binutils-gdb/gas/subsegs.c

543 lines
13 KiB
C
Raw Normal View History

1991-04-04 20:19:53 +02:00
/* subsegs.c - subsegments -
Copyright (C) 1987, 1990, 1991, 1992, 1993, 1994
Free Software Foundation, Inc.
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
1991-04-04 20:19:53 +02:00
/*
* Segments & sub-segments.
*/
#include "as.h"
#include "subsegs.h"
#include "obstack.h"
frchainS *frchain_root, *frchain_now;
Use one active frag and one obstack per frag chain: * frags.c (frags): Variable deleted. (frag_alloc): New function. (frag_grow, frag_more, frag_variant, frag_now_fix, frag_append_1_char): Refer to frchain_now->frch_obstack instead of frags variable. (frag_new): Ditto. Verify that frch_last and frag_now match on entry and exit, and that old frag_now has non-zero type. Replace "know" uses with "assert". Use frag_alloc instead of mucking with obstack alignment. * frags.h (frags): Declaration deleted. * subsegs.h (struct frchain): Add new field frch_frag_now. * subsegs.c (frchains, dummy_frag, absolute_frchain): New static variables. (subsegs_begin): Initialize frchains obstack. Under gcc, don't give it any stricter alignment than frchainS structures need. Do not initialize frags obstack. Set frag_now to point to dummy_obstack. Initialize absolute_frchain. (subseg_set_rest): Save and restore frag_now in frch_frag_now field of frchainS. Don't create new frags on section switch, and use frag_alloc when creating a new frag chain. For absolute section, set frchain_now to absolute_frchain. Verify that frch_last and frag_now match on entry and exit. Initialize per-chain obstack, and under gcc, set required alignment to that needed by fragS structure. * write.c (chain_frchains_together_1): Verify fr_type is nonzero. In one test case of Mike's (i386-linux, over 300K lines of .s code with lots of stabs records), run time and memory use are reduced by about 1/3. Might introduce some problems in cases that use the frag obstacks in unusual ways. Test suite does pass for i386-linux and sparc-solaris targets though.
1995-10-18 22:21:38 +01:00
static struct obstack frchains;
#ifndef BFD_ASSEMBLER
#ifdef MANY_SEGMENTS
segment_info_type segment_info[SEG_MAXIMUM_ORDINAL];
#else
/* Commented in "subsegs.h". */
frchainS *data0_frchainP, *bss0_frchainP;
1991-04-04 20:19:53 +02:00
#endif /* MANY_SEGMENTS */
char const *const seg_name[] =
{
"absolute",
#ifdef MANY_SEGMENTS
"e0", "e1", "e2", "e3", "e4", "e5", "e6", "e7", "e8", "e9",
#else
"text",
"data",
"bss",
#endif /* MANY_SEGMENTS */
"unknown",
"ASSEMBLER-INTERNAL-LOGIC-ERROR!",
"expr",
"debug",
"transfert vector preload",
"transfert vector postload",
"register",
"",
}; /* Used by error reporters, dumpers etc. */
#else /* BFD_ASSEMBLER */
/* Gas segment information for bfd_abs_section_ptr and
bfd_und_section_ptr. */
static segment_info_type *abs_seg_info;
static segment_info_type *und_seg_info;
#endif /* BFD_ASSEMBLER */
1991-04-04 20:19:53 +02:00
static void subseg_set_rest PARAMS ((segT, subsegT));
Use one active frag and one obstack per frag chain: * frags.c (frags): Variable deleted. (frag_alloc): New function. (frag_grow, frag_more, frag_variant, frag_now_fix, frag_append_1_char): Refer to frchain_now->frch_obstack instead of frags variable. (frag_new): Ditto. Verify that frch_last and frag_now match on entry and exit, and that old frag_now has non-zero type. Replace "know" uses with "assert". Use frag_alloc instead of mucking with obstack alignment. * frags.h (frags): Declaration deleted. * subsegs.h (struct frchain): Add new field frch_frag_now. * subsegs.c (frchains, dummy_frag, absolute_frchain): New static variables. (subsegs_begin): Initialize frchains obstack. Under gcc, don't give it any stricter alignment than frchainS structures need. Do not initialize frags obstack. Set frag_now to point to dummy_obstack. Initialize absolute_frchain. (subseg_set_rest): Save and restore frag_now in frch_frag_now field of frchainS. Don't create new frags on section switch, and use frag_alloc when creating a new frag chain. For absolute section, set frchain_now to absolute_frchain. Verify that frch_last and frag_now match on entry and exit. Initialize per-chain obstack, and under gcc, set required alignment to that needed by fragS structure. * write.c (chain_frchains_together_1): Verify fr_type is nonzero. In one test case of Mike's (i386-linux, over 300K lines of .s code with lots of stabs records), run time and memory use are reduced by about 1/3. Might introduce some problems in cases that use the frag obstacks in unusual ways. Test suite does pass for i386-linux and sparc-solaris targets though.
1995-10-18 22:21:38 +01:00
static fragS dummy_frag;
static frchainS absolute_frchain;
1991-04-04 20:19:53 +02:00
void
subsegs_begin ()
1991-04-04 20:19:53 +02:00
{
/* Check table(s) seg_name[], seg_N_TYPE[] is in correct order */
#if !defined (MANY_SEGMENTS) && !defined (BFD_ASSEMBLER)
know (SEG_ABSOLUTE == 0);
know (SEG_TEXT == 1);
know (SEG_DATA == 2);
know (SEG_BSS == 3);
know (SEG_UNKNOWN == 4);
know (SEG_GOOF == 5);
know (SEG_EXPR == 6);
know (SEG_DEBUG == 7);
know (SEG_NTV == 8);
know (SEG_PTV == 9);
know (SEG_REGISTER == 10);
know (SEG_MAXIMUM_ORDINAL == SEG_REGISTER);
#endif
Use one active frag and one obstack per frag chain: * frags.c (frags): Variable deleted. (frag_alloc): New function. (frag_grow, frag_more, frag_variant, frag_now_fix, frag_append_1_char): Refer to frchain_now->frch_obstack instead of frags variable. (frag_new): Ditto. Verify that frch_last and frag_now match on entry and exit, and that old frag_now has non-zero type. Replace "know" uses with "assert". Use frag_alloc instead of mucking with obstack alignment. * frags.h (frags): Declaration deleted. * subsegs.h (struct frchain): Add new field frch_frag_now. * subsegs.c (frchains, dummy_frag, absolute_frchain): New static variables. (subsegs_begin): Initialize frchains obstack. Under gcc, don't give it any stricter alignment than frchainS structures need. Do not initialize frags obstack. Set frag_now to point to dummy_obstack. Initialize absolute_frchain. (subseg_set_rest): Save and restore frag_now in frch_frag_now field of frchainS. Don't create new frags on section switch, and use frag_alloc when creating a new frag chain. For absolute section, set frchain_now to absolute_frchain. Verify that frch_last and frag_now match on entry and exit. Initialize per-chain obstack, and under gcc, set required alignment to that needed by fragS structure. * write.c (chain_frchains_together_1): Verify fr_type is nonzero. In one test case of Mike's (i386-linux, over 300K lines of .s code with lots of stabs records), run time and memory use are reduced by about 1/3. Might introduce some problems in cases that use the frag obstacks in unusual ways. Test suite does pass for i386-linux and sparc-solaris targets though.
1995-10-18 22:21:38 +01:00
obstack_begin (&frchains, chunksize);
#if __GNUC__ >= 2
obstack_alignment_mask (&frchains) = __alignof__ (frchainS) - 1;
#endif
frchain_root = NULL;
frchain_now = NULL; /* Warn new_subseg() that we are booting. */
Use one active frag and one obstack per frag chain: * frags.c (frags): Variable deleted. (frag_alloc): New function. (frag_grow, frag_more, frag_variant, frag_now_fix, frag_append_1_char): Refer to frchain_now->frch_obstack instead of frags variable. (frag_new): Ditto. Verify that frch_last and frag_now match on entry and exit, and that old frag_now has non-zero type. Replace "know" uses with "assert". Use frag_alloc instead of mucking with obstack alignment. * frags.h (frags): Declaration deleted. * subsegs.h (struct frchain): Add new field frch_frag_now. * subsegs.c (frchains, dummy_frag, absolute_frchain): New static variables. (subsegs_begin): Initialize frchains obstack. Under gcc, don't give it any stricter alignment than frchainS structures need. Do not initialize frags obstack. Set frag_now to point to dummy_obstack. Initialize absolute_frchain. (subseg_set_rest): Save and restore frag_now in frch_frag_now field of frchainS. Don't create new frags on section switch, and use frag_alloc when creating a new frag chain. For absolute section, set frchain_now to absolute_frchain. Verify that frch_last and frag_now match on entry and exit. Initialize per-chain obstack, and under gcc, set required alignment to that needed by fragS structure. * write.c (chain_frchains_together_1): Verify fr_type is nonzero. In one test case of Mike's (i386-linux, over 300K lines of .s code with lots of stabs records), run time and memory use are reduced by about 1/3. Might introduce some problems in cases that use the frag obstacks in unusual ways. Test suite does pass for i386-linux and sparc-solaris targets though.
1995-10-18 22:21:38 +01:00
frag_now = &dummy_frag;
#ifndef BFD_ASSEMBLER
now_subseg = 42; /* Lie for 1st call to subseg_new. */
#ifdef MANY_SEGMENTS
{
int i;
for (i = SEG_E0; i < SEG_UNKNOWN; i++)
{
subseg_set (i, 0);
segment_info[i].frchainP = frchain_now;
}
}
#else
subseg_set (SEG_DATA, 0); /* .data 0 */
data0_frchainP = frchain_now;
subseg_set (SEG_BSS, 0);
bss0_frchainP = frchain_now;
#endif /* ! MANY_SEGMENTS */
#endif /* ! BFD_ASSEMBLER */
Use one active frag and one obstack per frag chain: * frags.c (frags): Variable deleted. (frag_alloc): New function. (frag_grow, frag_more, frag_variant, frag_now_fix, frag_append_1_char): Refer to frchain_now->frch_obstack instead of frags variable. (frag_new): Ditto. Verify that frch_last and frag_now match on entry and exit, and that old frag_now has non-zero type. Replace "know" uses with "assert". Use frag_alloc instead of mucking with obstack alignment. * frags.h (frags): Declaration deleted. * subsegs.h (struct frchain): Add new field frch_frag_now. * subsegs.c (frchains, dummy_frag, absolute_frchain): New static variables. (subsegs_begin): Initialize frchains obstack. Under gcc, don't give it any stricter alignment than frchainS structures need. Do not initialize frags obstack. Set frag_now to point to dummy_obstack. Initialize absolute_frchain. (subseg_set_rest): Save and restore frag_now in frch_frag_now field of frchainS. Don't create new frags on section switch, and use frag_alloc when creating a new frag chain. For absolute section, set frchain_now to absolute_frchain. Verify that frch_last and frag_now match on entry and exit. Initialize per-chain obstack, and under gcc, set required alignment to that needed by fragS structure. * write.c (chain_frchains_together_1): Verify fr_type is nonzero. In one test case of Mike's (i386-linux, over 300K lines of .s code with lots of stabs records), run time and memory use are reduced by about 1/3. Might introduce some problems in cases that use the frag obstacks in unusual ways. Test suite does pass for i386-linux and sparc-solaris targets though.
1995-10-18 22:21:38 +01:00
absolute_frchain.frch_seg = absolute_section;
absolute_frchain.frch_subseg = 0;
absolute_frchain.fix_root = absolute_frchain.fix_tail = 0;
absolute_frchain.frch_frag_now = &zero_address_frag;
absolute_frchain.frch_root = absolute_frchain.frch_last = &zero_address_frag;
1991-04-04 20:19:53 +02:00
}
/*
* subseg_change()
*
* Change the subsegment we are in, BUT DO NOT MAKE A NEW FRAG for the
* subsegment. If we are already in the correct subsegment, change nothing.
* This is used eg as a worker for subseg_set [which does make a new frag_now]
1991-04-04 20:19:53 +02:00
* and for changing segments after we have read the source. We construct eg
* fixSs even after the source file is read, so we do have to keep the
* segment context correct.
*/
void
subseg_change (seg, subseg)
register segT seg;
register int subseg;
1991-04-04 20:19:53 +02:00
{
now_seg = seg;
now_subseg = subseg;
Use one active frag and one obstack per frag chain: * frags.c (frags): Variable deleted. (frag_alloc): New function. (frag_grow, frag_more, frag_variant, frag_now_fix, frag_append_1_char): Refer to frchain_now->frch_obstack instead of frags variable. (frag_new): Ditto. Verify that frch_last and frag_now match on entry and exit, and that old frag_now has non-zero type. Replace "know" uses with "assert". Use frag_alloc instead of mucking with obstack alignment. * frags.h (frags): Declaration deleted. * subsegs.h (struct frchain): Add new field frch_frag_now. * subsegs.c (frchains, dummy_frag, absolute_frchain): New static variables. (subsegs_begin): Initialize frchains obstack. Under gcc, don't give it any stricter alignment than frchainS structures need. Do not initialize frags obstack. Set frag_now to point to dummy_obstack. Initialize absolute_frchain. (subseg_set_rest): Save and restore frag_now in frch_frag_now field of frchainS. Don't create new frags on section switch, and use frag_alloc when creating a new frag chain. For absolute section, set frchain_now to absolute_frchain. Verify that frch_last and frag_now match on entry and exit. Initialize per-chain obstack, and under gcc, set required alignment to that needed by fragS structure. * write.c (chain_frchains_together_1): Verify fr_type is nonzero. In one test case of Mike's (i386-linux, over 300K lines of .s code with lots of stabs records), run time and memory use are reduced by about 1/3. Might introduce some problems in cases that use the frag obstacks in unusual ways. Test suite does pass for i386-linux and sparc-solaris targets though.
1995-10-18 22:21:38 +01:00
if (now_seg == absolute_section)
return;
#ifdef BFD_ASSEMBLER
{
segment_info_type *seginfo;
seginfo = (segment_info_type *) bfd_get_section_userdata (stdoutput, seg);
if (! seginfo)
{
seginfo = (segment_info_type *) xmalloc (sizeof (*seginfo));
memset ((PTR) seginfo, 0, sizeof (*seginfo));
seginfo->fix_root = NULL;
seginfo->fix_tail = NULL;
seginfo->bfd_section = seg;
seginfo->sym = 0;
if (seg == bfd_abs_section_ptr)
abs_seg_info = seginfo;
else if (seg == bfd_und_section_ptr)
und_seg_info = seginfo;
else
bfd_set_section_userdata (stdoutput, seg, (PTR) seginfo);
}
}
#else
#ifdef MANY_SEGMENTS
seg_fix_rootP = &segment_info[seg].fix_root;
seg_fix_tailP = &segment_info[seg].fix_tail;
#else
if (seg == SEG_DATA)
{
seg_fix_rootP = &data_fix_root;
seg_fix_tailP = &data_fix_tail;
}
else if (seg == SEG_TEXT)
{
seg_fix_rootP = &text_fix_root;
seg_fix_tailP = &text_fix_tail;
}
else
{
know (seg == SEG_BSS);
seg_fix_rootP = &bss_fix_root;
seg_fix_tailP = &bss_fix_tail;
}
#endif
#endif
1991-04-04 20:19:53 +02:00
}
static void
subseg_set_rest (seg, subseg)
segT seg;
subsegT subseg;
{
long tmp; /* JF for obstack alignment hacking */
register frchainS *frcP; /* crawl frchain chain */
register frchainS **lastPP; /* address of last pointer */
frchainS *newP; /* address of new frchain */
register fragS *former_last_fragP;
register fragS *new_fragP;
Use one active frag and one obstack per frag chain: * frags.c (frags): Variable deleted. (frag_alloc): New function. (frag_grow, frag_more, frag_variant, frag_now_fix, frag_append_1_char): Refer to frchain_now->frch_obstack instead of frags variable. (frag_new): Ditto. Verify that frch_last and frag_now match on entry and exit, and that old frag_now has non-zero type. Replace "know" uses with "assert". Use frag_alloc instead of mucking with obstack alignment. * frags.h (frags): Declaration deleted. * subsegs.h (struct frchain): Add new field frch_frag_now. * subsegs.c (frchains, dummy_frag, absolute_frchain): New static variables. (subsegs_begin): Initialize frchains obstack. Under gcc, don't give it any stricter alignment than frchainS structures need. Do not initialize frags obstack. Set frag_now to point to dummy_obstack. Initialize absolute_frchain. (subseg_set_rest): Save and restore frag_now in frch_frag_now field of frchainS. Don't create new frags on section switch, and use frag_alloc when creating a new frag chain. For absolute section, set frchain_now to absolute_frchain. Verify that frch_last and frag_now match on entry and exit. Initialize per-chain obstack, and under gcc, set required alignment to that needed by fragS structure. * write.c (chain_frchains_together_1): Verify fr_type is nonzero. In one test case of Mike's (i386-linux, over 300K lines of .s code with lots of stabs records), run time and memory use are reduced by about 1/3. Might introduce some problems in cases that use the frag obstacks in unusual ways. Test suite does pass for i386-linux and sparc-solaris targets though.
1995-10-18 22:21:38 +01:00
mri_common_symbol = NULL;
if (frag_now && frchain_now)
frchain_now->frch_frag_now = frag_now;
assert (frchain_now == 0
|| now_seg == undefined_section
|| now_seg == absolute_section
|| frchain_now->frch_last == frag_now);
subseg_change (seg, (int) subseg);
if (seg == absolute_section)
{
Use one active frag and one obstack per frag chain: * frags.c (frags): Variable deleted. (frag_alloc): New function. (frag_grow, frag_more, frag_variant, frag_now_fix, frag_append_1_char): Refer to frchain_now->frch_obstack instead of frags variable. (frag_new): Ditto. Verify that frch_last and frag_now match on entry and exit, and that old frag_now has non-zero type. Replace "know" uses with "assert". Use frag_alloc instead of mucking with obstack alignment. * frags.h (frags): Declaration deleted. * subsegs.h (struct frchain): Add new field frch_frag_now. * subsegs.c (frchains, dummy_frag, absolute_frchain): New static variables. (subsegs_begin): Initialize frchains obstack. Under gcc, don't give it any stricter alignment than frchainS structures need. Do not initialize frags obstack. Set frag_now to point to dummy_obstack. Initialize absolute_frchain. (subseg_set_rest): Save and restore frag_now in frch_frag_now field of frchainS. Don't create new frags on section switch, and use frag_alloc when creating a new frag chain. For absolute section, set frchain_now to absolute_frchain. Verify that frch_last and frag_now match on entry and exit. Initialize per-chain obstack, and under gcc, set required alignment to that needed by fragS structure. * write.c (chain_frchains_together_1): Verify fr_type is nonzero. In one test case of Mike's (i386-linux, over 300K lines of .s code with lots of stabs records), run time and memory use are reduced by about 1/3. Might introduce some problems in cases that use the frag obstacks in unusual ways. Test suite does pass for i386-linux and sparc-solaris targets though.
1995-10-18 22:21:38 +01:00
frchain_now = &absolute_frchain;
frag_now = &zero_address_frag;
return;
}
Use one active frag and one obstack per frag chain: * frags.c (frags): Variable deleted. (frag_alloc): New function. (frag_grow, frag_more, frag_variant, frag_now_fix, frag_append_1_char): Refer to frchain_now->frch_obstack instead of frags variable. (frag_new): Ditto. Verify that frch_last and frag_now match on entry and exit, and that old frag_now has non-zero type. Replace "know" uses with "assert". Use frag_alloc instead of mucking with obstack alignment. * frags.h (frags): Declaration deleted. * subsegs.h (struct frchain): Add new field frch_frag_now. * subsegs.c (frchains, dummy_frag, absolute_frchain): New static variables. (subsegs_begin): Initialize frchains obstack. Under gcc, don't give it any stricter alignment than frchainS structures need. Do not initialize frags obstack. Set frag_now to point to dummy_obstack. Initialize absolute_frchain. (subseg_set_rest): Save and restore frag_now in frch_frag_now field of frchainS. Don't create new frags on section switch, and use frag_alloc when creating a new frag chain. For absolute section, set frchain_now to absolute_frchain. Verify that frch_last and frag_now match on entry and exit. Initialize per-chain obstack, and under gcc, set required alignment to that needed by fragS structure. * write.c (chain_frchains_together_1): Verify fr_type is nonzero. In one test case of Mike's (i386-linux, over 300K lines of .s code with lots of stabs records), run time and memory use are reduced by about 1/3. Might introduce some problems in cases that use the frag obstacks in unusual ways. Test suite does pass for i386-linux and sparc-solaris targets though.
1995-10-18 22:21:38 +01:00
assert (frchain_now == 0
|| now_seg == undefined_section
|| frchain_now->frch_last == frag_now);
/*
* Attempt to find or make a frchain for that sub seg.
* Crawl along chain of frchainSs, begins @ frchain_root.
* If we need to make a frchainS, link it into correct
* position of chain rooted in frchain_root.
*/
for (frcP = *(lastPP = &frchain_root);
frcP && frcP->frch_seg <= seg;
frcP = *(lastPP = &frcP->frch_next))
{
if (frcP->frch_seg == seg
&& frcP->frch_subseg >= subseg)
{
break;
}
}
/*
* frcP: Address of the 1st frchainS in correct segment with
* frch_subseg >= subseg.
* We want to either use this frchainS, or we want
* to insert a new frchainS just before it.
*
* If frcP==NULL, then we are at the end of the chain
* of frchainS-s. A NULL frcP means we fell off the end
* of the chain looking for a
* frch_subseg >= subseg, so we
* must make a new frchainS.
*
* If we ever maintain a pointer to
* the last frchainS in the chain, we change that pointer
* ONLY when frcP==NULL.
*
* lastPP: Address of the pointer with value frcP;
* Never NULL.
* May point to frchain_root.
*
*/
if (!frcP
|| (frcP->frch_seg > seg
|| frcP->frch_subseg > subseg)) /* Kinky logic only works with 2 segments. */
{
/*
* This should be the only code that creates a frchainS.
*/
Use one active frag and one obstack per frag chain: * frags.c (frags): Variable deleted. (frag_alloc): New function. (frag_grow, frag_more, frag_variant, frag_now_fix, frag_append_1_char): Refer to frchain_now->frch_obstack instead of frags variable. (frag_new): Ditto. Verify that frch_last and frag_now match on entry and exit, and that old frag_now has non-zero type. Replace "know" uses with "assert". Use frag_alloc instead of mucking with obstack alignment. * frags.h (frags): Declaration deleted. * subsegs.h (struct frchain): Add new field frch_frag_now. * subsegs.c (frchains, dummy_frag, absolute_frchain): New static variables. (subsegs_begin): Initialize frchains obstack. Under gcc, don't give it any stricter alignment than frchainS structures need. Do not initialize frags obstack. Set frag_now to point to dummy_obstack. Initialize absolute_frchain. (subseg_set_rest): Save and restore frag_now in frch_frag_now field of frchainS. Don't create new frags on section switch, and use frag_alloc when creating a new frag chain. For absolute section, set frchain_now to absolute_frchain. Verify that frch_last and frag_now match on entry and exit. Initialize per-chain obstack, and under gcc, set required alignment to that needed by fragS structure. * write.c (chain_frchains_together_1): Verify fr_type is nonzero. In one test case of Mike's (i386-linux, over 300K lines of .s code with lots of stabs records), run time and memory use are reduced by about 1/3. Might introduce some problems in cases that use the frag obstacks in unusual ways. Test suite does pass for i386-linux and sparc-solaris targets though.
1995-10-18 22:21:38 +01:00
extern fragS *frag_alloc ();
newP = (frchainS *) obstack_alloc (&frchains, sizeof (frchainS));
newP->frch_subseg = subseg;
newP->frch_seg = seg;
#ifdef BFD_ASSEMBLER
newP->fix_root = NULL;
newP->fix_tail = NULL;
#endif
obstack_begin (&newP->frch_obstack, 5000);
Use one active frag and one obstack per frag chain: * frags.c (frags): Variable deleted. (frag_alloc): New function. (frag_grow, frag_more, frag_variant, frag_now_fix, frag_append_1_char): Refer to frchain_now->frch_obstack instead of frags variable. (frag_new): Ditto. Verify that frch_last and frag_now match on entry and exit, and that old frag_now has non-zero type. Replace "know" uses with "assert". Use frag_alloc instead of mucking with obstack alignment. * frags.h (frags): Declaration deleted. * subsegs.h (struct frchain): Add new field frch_frag_now. * subsegs.c (frchains, dummy_frag, absolute_frchain): New static variables. (subsegs_begin): Initialize frchains obstack. Under gcc, don't give it any stricter alignment than frchainS structures need. Do not initialize frags obstack. Set frag_now to point to dummy_obstack. Initialize absolute_frchain. (subseg_set_rest): Save and restore frag_now in frch_frag_now field of frchainS. Don't create new frags on section switch, and use frag_alloc when creating a new frag chain. For absolute section, set frchain_now to absolute_frchain. Verify that frch_last and frag_now match on entry and exit. Initialize per-chain obstack, and under gcc, set required alignment to that needed by fragS structure. * write.c (chain_frchains_together_1): Verify fr_type is nonzero. In one test case of Mike's (i386-linux, over 300K lines of .s code with lots of stabs records), run time and memory use are reduced by about 1/3. Might introduce some problems in cases that use the frag obstacks in unusual ways. Test suite does pass for i386-linux and sparc-solaris targets though.
1995-10-18 22:21:38 +01:00
#if __GNUC__ >= 2
obstack_alignment_mask (&newP->frch_obstack) = __alignof__ (fragS) - 1;
#endif
newP->frch_frag_now = frag_alloc (&newP->frch_obstack);
newP->frch_frag_now->fr_type = rs_fill;
newP->frch_root = newP->frch_last = newP->frch_frag_now;
*lastPP = newP;
newP->frch_next = frcP; /* perhaps NULL */
frcP = newP;
}
/*
* Here with frcP pointing to the frchainS for subseg.
*/
frchain_now = frcP;
Use one active frag and one obstack per frag chain: * frags.c (frags): Variable deleted. (frag_alloc): New function. (frag_grow, frag_more, frag_variant, frag_now_fix, frag_append_1_char): Refer to frchain_now->frch_obstack instead of frags variable. (frag_new): Ditto. Verify that frch_last and frag_now match on entry and exit, and that old frag_now has non-zero type. Replace "know" uses with "assert". Use frag_alloc instead of mucking with obstack alignment. * frags.h (frags): Declaration deleted. * subsegs.h (struct frchain): Add new field frch_frag_now. * subsegs.c (frchains, dummy_frag, absolute_frchain): New static variables. (subsegs_begin): Initialize frchains obstack. Under gcc, don't give it any stricter alignment than frchainS structures need. Do not initialize frags obstack. Set frag_now to point to dummy_obstack. Initialize absolute_frchain. (subseg_set_rest): Save and restore frag_now in frch_frag_now field of frchainS. Don't create new frags on section switch, and use frag_alloc when creating a new frag chain. For absolute section, set frchain_now to absolute_frchain. Verify that frch_last and frag_now match on entry and exit. Initialize per-chain obstack, and under gcc, set required alignment to that needed by fragS structure. * write.c (chain_frchains_together_1): Verify fr_type is nonzero. In one test case of Mike's (i386-linux, over 300K lines of .s code with lots of stabs records), run time and memory use are reduced by about 1/3. Might introduce some problems in cases that use the frag obstacks in unusual ways. Test suite does pass for i386-linux and sparc-solaris targets though.
1995-10-18 22:21:38 +01:00
frag_now = frcP->frch_frag_now;
Use one active frag and one obstack per frag chain: * frags.c (frags): Variable deleted. (frag_alloc): New function. (frag_grow, frag_more, frag_variant, frag_now_fix, frag_append_1_char): Refer to frchain_now->frch_obstack instead of frags variable. (frag_new): Ditto. Verify that frch_last and frag_now match on entry and exit, and that old frag_now has non-zero type. Replace "know" uses with "assert". Use frag_alloc instead of mucking with obstack alignment. * frags.h (frags): Declaration deleted. * subsegs.h (struct frchain): Add new field frch_frag_now. * subsegs.c (frchains, dummy_frag, absolute_frchain): New static variables. (subsegs_begin): Initialize frchains obstack. Under gcc, don't give it any stricter alignment than frchainS structures need. Do not initialize frags obstack. Set frag_now to point to dummy_obstack. Initialize absolute_frchain. (subseg_set_rest): Save and restore frag_now in frch_frag_now field of frchainS. Don't create new frags on section switch, and use frag_alloc when creating a new frag chain. For absolute section, set frchain_now to absolute_frchain. Verify that frch_last and frag_now match on entry and exit. Initialize per-chain obstack, and under gcc, set required alignment to that needed by fragS structure. * write.c (chain_frchains_together_1): Verify fr_type is nonzero. In one test case of Mike's (i386-linux, over 300K lines of .s code with lots of stabs records), run time and memory use are reduced by about 1/3. Might introduce some problems in cases that use the frag obstacks in unusual ways. Test suite does pass for i386-linux and sparc-solaris targets though.
1995-10-18 22:21:38 +01:00
assert (frchain_now->frch_last == frag_now);
}
1991-04-04 20:19:53 +02:00
/*
* subseg_set(segT, subsegT)
1991-04-04 20:19:53 +02:00
*
* If you attempt to change to the current subsegment, nothing happens.
*
* In: segT, subsegT code for new subsegment.
* frag_now -> incomplete frag for current subsegment.
* If frag_now==NULL, then there is no old, incomplete frag, so
* the old frag is not closed off.
*
* Out: now_subseg, now_seg updated.
* Frchain_now points to the (possibly new) struct frchain for this
* sub-segment.
* Frchain_root updated if needed.
*/
#ifndef BFD_ASSEMBLER
segT
subseg_new (segname, subseg)
const char *segname;
subsegT subseg;
1991-04-04 20:19:53 +02:00
{
int i;
for (i = 0; i < (int) SEG_MAXIMUM_ORDINAL; i++)
{
const char *s;
s = segment_name ((segT) i);
if (strcmp (segname, s) == 0
|| (segname[0] == '.'
&& strcmp (segname + 1, s) == 0))
{
subseg_set ((segT) i, subseg);
return (segT) i;
}
#ifdef obj_segment_name
s = obj_segment_name ((segT) i);
if (strcmp (segname, s) == 0
|| (segname[0] == '.'
&& strcmp (segname + 1, s) == 0))
{
subseg_set ((segT) i, subseg);
return (segT) i;
}
#endif
}
1991-04-04 20:19:53 +02:00
#ifdef obj_add_segment
{
segT new_seg;
new_seg = obj_add_segment (segname);
subseg_set (new_seg, subseg);
return new_seg;
}
#else
as_bad ("Attempt to switch to nonexistent segment \"%s\"", segname);
return now_seg;
#endif
}
void
subseg_set (seg, subseg) /* begin assembly for a new sub-segment */
register segT seg; /* SEG_DATA or SEG_TEXT */
register subsegT subseg;
{
#ifndef MANY_SEGMENTS
Use one active frag and one obstack per frag chain: * frags.c (frags): Variable deleted. (frag_alloc): New function. (frag_grow, frag_more, frag_variant, frag_now_fix, frag_append_1_char): Refer to frchain_now->frch_obstack instead of frags variable. (frag_new): Ditto. Verify that frch_last and frag_now match on entry and exit, and that old frag_now has non-zero type. Replace "know" uses with "assert". Use frag_alloc instead of mucking with obstack alignment. * frags.h (frags): Declaration deleted. * subsegs.h (struct frchain): Add new field frch_frag_now. * subsegs.c (frchains, dummy_frag, absolute_frchain): New static variables. (subsegs_begin): Initialize frchains obstack. Under gcc, don't give it any stricter alignment than frchainS structures need. Do not initialize frags obstack. Set frag_now to point to dummy_obstack. Initialize absolute_frchain. (subseg_set_rest): Save and restore frag_now in frch_frag_now field of frchainS. Don't create new frags on section switch, and use frag_alloc when creating a new frag chain. For absolute section, set frchain_now to absolute_frchain. Verify that frch_last and frag_now match on entry and exit. Initialize per-chain obstack, and under gcc, set required alignment to that needed by fragS structure. * write.c (chain_frchains_together_1): Verify fr_type is nonzero. In one test case of Mike's (i386-linux, over 300K lines of .s code with lots of stabs records), run time and memory use are reduced by about 1/3. Might introduce some problems in cases that use the frag obstacks in unusual ways. Test suite does pass for i386-linux and sparc-solaris targets though.
1995-10-18 22:21:38 +01:00
know (seg == SEG_DATA
|| seg == SEG_TEXT
|| seg == SEG_BSS
|| seg == SEG_ABSOLUTE);
#endif
if (seg != now_seg || subseg != now_subseg)
{ /* we just changed sub-segments */
subseg_set_rest (seg, subseg);
}
mri_common_symbol = NULL;
}
#else /* BFD_ASSEMBLER */
segT
subseg_get (segname, force_new)
const char *segname;
int force_new;
{
segT secptr;
segment_info_type *seginfo;
const char *now_seg_name = (now_seg
? bfd_get_section_name (stdoutput, now_seg)
: 0);
if (!force_new
&& now_seg_name
&& (now_seg_name == segname
|| !strcmp (now_seg_name, segname)))
return now_seg;
if (!force_new)
secptr = bfd_make_section_old_way (stdoutput, segname);
else
secptr = bfd_make_section_anyway (stdoutput, segname);
seginfo = seg_info (secptr);
if (! seginfo)
{
/* Check whether output_section is set first because secptr may
be bfd_abs_section_ptr. */
if (secptr->output_section != secptr)
secptr->output_section = secptr;
seginfo = (segment_info_type *) xmalloc (sizeof (*seginfo));
memset ((PTR) seginfo, 0, sizeof (*seginfo));
seginfo->fix_root = NULL;
seginfo->fix_tail = NULL;
seginfo->bfd_section = secptr;
if (secptr == bfd_abs_section_ptr)
abs_seg_info = seginfo;
else if (secptr == bfd_und_section_ptr)
und_seg_info = seginfo;
else
bfd_set_section_userdata (stdoutput, secptr, (PTR) seginfo);
seginfo->frchainP = NULL;
seginfo->lineno_list_head = seginfo->lineno_list_tail = NULL;
seginfo->sym = NULL;
seginfo->dot = NULL;
}
return secptr;
}
segT
subseg_new (segname, subseg)
const char *segname;
subsegT subseg;
{
segT secptr;
segment_info_type *seginfo;
secptr = subseg_get (segname, 0);
subseg_set_rest (secptr, subseg);
seginfo = seg_info (secptr);
if (! seginfo->frchainP)
seginfo->frchainP = frchain_now;
return secptr;
}
/* Like subseg_new, except a new section is always created, even if
a section with that name already exists. */
segT
subseg_force_new (segname, subseg)
const char *segname;
subsegT subseg;
{
segT secptr;
segment_info_type *seginfo;
secptr = subseg_get (segname, 1);
subseg_set_rest (secptr, subseg);
seginfo = seg_info (secptr);
if (! seginfo->frchainP)
seginfo->frchainP = frchain_now;
return secptr;
}
void
subseg_set (secptr, subseg)
segT secptr;
subsegT subseg;
{
if (! (secptr == now_seg && subseg == now_subseg))
subseg_set_rest (secptr, subseg);
mri_common_symbol = NULL;
}
#ifndef obj_sec_sym_ok_for_reloc
#define obj_sec_sym_ok_for_reloc(SEC) 0
#endif
/* Get the gas information we are storing for a section. */
segment_info_type *
seg_info (sec)
segT sec;
{
if (sec == bfd_abs_section_ptr)
return abs_seg_info;
else if (sec == bfd_und_section_ptr)
return und_seg_info;
else
return (segment_info_type *) bfd_get_section_userdata (stdoutput, sec);
}
symbolS *
section_symbol (sec)
segT sec;
{
segment_info_type *seginfo = seg_info (sec);
symbolS *s;
if (seginfo == 0)
abort ();
if (seginfo->sym)
return seginfo->sym;
s = symbol_find (sec->name);
if (!s)
{
#ifndef EMIT_SECTION_SYMBOLS
#define EMIT_SECTION_SYMBOLS 1
#endif
if (! EMIT_SECTION_SYMBOLS
#ifdef BFD_ASSEMBLER
&& symbol_table_frozen
#endif
)
/* Here we know it won't be going into the symbol table. */
s = symbol_create (sec->name, sec, 0, &zero_address_frag);
else
s = symbol_new (sec->name, sec, 0, &zero_address_frag);
S_CLEAR_EXTERNAL (s);
/* Use the BFD section symbol, if possible. */
if (obj_sec_sym_ok_for_reloc (sec))
s->bsym = sec->symbol;
}
seginfo->sym = s;
return s;
}
#endif /* BFD_ASSEMBLER */
1991-04-04 20:19:53 +02:00
/* end of subsegs.c */