return the number of sections in an object file attached to a BFD
@code{abfd}.
1991-07-16 01:43:15 +02:00
@lisp
1991-08-17 02:19:43 +02:00
@cartouche
1991-07-16 01:43:15 +02:00
#include "bfd.h"
unsigned int number_of_sections(abfd)
bfd *abfd;
@{
return bfd_count_sections(abfd);
@}
1991-08-17 02:19:43 +02:00
@end cartouche
1991-07-16 01:43:15 +02:00
@end lisp
The abstraction used within BFD is that an object file has a header,
1991-08-14 04:25:22 +02:00
a number of sections containing raw data, a set of relocations, and some
symbol information. Also, BFDs opened for archives have the
additional attribute of an index and contain subordinate BFDs. This approach is
fine for a.out and coff, but loses efficiency when applied to formats
1991-07-16 01:43:15 +02:00
such as S-records and IEEE-695.
@cindex targets
@cindex formats
BFD makes a distinction between @dfn{targets} (families of file
formats) and @dfn{formats} (individual file formats). For instance,
the @code{"sun4os4"} target can handle core, object and archive formats of
files. The exact layout of the different formats depends on the target
environment.
The target @code{"default"} means the first one known (usually used for
environments that only support one format, or where the common format
is known at compile or link time). The target @code{NULL} means the one
specified at runtime in the environment variable @code{GNUTARGET}; if that is
null or not defined then, on output, the first entry in the target list
is chosen; or, on input, all targets are searched to find a matching
one.
Most programs should use the target @code{NULL}. See the descriptions
of @code{bfd_target_list} and @code{bfd_format_string} for functions to
inquire on targets and formats.
@section What BFD Version 1 Can Do
1991-07-16 01:43:15 +02:00
As different information from the the object files is required,
BFD reads from different sections of the file and processes them.
For example a very common operation for the linker is processing symbol
tables. Each BFD back end provides a routine for converting
between the object file's representation of symbols and an internal
canonical format. When the linker asks for the symbol table of an object
file, it calls through the memory pointer to the relevant BFD
back end routine which reads and converts the table into a canonical
form. The linker then operates upon the canonical form. When the link is
finished and the linker writes the output file's symbol table,
1991-07-16 01:43:15 +02:00
another BFD back end routine is called which takes the newly
created symbol table and converts it into the chosen output format.
@node BFD information loss, Mechanism, BFD outline, BFD
@subsection Information Loss
@emph{Some information is lost due to the nature of the file format.} The output targets
supported by BFD do not provide identical facilities, and
information which may be described in one form has nowhere to go in
another format. One example of this is alignment information in
@code{b.out}. There is nowhere in an @code{a.out} format file to store
alignment information on the contained data, so when a file is linked
from @code{b.out} and an @code{a.out} image is produced, alignment
information will not propagate to the output file. (The linker will
still use the alignment information internally, so the link is performed
correctly).
Another example is COFF section names. COFF files may contain an
unlimited number of sections, each one with a textual section name. If
the target of the link is a format which does not have many sections (eg
@code{a.out}) or has sections without names (eg the Oasys format) the
link cannot be done simply. You can circumvent this problem by
describing the desired input-to-output section mapping with the linker command
language.
@emph{Information can be lost during canonicalization.} The BFD
internal canonical form of the external formats is not exhaustive; there
are structures in input formats for which there is no direct
representation internally. This means that the BFD back ends
cannot maintain all possible data richness through the transformation
between external to internal and back to external formats.
This limitation is only a problem when an application reads one
format and writes another. Each BFD back end is responsible for
1991-07-16 01:43:15 +02:00
maintaining as much data as possible, and the internal BFD
canonical form has structures which are opaque to the BFD core,
and exported only to the back ends. When a file is read in one format,
the canonical form is generated for BFD and the application. At the
1991-07-16 01:43:15 +02:00
same time, the back end saves away any information which may otherwise
be lost. If the data is then written back in the same format, the back
end routine will be able to use the canonical form provided by the
BFD core as well as the information it prepared earlier. Since
there is a great deal of commonality between back ends, this mechanism
is very useful. There is no information lost for this reason when
linking or copying big endian COFF to little endian COFF, or @code{a.out} to
1991-07-16 01:43:15 +02:00
@code{b.out}. When a mixture of formats is linked, the information is
only lost from the files whose format differs from the destination.
@node Mechanism, , BFD information loss, BFD
@subsection Mechanism
The greatest potential for loss of information is when there is least
overlap between the information provided by the source format, that
stored by the canonical format, and the information needed by the
destination format. A brief description of the canonical form may help
you appreciate what kinds of data you can count on preserving across
conversions.
@cindex BFD canonical format
@cindex internal object-file format
@table @emph
@item files
Information on target machine architecture, particular implementation
and format type are stored on a per-file basis. Other information
includes a demand pageable bit and a write protected bit. Note that
information like Unix magic numbers is not stored here---only the magic
numbers' meaning, so a @code{ZMAGIC} file would have both the demand
pageable bit and the write protected text bit set. The byte order of
the target is stored on a per-file basis, so that big- and little-endian
object files may be linked with one another.
@c FIXME: generalize above from "link"?
1991-07-16 01:43:15 +02:00
@item sections
Each section in the input file contains the name of the section, the
original address in the object file, various flags, size and alignment
information and pointers into other BFD data structures.
@item symbols
Each symbol contains a pointer to the object file which originally
defined it, its name, its value, and various flag bits. When a
BFD back end reads in a symbol table, the back end relocates all
symbols to make them relative to the base of the section where they were
defined. This ensures that each symbol points to its containing
section. Each symbol also has a varying amount of hidden data to contain
private data for the BFD back end. Since the symbol points to the
original file, the private data format for that symbol is accessible.
@code{gld} can operate on a collection of symbols of wildly different
formats without problems.
Normal global and simple local symbols are maintained on output, so an
output file (no matter its format) will retain symbols pointing to
functions and to global, static, and common variables. Some symbol
information is not worth retaining; in @code{a.out} type information is
stored in the symbol table as long symbol names. This information would
be useless to most COFF debuggers; the linker has command line switches
to allow users to throw it away.
1991-07-16 01:43:15 +02:00
There is one word of type information within the symbol, so if the
format supports symbol type information within symbols (for example COFF,
IEEE, Oasys) and the type is simple enough to fit within one word
(nearly everything but aggregates) the information will be preserved.
@item relocation level
Each canonical BFD relocation record contains a pointer to the symbol to
relocate to, the offset of the data to relocate, the section the data
is in and a pointer to a relocation type descriptor. Relocation is
performed effectively by message passing through the relocation type
descriptor and symbol pointer. It allows relocations to be performed
on output data using a relocation method only available in one of the
input formats. For instance, Oasys provides a byte relocation format.
A relocation record requesting this relocation type would point
indirectly to a routine to perform this, so the relocation may be
performed on a byte being written to a COFF file, even though 68k COFF
has no such relocation type.
@item line numbers
Object formats can contain, for debugging purposes, some form of mapping
between symbols, source line numbers, and addresses in the output file.
These addresses have to be relocated along with the symbol information.
Each symbol with an associated list of line number records points to the
first record of the list. The head of a line number list consists of a
pointer to the symbol, which allows divination of the address of the
function whose line number is being described. The rest of the list is
made up of pairs: offsets into the section and line numbers. Any format
which can simply derive this information can pass it successfully
between formats (COFF, IEEE and Oasys).
@end table
1991-08-20 01:03:12 +02:00
@c FIXME: what is this line about? Do we want introductory remarks
@c FIXME... on back ends? commented out for now.
@c What is a backend
1991-07-16 01:43:15 +02:00
@node BFD front end, BFD back end, Mechanism, Top
@chapter BFD front end
1991-08-17 02:22:24 +02:00
@include bfd.texi
1991-08-20 01:03:12 +02:00
@node Memory Usage, Errors, bfd, Top
@section Memory Usage
BFD keeps all its internal structures in obstacks. There is one obstack
per open BFD file, into which the current state is stored. When a BFD is
closed, the obstack is deleted, and so everything which has been
allocated by libbfd for the closing file will be thrown away.
BFD will not free anything created by an application, but pointers into
@code{bfd} structures will be invalidated on a @code{bfd_close}; for example,
after a @code{bfd_close} the vector passed to
@code{bfd_canonicalize_symtab} will still be around, since it has been
allocated by the application, but the data that it pointed to will be
lost.
The general rule is not to close a BFD until all operations dependent
upon data from the BFD have been completed, or all the data from within
the file has been copied. To help with the management of memory, there is a function
(@code{bfd_alloc_size}) which returns the number of bytes in obstacks
associated with the supplied BFD. This could be used to select the
greediest open BFD, close it to reclaim the memory, perform some
operation and reopen the BFD again, to get a fresh copy of the data
structures.
@node Errors, Sections, Memory Usage, Top
@section Error Handling
@cindex errors
In general, a boolean function returns true on success and false on failure
(unless it's a predicate). Functions which return pointers to
objects return @code{NULL} on error. The specifics are documented with each
function.
If a function fails, you should check the variable @code{bfd_error}. If
the value is @code{no_error}, then check the C variable @code{errno}
just as you would with any other program. Other values for
@code{bfd_error} are documented in @file{bfd.h}.
@findex bfd_errmsg
If you would prefer a comprehensible string for the error message, use
the function @code{bfd_errmsg}:
@example
char * bfd_errmsg (error_tag)
@end example
This function returns a read-only string which documents the error
code. If the error code is @code{no_error} then it will return a string
depending on the value of @code{errno}.
@findex bfd_perror
@code{bfd_perror()} is like the @code{perror()} function except it understands
@code{bfd_error}.
@node Sections, Symbols, Errors, Top
1991-08-17 02:20:52 +02:00
@include section.texi
1991-08-20 01:03:12 +02:00
1991-07-16 01:43:15 +02:00
@node Symbols, Archives ,Sections, To
1991-08-17 02:20:52 +02:00
@include syms.texi
1991-08-20 01:03:12 +02:00
1991-07-16 01:43:15 +02:00
@node Archives, Formats, Symbols, Top
1991-08-17 02:20:52 +02:00
@include archive.texi
1991-08-20 01:03:12 +02:00
1991-07-16 01:43:15 +02:00
@node Formats, Relocations, Archives, Top
1991-08-17 02:20:52 +02:00
@include format.texi
1991-08-20 01:03:12 +02:00
1991-07-16 01:43:15 +02:00
@node Relocations, Core Files,Formats, Top
1991-08-17 02:20:52 +02:00
@include reloc.texi
1991-08-20 01:03:12 +02:00
1991-07-16 01:43:15 +02:00
@node Core Files, Targets, Relocations, Top
1991-08-17 02:20:52 +02:00
@include core.texi
1991-08-20 01:03:12 +02:00
1991-07-16 01:43:15 +02:00
@node Targets, Architectures, Core Files, Top
1991-08-17 02:20:52 +02:00
@include targets.texi
1991-08-20 01:03:12 +02:00
1991-07-16 01:43:15 +02:00
@node Architectures, Opening and Closing, Targets, Top
1991-08-17 02:20:52 +02:00
@include archures.texi
1991-08-20 01:03:12 +02:00
1991-07-16 01:43:15 +02:00
@node Opening and Closing, Internal, Architectures, Top
1991-08-17 02:20:52 +02:00
@include opncls.texi
1991-08-20 01:03:12 +02:00
1991-07-16 01:43:15 +02:00
@node Internal, File Caching, Opening and Closing, Top
1991-08-17 02:20:52 +02:00
@include libbfd.texi
1991-08-20 01:03:12 +02:00
1991-07-16 01:43:15 +02:00
@node File Caching, Top, Internal, Top
1991-08-17 02:20:52 +02:00
@include cache.texi
1991-08-20 01:03:12 +02:00
1991-07-16 01:43:15 +02:00
@chapter BFD back end
@node BFD back end, ,BFD front end, Top
@menu
* What to put where
* a.out backends::
* coff backends::
* oasys backend::
* ieee backend::
* srecord backend::
@end menu
@node What to Put Where, aout backends, BFD back end, BFD back end
All of BFD lives in one directory.
1991-08-20 01:03:12 +02:00
1991-07-16 01:43:15 +02:00
@node aout backends, coff backends, What to Put Where, BFD back end
1991-08-17 02:23:43 +02:00
@include aoutx.texi
1991-08-20 01:03:12 +02:00
1991-07-16 01:43:15 +02:00
@node coff backends, oasys backends, aout backends, BFD back end
1991-08-17 02:23:43 +02:00
@include coffcode.texi
1991-08-20 01:03:12 +02:00
1991-07-16 01:43:15 +02:00
@node Index, , BFD, Top
@unnumbered Index
@printindex cp
@tex
% I think something like @colophon should be in texinfo. In the
% meantime:
\long\def\colophon{\hbox to0pt{}\vfill
\centerline{The body of this manual is set in}
\centerline{\fontname\tenrm,}
\centerline{with headings in {\bf\fontname\tenbf}}
\centerline{and examples in {\tt\fontname\tentt}.}
\centerline{{\it\fontname\tenit\/} and}
\centerline{{\sl\fontname\tensl\/}}
\centerline{are used for emphasis.}\vfill}
\page\colophon
% Blame: pesch@cygnus.com, 28mar91.
@end tex
@contents
@bye