binutils-gdb/gdb/m32r-tdep.c

739 lines
22 KiB
C
Raw Normal View History

/* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
Copyright 1996, Free Software Foundation, Inc.
1999-07-07 20:19:36 +00:00
This file is part of GDB.
1999-07-07 20:19:36 +00:00
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
1999-07-07 20:19:36 +00:00
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
1999-07-07 20:19:36 +00:00
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "obstack.h"
#include "target.h"
#include "value.h"
#include "bfd.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "symfile.h"
/* Function: m32r_use_struct_convention
Return nonzero if call_function should allocate stack space for a
struct return? */
int
m32r_use_struct_convention (gcc_p, type)
int gcc_p;
struct type *type;
{
return (TYPE_LENGTH (type) > 8);
}
/* Function: frame_find_saved_regs
Return the frame_saved_regs structure for the frame.
Doesn't really work for dummy frames, but it does pass back
an empty frame_saved_regs, so I guess that's better than total failure */
1999-07-07 20:19:36 +00:00
void
m32r_frame_find_saved_regs (fi, regaddr)
struct frame_info *fi;
struct frame_saved_regs *regaddr;
{
1999-07-07 20:19:36 +00:00
memcpy (regaddr, &fi->fsr, sizeof (struct frame_saved_regs));
}
/* Turn this on if you want to see just how much instruction decoding
if being done, its quite a lot
1999-07-07 20:19:36 +00:00
*/
#if 0
1999-07-07 20:19:36 +00:00
static void
dump_insn (char *commnt, CORE_ADDR pc, int insn)
{
1999-07-07 20:19:36 +00:00
printf_filtered (" %s %08x %08x ",
commnt, (unsigned int) pc, (unsigned int) insn);
(*tm_print_insn) (pc, &tm_print_insn_info);
printf_filtered ("\n");
}
#define insn_debug(args) { printf_filtered args; }
#else
#define dump_insn(a,b,c) {}
#define insn_debug(args) {}
#endif
1999-07-07 20:19:36 +00:00
#define DEFAULT_SEARCH_LIMIT 44
/* Function: scan_prologue
This function decodes the target function prologue to determine
1) the size of the stack frame, and 2) which registers are saved on it.
It saves the offsets of saved regs in the frame_saved_regs argument,
and returns the frame size. */
/*
1999-07-07 20:19:36 +00:00
The sequence it currently generates is:
if (varargs function) { ddi sp,#n }
push registers
if (additional stack <= 256) { addi sp,#-stack }
else if (additional stack < 65k) { add3 sp,sp,#-stack
} else if (additional stack) {
seth sp,#(stack & 0xffff0000)
or3 sp,sp,#(stack & 0x0000ffff)
sub sp,r4
}
if (frame pointer) {
mv sp,fp
}
1999-07-07 20:19:36 +00:00
These instructions are scheduled like everything else, so you should stop at
the first branch instruction.
*/
/* This is required by skip prologue and by m32r_init_extra_frame_info.
The results of decoding a prologue should be cached because this
thrashing is getting nuts.
I am thinking of making a container class with two indexes, name and
address. It may be better to extend the symbol table.
1999-07-07 20:19:36 +00:00
*/
1999-07-07 20:19:36 +00:00
static void
decode_prologue (start_pc, scan_limit,
pl_endptr, framelength,
fi, fsr)
CORE_ADDR start_pc;
CORE_ADDR scan_limit;
1999-07-07 20:19:36 +00:00
CORE_ADDR *pl_endptr; /* var parameter */
unsigned long *framelength;
struct frame_info *fi;
struct frame_saved_regs *fsr;
{
unsigned long framesize;
int insn;
int op1;
int maybe_one_more = 0;
CORE_ADDR after_prologue = 0;
CORE_ADDR after_stack_adjust = 0;
CORE_ADDR current_pc;
framesize = 0;
after_prologue = 0;
1999-07-07 20:19:36 +00:00
insn_debug (("rd prolog l(%d)\n", scan_limit - current_pc));
for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2)
{
insn = read_memory_unsigned_integer (current_pc, 2);
1999-07-07 20:19:36 +00:00
dump_insn ("insn-1", current_pc, insn); /* MTZ */
/* If this is a 32 bit instruction, we dont want to examine its
immediate data as though it were an instruction */
if (current_pc & 0x02)
1999-07-07 20:19:36 +00:00
{ /* Clear the parallel execution bit from 16 bit instruction */
if (maybe_one_more)
1999-07-07 20:19:36 +00:00
{ /* The last instruction was a branch, usually terminates
the series, but if this is a parallel instruction,
it may be a stack framing instruction */
if (!(insn & 0x8000))
{
insn_debug (("Really done"));
break; /* nope, we are really done */
}
}
1999-07-07 20:19:36 +00:00
insn &= 0x7fff; /* decode this instruction further */
}
else
{
1999-07-07 20:19:36 +00:00
if (maybe_one_more)
break; /* This isnt the one more */
if (insn & 0x8000)
{
1999-07-07 20:19:36 +00:00
insn_debug (("32 bit insn\n"));
if (current_pc == scan_limit)
1999-07-07 20:19:36 +00:00
scan_limit += 2; /* extend the search */
current_pc += 2; /* skip the immediate data */
if (insn == 0x8faf) /* add3 sp, sp, xxxx */
/* add 16 bit sign-extended offset */
1999-07-07 20:19:36 +00:00
{
insn_debug (("stack increment\n"));
framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
}
else
{
1999-07-07 20:19:36 +00:00
if (((insn >> 8) == 0xe4) && /* ld24 r4, xxxxxx; sub sp, r4 */
read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
{ /* subtract 24 bit sign-extended negative-offset */
dump_insn ("insn-2", current_pc + 2, insn);
insn = read_memory_unsigned_integer (current_pc - 2, 4);
1999-07-07 20:19:36 +00:00
dump_insn ("insn-3(l4)", current_pc - 2, insn);
if (insn & 0x00800000) /* sign extend */
1999-07-07 20:19:36 +00:00
insn |= 0xff000000; /* negative */
else
1999-07-07 20:19:36 +00:00
insn &= 0x00ffffff; /* positive */
framesize += insn;
}
}
after_prologue = current_pc;
continue;
}
}
1999-07-07 20:19:36 +00:00
op1 = insn & 0xf000; /* isolate just the first nibble */
if ((insn & 0xf0ff) == 0x207f)
1999-07-07 20:19:36 +00:00
{ /* st reg, @-sp */
int regno;
1999-07-07 20:19:36 +00:00
insn_debug (("push\n"));
#if 0 /* No, PUSH FP is not an indication that we will use a frame pointer. */
if (((insn & 0xffff) == 0x2d7f) && fi)
fi->using_frame_pointer = 1;
#endif
1999-07-07 20:19:36 +00:00
framesize += 4;
#if 0
/* Why should we increase the scan limit, just because we did a push?
And if there is a reason, surely we would only want to do it if we
had already reached the scan limit... */
if (current_pc == scan_limit)
scan_limit += 2;
#endif
regno = ((insn >> 8) & 0xf);
1999-07-07 20:19:36 +00:00
if (fsr) /* save_regs offset */
fsr->regs[regno] = framesize;
after_prologue = 0;
1999-07-07 20:19:36 +00:00
continue;
}
1999-07-07 20:19:36 +00:00
if ((insn >> 8) == 0x4f) /* addi sp, xx */
/* add 8 bit sign-extended offset */
{
int stack_adjust = (char) (insn & 0xff);
/* there are probably two of these stack adjustments:
1) A negative one in the prologue, and
2) A positive one in the epilogue.
We are only interested in the first one. */
if (stack_adjust < 0)
{
framesize -= stack_adjust;
after_prologue = 0;
/* A frameless function may have no "mv fp, sp".
1999-07-07 20:19:36 +00:00
In that case, this is the end of the prologue. */
after_stack_adjust = current_pc + 2;
}
continue;
}
1999-07-07 20:19:36 +00:00
if (insn == 0x1d8f)
{ /* mv fp, sp */
if (fi)
fi->using_frame_pointer = 1; /* fp is now valid */
insn_debug (("done fp found\n"));
after_prologue = current_pc + 2;
break; /* end of stack adjustments */
}
if (insn == 0x7000) /* Nop looks like a branch, continue explicitly */
{
insn_debug (("nop\n"));
after_prologue = current_pc + 2;
continue; /* nop occurs between pushes */
}
/* End of prolog if any of these are branch instructions */
if ((op1 == 0x7000)
1999-07-07 20:19:36 +00:00
|| (op1 == 0xb000)
1999-09-13 21:40:00 +00:00
|| (op1 == 0xf000))
{
after_prologue = current_pc;
1999-07-07 20:19:36 +00:00
insn_debug (("Done: branch\n"));
maybe_one_more = 1;
continue;
}
/* Some of the branch instructions are mixed with other types */
if (op1 == 0x1000)
1999-07-07 20:19:36 +00:00
{
int subop = insn & 0x0ff0;
if ((subop == 0x0ec0) || (subop == 0x0fc0))
1999-07-07 20:19:36 +00:00
{
insn_debug (("done: jmp\n"));
after_prologue = current_pc;
maybe_one_more = 1;
1999-07-07 20:19:36 +00:00
continue; /* jmp , jl */
}
}
}
if (current_pc >= scan_limit)
{
1999-07-07 20:19:36 +00:00
if (pl_endptr)
1999-04-26 18:34:20 +00:00
{
#if 1
1999-04-26 18:34:20 +00:00
if (after_stack_adjust != 0)
/* We did not find a "mv fp,sp", but we DID find
a stack_adjust. Is it safe to use that as the
end of the prologue? I just don't know. */
{
*pl_endptr = after_stack_adjust;
if (framelength)
*framelength = framesize;
}
else
#endif
1999-04-26 18:34:20 +00:00
/* We reached the end of the loop without finding the end
of the prologue. No way to win -- we should report failure.
The way we do that is to return the original start_pc.
GDB will set a breakpoint at the start of the function (etc.) */
*pl_endptr = start_pc;
1999-07-07 20:19:36 +00:00
}
return;
}
1999-07-07 20:19:36 +00:00
if (after_prologue == 0)
after_prologue = current_pc;
1999-07-07 20:19:36 +00:00
insn_debug ((" framesize %d, firstline %08x\n", framesize, after_prologue));
if (framelength)
*framelength = framesize;
1999-07-07 20:19:36 +00:00
if (pl_endptr)
*pl_endptr = after_prologue;
1999-07-07 20:19:36 +00:00
} /* decode_prologue */
/* Function: skip_prologue
Find end of function prologue */
CORE_ADDR
m32r_skip_prologue (pc)
CORE_ADDR pc;
{
CORE_ADDR func_addr, func_end;
struct symtab_and_line sal;
/* See what the symbol table says */
if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
{
sal = find_pc_line (func_addr, 0);
if (sal.line != 0 && sal.end <= func_end)
{
1999-07-07 20:19:36 +00:00
insn_debug (("BP after prologue %08x\n", sal.end));
func_end = sal.end;
}
else
/* Either there's no line info, or the line after the prologue is after
the end of the function. In this case, there probably isn't a
prologue. */
{
1999-07-07 20:19:36 +00:00
insn_debug (("No line info, line(%x) sal_end(%x) funcend(%x)\n",
sal.line, sal.end, func_end));
func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT);
}
}
1999-07-07 20:19:36 +00:00
else
func_end = pc + DEFAULT_SEARCH_LIMIT;
decode_prologue (pc, func_end, &sal.end, 0, 0, 0);
return sal.end;
}
static unsigned long
m32r_scan_prologue (fi, fsr)
struct frame_info *fi;
struct frame_saved_regs *fsr;
{
struct symtab_and_line sal;
CORE_ADDR prologue_start, prologue_end, current_pc;
1999-09-13 21:40:00 +00:00
unsigned long framesize = 0;
/* this code essentially duplicates skip_prologue,
but we need the start address below. */
if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
{
sal = find_pc_line (prologue_start, 0);
1999-07-07 20:19:36 +00:00
if (sal.line == 0) /* no line info, use current PC */
if (prologue_start == entry_point_address ())
return 0;
}
else
{
prologue_start = fi->pc;
1999-07-07 20:19:36 +00:00
prologue_end = prologue_start + 48; /* We're in the boondocks:
allow for 16 pushes, an add,
and "mv fp,sp" */
}
#if 0
prologue_end = min (prologue_end, fi->pc);
#endif
1999-07-07 20:19:36 +00:00
insn_debug (("fipc(%08x) start(%08x) end(%08x)\n",
fi->pc, prologue_start, prologue_end));
prologue_end = min (prologue_end, prologue_start + DEFAULT_SEARCH_LIMIT);
decode_prologue (prologue_start, prologue_end, &prologue_end, &framesize,
fi, fsr);
return framesize;
}
/* Function: init_extra_frame_info
This function actually figures out the frame address for a given pc and
sp. This is tricky on the m32r because we sometimes don't use an explicit
frame pointer, and the previous stack pointer isn't necessarily recorded
on the stack. The only reliable way to get this info is to
examine the prologue. */
void
m32r_init_extra_frame_info (fi)
struct frame_info *fi;
{
int reg;
if (fi->next)
fi->pc = FRAME_SAVED_PC (fi->next);
memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
{
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
1999-07-07 20:19:36 +00:00
by assuming it's always FP. */
fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
fi->framesize = 0;
return;
}
1999-07-07 20:19:36 +00:00
else
{
fi->using_frame_pointer = 0;
fi->framesize = m32r_scan_prologue (fi, &fi->fsr);
if (!fi->next)
if (fi->using_frame_pointer)
{
fi->frame = read_register (FP_REGNUM);
}
else
fi->frame = read_register (SP_REGNUM);
1999-07-07 20:19:36 +00:00
else
/* fi->next means this is not the innermost frame */ if (fi->using_frame_pointer)
/* we have an FP */
if (fi->next->fsr.regs[FP_REGNUM] != 0) /* caller saved our FP */
fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
for (reg = 0; reg < NUM_REGS; reg++)
if (fi->fsr.regs[reg] != 0)
fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
}
}
/* Function: mn10300_virtual_frame_pointer
Return the register that the function uses for a frame pointer,
plus any necessary offset to be applied to the register before
any frame pointer offsets. */
void
m32r_virtual_frame_pointer (pc, reg, offset)
CORE_ADDR pc;
long *reg;
long *offset;
{
struct frame_info fi;
/* Set up a dummy frame_info. */
fi.next = NULL;
fi.prev = NULL;
fi.frame = 0;
fi.pc = pc;
/* Analyze the prolog and fill in the extra info. */
m32r_init_extra_frame_info (&fi);
/* Results will tell us which type of frame it uses. */
if (fi.using_frame_pointer)
{
1999-07-07 20:19:36 +00:00
*reg = FP_REGNUM;
*offset = 0;
}
else
{
1999-07-07 20:19:36 +00:00
*reg = SP_REGNUM;
*offset = 0;
}
}
/* Function: find_callers_reg
Find REGNUM on the stack. Otherwise, it's in an active register. One thing
we might want to do here is to check REGNUM against the clobber mask, and
somehow flag it as invalid if it isn't saved on the stack somewhere. This
would provide a graceful failure mode when trying to get the value of
caller-saves registers for an inner frame. */
CORE_ADDR
m32r_find_callers_reg (fi, regnum)
struct frame_info *fi;
int regnum;
{
for (; fi; fi = fi->next)
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return generic_read_register_dummy (fi->pc, fi->frame, regnum);
else if (fi->fsr.regs[regnum] != 0)
1999-07-07 20:19:36 +00:00
return read_memory_integer (fi->fsr.regs[regnum],
REGISTER_RAW_SIZE (regnum));
return read_register (regnum);
}
/* Function: frame_chain
Given a GDB frame, determine the address of the calling function's frame.
This will be used to create a new GDB frame struct, and then
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
For m32r, we save the frame size when we initialize the frame_info. */
CORE_ADDR
m32r_frame_chain (fi)
struct frame_info *fi;
{
CORE_ADDR fn_start, callers_pc, fp;
/* is this a dummy frame? */
1999-07-07 20:19:36 +00:00
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return fi->frame; /* dummy frame same as caller's frame */
/* is caller-of-this a dummy frame? */
1999-07-07 20:19:36 +00:00
callers_pc = FRAME_SAVED_PC (fi); /* find out who called us: */
fp = m32r_find_callers_reg (fi, FP_REGNUM);
1999-07-07 20:19:36 +00:00
if (PC_IN_CALL_DUMMY (callers_pc, fp, fp))
return fp; /* dummy frame's frame may bear no relation to ours */
if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
if (fn_start == entry_point_address ())
1999-07-07 20:19:36 +00:00
return 0; /* in _start fn, don't chain further */
if (fi->framesize == 0)
{
1999-09-09 00:02:17 +00:00
printf_filtered ("cannot determine frame size @ %s , pc(%s)\n",
paddr (fi->frame),
paddr (fi->pc));
return 0;
}
1999-07-07 20:19:36 +00:00
insn_debug (("m32rx frame %08x\n", fi->frame + fi->framesize));
return fi->frame + fi->framesize;
}
/* Function: push_return_address (pc)
Set up the return address for the inferior function call.
Necessary for targets that don't actually execute a JSR/BSR instruction
(ie. when using an empty CALL_DUMMY) */
CORE_ADDR
m32r_push_return_address (pc, sp)
CORE_ADDR pc;
CORE_ADDR sp;
{
write_register (RP_REGNUM, CALL_DUMMY_ADDRESS ());
return sp;
}
/* Function: pop_frame
Discard from the stack the innermost frame,
restoring all saved registers. */
struct frame_info *
m32r_pop_frame (frame)
struct frame_info *frame;
{
int regnum;
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
generic_pop_dummy_frame ();
else
{
for (regnum = 0; regnum < NUM_REGS; regnum++)
if (frame->fsr.regs[regnum] != 0)
1999-07-07 20:19:36 +00:00
write_register (regnum,
read_memory_integer (frame->fsr.regs[regnum], 4));
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
write_register (SP_REGNUM, read_register (FP_REGNUM));
if (read_register (PSW_REGNUM) & 0x80)
write_register (SPU_REGNUM, read_register (SP_REGNUM));
else
write_register (SPI_REGNUM, read_register (SP_REGNUM));
}
flush_cached_frames ();
return NULL;
}
/* Function: frame_saved_pc
Find the caller of this frame. We do this by seeing if RP_REGNUM is saved
in the stack anywhere, otherwise we get it from the registers. */
CORE_ADDR
m32r_frame_saved_pc (fi)
struct frame_info *fi;
{
1999-07-07 20:19:36 +00:00
if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
else
return m32r_find_callers_reg (fi, RP_REGNUM);
}
/* Function: push_arguments
Setup the function arguments for calling a function in the inferior.
On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
which are dedicated for passing function arguments. Up to the first
four arguments (depending on size) may go into these registers.
The rest go on the stack.
Arguments that are smaller than 4 bytes will still take up a whole
register or a whole 32-bit word on the stack, and will be
right-justified in the register or the stack word. This includes
chars, shorts, and small aggregate types.
1999-07-07 20:19:36 +00:00
Arguments of 8 bytes size are split between two registers, if
available. If only one register is available, the argument will
be split between the register and the stack. Otherwise it is
passed entirely on the stack. Aggregate types with sizes between
4 and 8 bytes are passed entirely on the stack, and are left-justified
within the double-word (as opposed to aggregates smaller than 4 bytes
which are right-justified).
Aggregates of greater than 8 bytes are first copied onto the stack,
and then a pointer to the copy is passed in the place of the normal
argument (either in a register if available, or on the stack).
Functions that must return an aggregate type can return it in the
normal return value registers (R0 and R1) if its size is 8 bytes or
less. For larger return values, the caller must allocate space for
the callee to copy the return value to. A pointer to this space is
passed as an implicit first argument, always in R0. */
CORE_ADDR
m32r_push_arguments (nargs, args, sp, struct_return, struct_addr)
int nargs;
value_ptr *args;
CORE_ADDR sp;
unsigned char struct_return;
CORE_ADDR struct_addr;
{
int stack_offset, stack_alloc;
int argreg;
int argnum;
struct type *type;
CORE_ADDR regval;
char *val;
char valbuf[4];
int len;
int odd_sized_struct;
/* first force sp to a 4-byte alignment */
sp = sp & ~3;
1999-07-07 20:19:36 +00:00
argreg = ARG0_REGNUM;
/* The "struct return pointer" pseudo-argument goes in R0 */
if (struct_return)
1999-07-07 20:19:36 +00:00
write_register (argreg++, struct_addr);
/* Now make sure there's space on the stack */
for (argnum = 0, stack_alloc = 0;
argnum < nargs; argnum++)
1999-07-07 20:19:36 +00:00
stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3);
sp -= stack_alloc; /* make room on stack for args */
/* Now load as many as possible of the first arguments into
registers, and push the rest onto the stack. There are 16 bytes
in four registers available. Loop thru args from first to last. */
1999-07-07 20:19:36 +00:00
argreg = ARG0_REGNUM;
for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
{
type = VALUE_TYPE (args[argnum]);
1999-07-07 20:19:36 +00:00
len = TYPE_LENGTH (type);
memset (valbuf, 0, sizeof (valbuf));
if (len < 4)
1999-07-07 20:19:36 +00:00
{ /* value gets right-justified in the register or stack word */
memcpy (valbuf + (4 - len),
(char *) VALUE_CONTENTS (args[argnum]), len);
val = valbuf;
}
else
1999-07-07 20:19:36 +00:00
val = (char *) VALUE_CONTENTS (args[argnum]);
if (len > 4 && (len & 3) != 0)
1999-07-07 20:19:36 +00:00
odd_sized_struct = 1; /* such structs go entirely on stack */
else
1999-07-07 20:19:36 +00:00
odd_sized_struct = 0;
while (len > 0)
1999-07-07 20:19:36 +00:00
{
if (argreg > ARGLAST_REGNUM || odd_sized_struct)
{ /* must go on the stack */
write_memory (sp + stack_offset, val, 4);
stack_offset += 4;
}
/* NOTE WELL!!!!! This is not an "else if" clause!!!
That's because some *&^%$ things get passed on the stack
AND in the registers! */
if (argreg <= ARGLAST_REGNUM)
{ /* there's room in a register */
regval = extract_address (val, REGISTER_RAW_SIZE (argreg));
write_register (argreg++, regval);
}
/* Store the value 4 bytes at a time. This means that things
larger than 4 bytes may go partly in registers and partly
on the stack. */
len -= REGISTER_RAW_SIZE (argreg);
val += REGISTER_RAW_SIZE (argreg);
}
}
return sp;
}
/* Function: fix_call_dummy
If there is real CALL_DUMMY code (eg. on the stack), this function
has the responsability to insert the address of the actual code that
is the target of the target function call. */
void
m32r_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
char *dummy;
CORE_ADDR pc;
CORE_ADDR fun;
int nargs;
value_ptr *args;
struct type *type;
int gcc_p;
{
/* ld24 r8, <(imm24) fun> */
*(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
}
/* Function: m32r_write_sp
Because SP is really a read-only register that mirrors either SPU or SPI,
we must actually write one of those two as well, depending on PSW. */
void
m32r_write_sp (val)
CORE_ADDR val;
{
unsigned long psw = read_register (PSW_REGNUM);
1999-07-07 20:19:36 +00:00
if (psw & 0x80) /* stack mode: user or interrupt */
write_register (SPU_REGNUM, val);
else
write_register (SPI_REGNUM, val);
write_register (SP_REGNUM, val);
}
void
_initialize_m32r_tdep ()
{
tm_print_insn = print_insn_m32r;
}