binutils-gdb/opcodes/tic4x-dis.c

727 lines
17 KiB
C
Raw Normal View History

2002-08-28 10:38:51 +00:00
/* Print instructions for the Texas TMS320C[34]X, for GDB and GNU Binutils.
Copyright 2002 Free Software Foundation, Inc.
Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz)
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include <math.h>
#include "libiberty.h"
#include "dis-asm.h"
#include "opcode/tic4x.h"
#define C4X_DEBUG 0
#define C4X_HASH_SIZE 11 /* 11 and above should give unique entries. */
typedef enum
{
IMMED_SINT,
IMMED_SUINT,
IMMED_SFLOAT,
IMMED_INT,
IMMED_UINT,
IMMED_FLOAT
}
immed_t;
typedef enum
{
INDIRECT_SHORT,
INDIRECT_LONG,
INDIRECT_C4X
}
indirect_t;
static int c4x_version = 0;
static int c4x_dp = 0;
static int c4x_pc_offset
PARAMS ((unsigned int));
static int c4x_print_char
PARAMS ((struct disassemble_info *, char));
static int c4x_print_str
PARAMS ((struct disassemble_info *, char *));
static int c4x_print_register
PARAMS ((struct disassemble_info *, unsigned long));
static int c4x_print_addr
PARAMS ((struct disassemble_info *, unsigned long));
static int c4x_print_relative
PARAMS ((struct disassemble_info *, unsigned long, long, unsigned long));
void c4x_print_ftoa
PARAMS ((unsigned int, FILE *, fprintf_ftype));
static int c4x_print_direct
PARAMS ((struct disassemble_info *, unsigned long));
static int c4x_print_immed
PARAMS ((struct disassemble_info *, immed_t, unsigned long));
static int c4x_print_cond
PARAMS ((struct disassemble_info *, unsigned int));
static int c4x_print_indirect
PARAMS ((struct disassemble_info *, indirect_t, unsigned long));
static int c4x_print_op
PARAMS ((struct disassemble_info *, unsigned long, c4x_inst_t *, unsigned long));
static void c4x_hash_opcode
PARAMS ((c4x_inst_t **, const c4x_inst_t *));
static int c4x_disassemble
PARAMS ((unsigned long, unsigned long, struct disassemble_info *));
int print_insn_tic4x
PARAMS ((bfd_vma, struct disassemble_info *));
2002-08-28 10:38:51 +00:00
static int
c4x_pc_offset (op)
unsigned int op;
2002-08-28 10:38:51 +00:00
{
/* Determine the PC offset for a C[34]x instruction.
This could be simplified using some boolean algebra
but at the expense of readability. */
switch (op >> 24)
{
case 0x60: /* br */
case 0x62: /* call (C4x) */
case 0x64: /* rptb (C4x) */
return 1;
case 0x61: /* brd */
case 0x63: /* laj */
case 0x65: /* rptbd (C4x) */
return 3;
case 0x66: /* swi */
case 0x67:
return 0;
default:
break;
}
switch ((op & 0xffe00000) >> 20)
{
case 0x6a0: /* bB */
case 0x720: /* callB */
case 0x740: /* trapB */
return 1;
case 0x6a2: /* bBd */
case 0x6a6: /* bBat */
case 0x6aa: /* bBaf */
case 0x722: /* lajB */
case 0x748: /* latB */
case 0x798: /* rptbd */
return 3;
default:
break;
}
switch ((op & 0xfe200000) >> 20)
{
case 0x6e0: /* dbB */
return 1;
case 0x6e2: /* dbBd */
return 3;
default:
break;
}
return 0;
}
static int
c4x_print_char (info, ch)
struct disassemble_info * info;
char ch;
2002-08-28 10:38:51 +00:00
{
if (info != NULL)
(*info->fprintf_func) (info->stream, "%c", ch);
return 1;
}
static int
c4x_print_str (info, str)
struct disassemble_info *info;
char *str;
2002-08-28 10:38:51 +00:00
{
if (info != NULL)
(*info->fprintf_func) (info->stream, "%s", str);
return 1;
}
static int
c4x_print_register (info, regno)
struct disassemble_info *info;
unsigned long regno;
2002-08-28 10:38:51 +00:00
{
static c4x_register_t **registertable = NULL;
unsigned int i;
if (registertable == NULL)
{
registertable = (c4x_register_t **)
xmalloc (sizeof (c4x_register_t *) * REG_TABLE_SIZE);
for (i = 0; i < c3x_num_registers; i++)
registertable[c3x_registers[i].regno] = (void *)&c3x_registers[i];
if (IS_CPU_C4X (c4x_version))
{
/* Add C4x additional registers, overwriting
any C3x registers if necessary. */
for (i = 0; i < c4x_num_registers; i++)
registertable[c4x_registers[i].regno] = (void *)&c4x_registers[i];
}
}
if ((int) regno > (IS_CPU_C4X (c4x_version) ? C4X_REG_MAX : C3X_REG_MAX))
return 0;
if (info != NULL)
(*info->fprintf_func) (info->stream, "%s", registertable[regno]->name);
return 1;
}
static int
c4x_print_addr (info, addr)
struct disassemble_info *info;
unsigned long addr;
2002-08-28 10:38:51 +00:00
{
if (info != NULL)
(*info->print_address_func)(addr, info);
return 1;
}
static int
c4x_print_relative (info, pc, offset, opcode)
struct disassemble_info *info;
unsigned long pc;
long offset;
unsigned long opcode;
2002-08-28 10:38:51 +00:00
{
return c4x_print_addr (info, pc + offset + c4x_pc_offset (opcode));
}
static int
c4x_print_direct (info, arg)
struct disassemble_info *info;
unsigned long arg;
2002-08-28 10:38:51 +00:00
{
if (info != NULL)
{
(*info->fprintf_func) (info->stream, "@");
c4x_print_addr (info, arg + (c4x_dp << 16));
}
return 1;
}
/* FIXME: make the floating point stuff not rely on host
floating point arithmetic. */
void
c4x_print_ftoa (val, stream, pfunc)
unsigned int val;
FILE *stream;
fprintf_ftype pfunc;
2002-08-28 10:38:51 +00:00
{
int e;
int s;
int f;
double num = 0.0;
e = EXTRS (val, 31, 24); /* exponent */
if (e != -128)
{
s = EXTRU (val, 23, 23); /* sign bit */
f = EXTRU (val, 22, 0); /* mantissa */
if (s)
f += -2 * (1 << 23);
else
f += (1 << 23);
num = f / (double)(1 << 23);
num = ldexp (num, e);
}
(*pfunc)(stream, "%.9g", num);
}
static int
c4x_print_immed (info, type, arg)
struct disassemble_info *info;
immed_t type;
unsigned long arg;
2002-08-28 10:38:51 +00:00
{
int s;
int f;
int e;
double num = 0.0;
if (info == NULL)
return 1;
switch (type)
{
case IMMED_SINT:
case IMMED_INT:
(*info->fprintf_func) (info->stream, "%d", (long)arg);
break;
case IMMED_SUINT:
case IMMED_UINT:
(*info->fprintf_func) (info->stream, "%u", arg);
break;
case IMMED_SFLOAT:
e = EXTRS (arg, 15, 12);
if (e != -8)
{
s = EXTRU (arg, 11, 11);
f = EXTRU (arg, 10, 0);
if (s)
f += -2 * (1 << 11);
else
f += (1 << 11);
num = f / (double)(1 << 11);
num = ldexp (num, e);
}
(*info->fprintf_func) (info->stream, "%f", num);
break;
case IMMED_FLOAT:
e = EXTRS (arg, 31, 24);
if (e != -128)
{
s = EXTRU (arg, 23, 23);
f = EXTRU (arg, 22, 0);
if (s)
f += -2 * (1 << 23);
else
f += (1 << 23);
num = f / (double)(1 << 23);
num = ldexp (num, e);
}
(*info->fprintf_func) (info->stream, "%f", num);
break;
}
return 1;
}
static int
c4x_print_cond (info, cond)
struct disassemble_info *info;
unsigned int cond;
2002-08-28 10:38:51 +00:00
{
static c4x_cond_t **condtable = NULL;
unsigned int i;
if (condtable == NULL)
{
condtable = (c4x_cond_t **)xmalloc (sizeof (c4x_cond_t *) * 32);
for (i = 0; i < num_conds; i++)
condtable[c4x_conds[i].cond] = (void *)&c4x_conds[i];
}
if (cond > 31 || condtable[cond] == NULL)
return 0;
if (info != NULL)
(*info->fprintf_func) (info->stream, "%s", condtable[cond]->name);
return 1;
}
static int
c4x_print_indirect (info, type, arg)
struct disassemble_info *info;
indirect_t type;
unsigned long arg;
2002-08-28 10:38:51 +00:00
{
unsigned int aregno;
unsigned int modn;
unsigned int disp;
char *a;
aregno = 0;
modn = 0;
disp = 1;
switch(type)
{
case INDIRECT_C4X: /* *+ARn(disp) */
disp = EXTRU (arg, 7, 3);
aregno = EXTRU (arg, 2, 0) + REG_AR0;
modn = 0;
break;
case INDIRECT_SHORT:
disp = 1;
aregno = EXTRU (arg, 2, 0) + REG_AR0;
modn = EXTRU (arg, 7, 3);
break;
case INDIRECT_LONG:
disp = EXTRU (arg, 7, 0);
aregno = EXTRU (arg, 10, 8) + REG_AR0;
modn = EXTRU (arg, 15, 11);
if (modn > 7 && disp != 0)
return 0;
break;
default:
abort ();
}
if (modn > C3X_MODN_MAX)
return 0;
a = c4x_indirects[modn].name;
while (*a)
{
switch (*a)
{
case 'a':
c4x_print_register (info, aregno);
break;
case 'd':
c4x_print_immed (info, IMMED_UINT, disp);
break;
case 'y':
c4x_print_str (info, "ir0");
break;
case 'z':
c4x_print_str (info, "ir1");
break;
default:
c4x_print_char (info, *a);
break;
}
a++;
}
return 1;
}
static int
c4x_print_op (info, instruction, p, pc)
struct disassemble_info *info;
unsigned long instruction;
c4x_inst_t *p;
unsigned long pc;
2002-08-28 10:38:51 +00:00
{
int val;
char *s;
char *parallel = NULL;
/* Print instruction name. */
s = p->name;
while (*s && parallel == NULL)
{
switch (*s)
{
case 'B':
if (! c4x_print_cond (info, EXTRU (instruction, 20, 16)))
return 0;
break;
case 'C':
if (! c4x_print_cond (info, EXTRU (instruction, 27, 23)))
return 0;
break;
case '_':
parallel = s + 1; /* Skip past `_' in name */
break;
default:
c4x_print_char (info, *s);
break;
}
s++;
}
/* Print arguments. */
s = p->args;
if (*s)
c4x_print_char (info, ' ');
while (*s)
{
switch (*s)
{
case '*': /* indirect 0--15 */
if (! c4x_print_indirect (info, INDIRECT_LONG,
EXTRU (instruction, 15, 0)))
return 0;
break;
case '#': /* only used for ldp, ldpk */
c4x_print_immed (info, IMMED_UINT, EXTRU (instruction, 15, 0));
break;
case '@': /* direct 0--15 */
c4x_print_direct (info, EXTRU (instruction, 15, 0));
break;
case 'A': /* address register 24--22 */
if (! c4x_print_register (info, EXTRU (instruction, 24, 22) +
REG_AR0))
return 0;
break;
case 'B': /* 24-bit unsigned int immediate br(d)/call/rptb
address 0--23. */
if (IS_CPU_C4X (c4x_version))
c4x_print_relative (info, pc, EXTRS (instruction, 23, 0),
p->opcode);
else
c4x_print_addr (info, EXTRU (instruction, 23, 0));
break;
case 'C': /* indirect (short C4x) 0--7 */
if (! IS_CPU_C4X (c4x_version))
return 0;
if (! c4x_print_indirect (info, INDIRECT_C4X,
EXTRU (instruction, 7, 0)))
return 0;
break;
case 'D':
/* Cockup if get here... */
break;
case 'E': /* register 0--7 */
if (! c4x_print_register (info, EXTRU (instruction, 7, 0)))
return 0;
break;
case 'F': /* 16-bit float immediate 0--15 */
c4x_print_immed (info, IMMED_SFLOAT,
EXTRU (instruction, 15, 0));
break;
case 'I': /* indirect (short) 0--7 */
if (! c4x_print_indirect (info, INDIRECT_SHORT,
EXTRU (instruction, 7, 0)))
return 0;
break;
case 'J': /* indirect (short) 8--15 */
if (! c4x_print_indirect (info, INDIRECT_SHORT,
EXTRU (instruction, 15, 8)))
return 0;
break;
case 'G': /* register 8--15 */
if (! c4x_print_register (info, EXTRU (instruction, 15, 8)))
return 0;
break;
case 'H': /* register 16--18 */
if (! c4x_print_register (info, EXTRU (instruction, 18, 16)))
return 0;
break;
case 'K': /* register 19--21 */
if (! c4x_print_register (info, EXTRU (instruction, 21, 19)))
return 0;
break;
case 'L': /* register 22--24 */
if (! c4x_print_register (info, EXTRU (instruction, 24, 22)))
return 0;
break;
case 'M': /* register 22--22 */
c4x_print_register (info, EXTRU (instruction, 22, 22) + REG_R2);
break;
case 'N': /* register 23--23 */
c4x_print_register (info, EXTRU (instruction, 22, 22) + REG_R0);
break;
case 'O': /* indirect (short C4x) 8--15 */
if (! IS_CPU_C4X (c4x_version))
return 0;
if (! c4x_print_indirect (info, INDIRECT_C4X,
EXTRU (instruction, 15, 8)))
return 0;
break;
case 'P': /* displacement 0--15 (used by Bcond and BcondD) */
c4x_print_relative (info, pc, EXTRS (instruction, 15, 0),
p->opcode);
break;
case 'Q': /* register 0--15 */
if (! c4x_print_register (info, EXTRU (instruction, 15, 0)))
return 0;
break;
case 'R': /* register 16--20 */
if (! c4x_print_register (info, EXTRU (instruction, 20, 16)))
return 0;
break;
case 'S': /* 16-bit signed immediate 0--15 */
c4x_print_immed (info, IMMED_SINT,
EXTRS (instruction, 15, 0));
break;
case 'T': /* 5-bit signed immediate 16--20 (C4x stik) */
if (! IS_CPU_C4X (c4x_version))
return 0;
if (! c4x_print_immed (info, IMMED_SUINT,
EXTRU (instruction, 20, 16)))
return 0;
break;
case 'U': /* 16-bit unsigned int immediate 0--15 */
c4x_print_immed (info, IMMED_SUINT, EXTRU (instruction, 15, 0));
break;
case 'V': /* 5/9-bit unsigned vector 0--4/8 */
c4x_print_immed (info, IMMED_SUINT,
IS_CPU_C4X (c4x_version) ?
EXTRU (instruction, 8, 0) :
EXTRU (instruction, 4, 0) & ~0x20);
break;
case 'W': /* 8-bit signed immediate 0--7 */
if (! IS_CPU_C4X (c4x_version))
return 0;
c4x_print_immed (info, IMMED_SINT, EXTRS (instruction, 7, 0));
break;
case 'X': /* expansion register 4--0 */
val = EXTRU (instruction, 4, 0) + REG_IVTP;
if (val < REG_IVTP || val > REG_TVTP)
return 0;
if (! c4x_print_register (info, val))
return 0;
break;
case 'Y': /* address register 16--20 */
val = EXTRU (instruction, 20, 16);
if (val < REG_AR0 || val > REG_SP)
return 0;
if (! c4x_print_register (info, val))
return 0;
break;
case 'Z': /* expansion register 16--20 */
val = EXTRU (instruction, 20, 16) + REG_IVTP;
if (val < REG_IVTP || val > REG_TVTP)
return 0;
if (! c4x_print_register (info, val))
return 0;
break;
case '|': /* Parallel instruction */
c4x_print_str (info, " || ");
c4x_print_str (info, parallel);
c4x_print_char (info, ' ');
break;
case ';':
c4x_print_char (info, ',');
break;
default:
c4x_print_char (info, *s);
break;
}
s++;
}
return 1;
}
static void
c4x_hash_opcode (optable, inst)
c4x_inst_t **optable;
const c4x_inst_t *inst;
2002-08-28 10:38:51 +00:00
{
int j;
int opcode = inst->opcode >> (32 - C4X_HASH_SIZE);
int opmask = inst->opmask >> (32 - C4X_HASH_SIZE);
/* Use a C4X_HASH_SIZE bit index as a hash index. We should
have unique entries so there's no point having a linked list
for each entry? */
for (j = opcode; j < opmask; j++)
if ((j & opmask) == opcode)
{
#if C4X_DEBUG
/* We should only have collisions for synonyms like
ldp for ldi. */
if (optable[j] != NULL)
printf("Collision at index %d, %s and %s\n",
j, optable[j]->name, inst->name);
#endif
optable[j] = (void *)inst;
}
}
/* Disassemble the instruction in 'instruction'.
'pc' should be the address of this instruction, it will
be used to print the target address if this is a relative jump or call
the disassembled instruction is written to 'info'.
The function returns the length of this instruction in words. */
static int
c4x_disassemble (pc, instruction, info)
unsigned long pc;
unsigned long instruction;
struct disassemble_info *info;
2002-08-28 10:38:51 +00:00
{
static c4x_inst_t **optable = NULL;
c4x_inst_t *p;
int i;
c4x_version = info->mach;
if (optable == NULL)
{
optable = (c4x_inst_t **)
xcalloc (sizeof (c4x_inst_t *), (1 << C4X_HASH_SIZE));
/* Install opcodes in reverse order so that preferred
forms overwrite synonyms. */
for (i = c3x_num_insts - 1; i >= 0; i--)
c4x_hash_opcode (optable, &c3x_insts[i]);
if (IS_CPU_C4X (c4x_version))
{
for (i = c4x_num_insts - 1; i >= 0; i--)
c4x_hash_opcode (optable, &c4x_insts[i]);
}
}
/* See if we can pick up any loading of the DP register... */
if ((instruction >> 16) == 0x5070 || (instruction >> 16) == 0x1f70)
c4x_dp = EXTRU (instruction, 15, 0);
p = optable[instruction >> (32 - C4X_HASH_SIZE)];
if (p != NULL && ((instruction & p->opmask) == p->opcode)
&& c4x_print_op (NULL, instruction, p, pc))
c4x_print_op (info, instruction, p, pc);
else
(*info->fprintf_func) (info->stream, "%08x", instruction);
/* Return size of insn in words. */
return 1;
}
/* The entry point from objdump and gdb. */
int
print_insn_tic4x (memaddr, info)
bfd_vma memaddr;
struct disassemble_info *info;
{
int status;
unsigned long pc;
unsigned long op;
bfd_byte buffer[4];
status = (*info->read_memory_func) (memaddr, buffer, 4, info);
if (status != 0)
{
(*info->memory_error_func) (status, memaddr, info);
return -1;
}
pc = memaddr;
op = bfd_getl32 (buffer);
info->bytes_per_line = 4;
info->bytes_per_chunk = 4;
info->octets_per_byte = 4;
info->display_endian = BFD_ENDIAN_LITTLE;
return c4x_disassemble (pc, op, info) * 4;
}