binutils-gdb/gdb/gdbserver/low-sun3.c

285 lines
7.7 KiB
C
Raw Normal View History

/* Low level interface to ptrace, for the remote server for GDB.
2001-03-06 09:22:02 +01:00
Copyright 1986, 1987, 1993, 1994, 1995, 1999, 2000, 2001
Free Software Foundation, Inc.
1999-07-07 22:19:36 +02:00
This file is part of GDB.
1999-07-07 22:19:36 +02:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
1999-07-07 22:19:36 +02:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
1999-07-07 22:19:36 +02:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "server.h"
#include "<sys/wait.h>"
#include "frame.h"
#include "inferior.h"
#include <stdio.h>
#include <sys/param.h>
#include <sys/dir.h>
#include <sys/user.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <sgtty.h>
#include <fcntl.h>
/***************Begin MY defs*********************/
1999-11-02 05:44:47 +01:00
static char my_registers[REGISTER_BYTES];
char *registers = my_registers;
/***************End MY defs*********************/
#include <sys/ptrace.h>
#include <machine/reg.h>
extern int sys_nerr;
extern char **sys_errlist;
extern int errno;
/* Start an inferior process and returns its pid.
ALLARGS is a vector of program-name and args. */
int
2000-07-30 03:48:28 +02:00
create_inferior (char *program, char **allargs)
{
int pid;
pid = fork ();
if (pid < 0)
perror_with_name ("fork");
if (pid == 0)
{
ptrace (PTRACE_TRACEME);
execv (program, allargs);
fprintf (stderr, "Cannot exec %s: %s.\n", program,
errno < sys_nerr ? sys_errlist[errno] : "unknown error");
fflush (stderr);
_exit (0177);
}
return pid;
}
/* Kill the inferior process. Make us have no inferior. */
void
2000-07-30 03:48:28 +02:00
kill_inferior (void)
{
if (inferior_pid == 0)
return;
ptrace (8, inferior_pid, 0, 0);
wait (0);
1999-07-07 22:19:36 +02:00
/*************inferior_died ();****VK**************/
}
/* Return nonzero if the given thread is still alive. */
int
2000-07-30 03:48:28 +02:00
mythread_alive (int pid)
{
return 1;
}
/* Wait for process, returns status */
unsigned char
2000-07-30 03:48:28 +02:00
mywait (char *status)
{
int pid;
union wait w;
pid = wait (&w);
if (pid != inferior_pid)
perror_with_name ("wait");
if (WIFEXITED (w))
{
fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
*status = 'W';
return ((unsigned char) WEXITSTATUS (w));
}
else if (!WIFSTOPPED (w))
{
fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
*status = 'X';
return ((unsigned char) WTERMSIG (w));
}
fetch_inferior_registers (0);
*status = 'T';
return ((unsigned char) WSTOPSIG (w));
}
/* Resume execution of the inferior process.
If STEP is nonzero, single-step it.
If SIGNAL is nonzero, give it that signal. */
void
2000-07-30 03:48:28 +02:00
myresume (int step, int signal)
{
errno = 0;
ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, inferior_pid, 1, signal);
if (errno)
perror_with_name ("ptrace");
}
/* Fetch one or more registers from the inferior. REGNO == -1 to get
them all. We actually fetch more than requested, when convenient,
marking them as valid so we won't fetch them again. */
void
2000-07-30 03:48:28 +02:00
fetch_inferior_registers (int ignored)
{
struct regs inferior_registers;
struct fp_status inferior_fp_registers;
ptrace (PTRACE_GETREGS, inferior_pid,
1999-07-07 22:19:36 +02:00
(PTRACE_ARG3_TYPE) & inferior_registers);
#ifdef FP0_REGNUM
ptrace (PTRACE_GETFPREGS, inferior_pid,
1999-07-07 22:19:36 +02:00
(PTRACE_ARG3_TYPE) & inferior_fp_registers);
#endif
memcpy (registers, &inferior_registers, 16 * 4);
#ifdef FP0_REGNUM
memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
sizeof inferior_fp_registers.fps_regs);
1999-07-07 22:19:36 +02:00
#endif
*(int *) &registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
*(int *) &registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
#ifdef FP0_REGNUM
memcpy
(&registers[REGISTER_BYTE (FPC_REGNUM)],
&inferior_fp_registers.fps_control,
sizeof inferior_fp_registers - sizeof inferior_fp_registers.fps_regs);
1999-07-07 22:19:36 +02:00
#endif
}
/* Store our register values back into the inferior.
If REGNO is -1, do this for all registers.
Otherwise, REGNO specifies which register (so we can save time). */
void
2000-07-30 03:48:28 +02:00
store_inferior_registers (int ignored)
{
struct regs inferior_registers;
struct fp_status inferior_fp_registers;
memcpy (&inferior_registers, registers, 16 * 4);
#ifdef FP0_REGNUM
memcpy (&inferior_fp_registers,
&registers[REGISTER_BYTE (FP0_REGNUM)],
sizeof inferior_fp_registers.fps_regs);
#endif
1999-07-07 22:19:36 +02:00
inferior_registers.r_ps = *(int *) &registers[REGISTER_BYTE (PS_REGNUM)];
inferior_registers.r_pc = *(int *) &registers[REGISTER_BYTE (PC_REGNUM)];
#ifdef FP0_REGNUM
memcpy (&inferior_fp_registers.fps_control,
&registers[REGISTER_BYTE (FPC_REGNUM)],
(sizeof inferior_fp_registers
- sizeof inferior_fp_registers.fps_regs));
#endif
ptrace (PTRACE_SETREGS, inferior_pid,
1999-07-07 22:19:36 +02:00
(PTRACE_ARG3_TYPE) & inferior_registers);
#if FP0_REGNUM
ptrace (PTRACE_SETFPREGS, inferior_pid,
1999-07-07 22:19:36 +02:00
(PTRACE_ARG3_TYPE) & inferior_fp_registers);
#endif
}
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
in the NEW_SUN_PTRACE case.
It ought to be straightforward. But it appears that writing did
not write the data that I specified. I cannot understand where
it got the data that it actually did write. */
/* Copy LEN bytes from inferior's memory starting at MEMADDR
to debugger memory starting at MYADDR. */
void
2000-07-30 03:48:28 +02:00
read_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
{
register int i;
/* Round starting address down to longword boundary. */
register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (int);
/* Round ending address up; get number of longwords that makes. */
register int count
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
/* Allocate buffer of that many longwords. */
register int *buffer = (int *) alloca (count * sizeof (int));
/* Read all the longwords */
for (i = 0; i < count; i++, addr += sizeof (int))
{
buffer[i] = ptrace (1, inferior_pid, addr, 0);
}
/* Copy appropriate bytes out of the buffer. */
memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
}
/* Copy LEN bytes of data from debugger memory at MYADDR
to inferior's memory at MEMADDR.
On failure (cannot write the inferior)
returns the value of errno. */
int
2000-07-30 03:48:28 +02:00
write_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
{
register int i;
/* Round starting address down to longword boundary. */
register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (int);
/* Round ending address up; get number of longwords that makes. */
register int count
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
/* Allocate buffer of that many longwords. */
register int *buffer = (int *) alloca (count * sizeof (int));
extern int errno;
/* Fill start and end extra bytes of buffer with existing memory data. */
buffer[0] = ptrace (1, inferior_pid, addr, 0);
if (count > 1)
{
buffer[count - 1]
= ptrace (1, inferior_pid,
addr + (count - 1) * sizeof (int), 0);
}
/* Copy data to be written over corresponding part of buffer */
memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
/* Write the entire buffer. */
for (i = 0; i < count; i++, addr += sizeof (int))
{
errno = 0;
ptrace (4, inferior_pid, addr, buffer[i]);
if (errno)
return errno;
}
return 0;
}
void
2000-07-30 03:48:28 +02:00
initialize_low (void)
{
}