binutils-gdb/bfd/libhppa.h

713 lines
17 KiB
C
Raw Normal View History

1999-05-03 09:29:11 +02:00
/* HP PA-RISC SOM object file format: definitions internal to BFD.
2000-04-29 02:56:29 +02:00
Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 98, 99, 2000
Free Software Foundation, Inc.
1999-05-03 09:29:11 +02:00
Contributed by the Center for Software Science at the
University of Utah (pa-gdb-bugs@cs.utah.edu).
This file is part of BFD, the Binary File Descriptor library.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef _HPPA_H
#define _HPPA_H
#define BYTES_IN_WORD 4
#define PA_PAGESIZE 0x1000
#ifndef INLINE
#ifdef __GNUC__
#define INLINE inline
#else
#define INLINE
#endif /* GNU C? */
#endif /* INLINE */
/* The PA instruction set variants. */
enum pa_arch {pa10 = 10, pa11 = 11, pa20 = 20, pa20w = 25};
1999-05-03 09:29:11 +02:00
/* HP PA-RISC relocation types */
enum hppa_reloc_field_selector_type
{
R_HPPA_FSEL = 0x0,
R_HPPA_LSSEL = 0x1,
R_HPPA_RSSEL = 0x2,
R_HPPA_LSEL = 0x3,
R_HPPA_RSEL = 0x4,
R_HPPA_LDSEL = 0x5,
R_HPPA_RDSEL = 0x6,
R_HPPA_LRSEL = 0x7,
R_HPPA_RRSEL = 0x8,
R_HPPA_NSEL = 0x9,
R_HPPA_NLSEL = 0xa,
R_HPPA_NLRSEL = 0xb,
R_HPPA_PSEL = 0xc,
R_HPPA_LPSEL = 0xd,
R_HPPA_RPSEL = 0xe,
R_HPPA_TSEL = 0xf,
R_HPPA_LTSEL = 0x10,
R_HPPA_RTSEL = 0x11,
R_HPPA_LTPSEL = 0x12,
R_HPPA_RTPSEL = 0x13
1999-05-03 09:29:11 +02:00
};
/* /usr/include/reloc.h defines these to constants. We want to use
them in enums, so #undef them before we start using them. We might
be able to fix this another way by simply managing not to include
/usr/include/reloc.h, but currently GDB picks up these defines
somewhere. */
#undef e_fsel
#undef e_lssel
#undef e_rssel
#undef e_lsel
#undef e_rsel
#undef e_ldsel
#undef e_rdsel
#undef e_lrsel
#undef e_rrsel
#undef e_nsel
#undef e_nlsel
#undef e_nlrsel
#undef e_psel
#undef e_lpsel
#undef e_rpsel
#undef e_tsel
#undef e_ltsel
#undef e_rtsel
#undef e_one
#undef e_two
#undef e_pcrel
#undef e_con
#undef e_plabel
#undef e_abs
/* for compatibility */
enum hppa_reloc_field_selector_type_alt
{
e_fsel = R_HPPA_FSEL,
e_lssel = R_HPPA_LSSEL,
e_rssel = R_HPPA_RSSEL,
e_lsel = R_HPPA_LSEL,
e_rsel = R_HPPA_RSEL,
e_ldsel = R_HPPA_LDSEL,
e_rdsel = R_HPPA_RDSEL,
e_lrsel = R_HPPA_LRSEL,
e_rrsel = R_HPPA_RRSEL,
e_nsel = R_HPPA_NSEL,
e_nlsel = R_HPPA_NLSEL,
e_nlrsel = R_HPPA_NLRSEL,
e_psel = R_HPPA_PSEL,
e_lpsel = R_HPPA_LPSEL,
e_rpsel = R_HPPA_RPSEL,
e_tsel = R_HPPA_TSEL,
e_ltsel = R_HPPA_LTSEL,
e_rtsel = R_HPPA_RTSEL,
e_ltpsel = R_HPPA_LTPSEL,
e_rtpsel = R_HPPA_RTPSEL
1999-05-03 09:29:11 +02:00
};
enum hppa_reloc_expr_type
{
R_HPPA_E_ONE = 0,
R_HPPA_E_TWO = 1,
R_HPPA_E_PCREL = 2,
R_HPPA_E_CON = 3,
R_HPPA_E_PLABEL = 7,
R_HPPA_E_ABS = 18
};
/* for compatibility */
enum hppa_reloc_expr_type_alt
{
e_one = R_HPPA_E_ONE,
e_two = R_HPPA_E_TWO,
e_pcrel = R_HPPA_E_PCREL,
e_con = R_HPPA_E_CON,
e_plabel = R_HPPA_E_PLABEL,
e_abs = R_HPPA_E_ABS
};
/* Relocations for function calls must be accompanied by parameter
relocation bits. These bits describe exactly where the caller has
placed the function's arguments and where it expects to find a return
value.
Both ELF and SOM encode this information within the addend field
of the call relocation. (Note this could break very badly if one
was to make a call like bl foo + 0x12345678).
The high order 10 bits contain parameter relocation information,
the low order 22 bits contain the constant offset. */
#define HPPA_R_ARG_RELOC(a) \
(((a) >> 22) & 0x3ff)
#define HPPA_R_CONSTANT(a) \
2000-05-04 14:45:43 +02:00
((((bfd_signed_vma)(a)) << (BFD_ARCH_SIZE-22)) >> (BFD_ARCH_SIZE-22))
#define HPPA_R_ADDEND(r, c) \
(((r) << 22) + ((c) & 0x3fffff))
#define HPPA_WIDE (0) /* PSW W-bit, need to check! FIXME */
1999-05-03 09:29:11 +02:00
/* These macros get bit fields using HP's numbering (MSB = 0),
* but note that "MASK" assumes that the LSB bits are what's
* wanted.
*/
#ifndef GET_FIELD
#define GET_FIELD(X, FROM, TO) \
((X) >> (31 - (TO)) & ((1 << ((TO) - (FROM) + 1)) - 1))
#endif
#define GET_BIT(X, WHICH) \
GET_FIELD (X, WHICH, WHICH)
1999-05-03 09:29:11 +02:00
#define MASK(SIZE) \
1999-05-03 09:29:11 +02:00
(~((-1) << SIZE))
#define CATENATE(X, XSIZE, Y, YSIZE) \
(((X & MASK (XSIZE)) << YSIZE) | (Y & MASK (YSIZE)))
1999-05-03 09:29:11 +02:00
#define ELEVEN(X) \
CATENATE (GET_BIT (X, 10), 1, GET_FIELD (X, 0, 9), 10)
1999-05-03 09:29:11 +02:00
/* Some functions to manipulate PA instructions. */
/* NOTE: these use the HP convention that f{0} is the _left_ most
1999-05-03 09:29:11 +02:00
* bit (MSB) of f; they sometimes have to impose an assumption
* about the size of a field; and as far as I can tell, most
* aren't used.
*/
#if __GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 7)
/* Declare the functions with the unused attribute to avoid warnings. */
static INLINE unsigned int sign_extend (unsigned int, unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int low_sign_extend (unsigned int, unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int assemble_3 (unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int assemble_6 (unsigned int, unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int assemble_12 (unsigned int, unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int assemble_16 (unsigned int, unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int assemble_16a (unsigned int, unsigned int,
unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int assemble_17 (unsigned int, unsigned int,
unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int assemble_21 (unsigned int)
__attribute ((__unused__));
static INLINE unsigned int sign_unext (unsigned int, unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int low_sign_unext (unsigned int, unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int re_assemble_3 (unsigned int, unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int re_assemble_12 (unsigned int, unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int re_assemble_16 (unsigned int, unsigned int, int)
__attribute__ ((__unused__));
static INLINE unsigned int re_assemble_17 (unsigned int, unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int re_assemble_22 (unsigned int, unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int re_assemble_21 (unsigned int, unsigned int)
__attribute__ ((__unused__));
static INLINE bfd_signed_vma hppa_field_adjust (bfd_signed_vma, bfd_signed_vma,
enum hppa_reloc_field_selector_type_alt)
__attribute__ ((__unused__));
static INLINE int bfd_hppa_insn2fmt (unsigned int)
__attribute__ ((__unused__));
static INLINE unsigned int hppa_rebuild_insn (bfd *, unsigned int,
unsigned int, unsigned int)
__attribute__ ((__unused__));
#endif /* gcc 2.7 or higher */
/* The *sign_extend and assemble_* functions are used to assemble
various bitfields taken from an instruction and return the
resulting immediate value. They correspond to functions by the
same name in HP's PA-RISC 2.0 Architecture Reference Manual. */
static INLINE unsigned int
1999-05-03 09:29:11 +02:00
sign_extend (x, len)
unsigned int x, len;
{
unsigned int signbit = (1 << (len - 1));
unsigned int mask = (signbit << 1) - 1;
return ((x & mask) ^ signbit) - signbit;
1999-05-03 09:29:11 +02:00
}
static INLINE unsigned int
low_sign_extend (x, len)
unsigned int x, len;
1999-05-03 09:29:11 +02:00
{
return (x >> 1) - ((x & 1) << (len - 1));
1999-05-03 09:29:11 +02:00
}
static INLINE unsigned int
assemble_3 (x)
1999-05-03 09:29:11 +02:00
unsigned int x;
{
return CATENATE (GET_BIT (x, 2), 1, GET_FIELD (x, 0, 1), 2);
1999-05-03 09:29:11 +02:00
}
static INLINE unsigned int
1999-05-03 09:29:11 +02:00
assemble_6 (x, y)
unsigned int x, y;
{
return (((x & 1) << 5) + (32 - (y & 0x1f)));
1999-05-03 09:29:11 +02:00
}
static INLINE unsigned int
assemble_12 (x, y)
unsigned int x, y;
{
return CATENATE (CATENATE (y, 1, GET_BIT (x, 10), 1), 2,
GET_FIELD (x, 0, 9), 9);
1999-05-03 09:29:11 +02:00
}
static INLINE unsigned int
1999-05-03 09:29:11 +02:00
assemble_16 (x, y)
unsigned int x, y;
{
/* Depends on PSW W-bit !*/
unsigned int temp;
if (HPPA_WIDE)
temp = CATENATE (CATENATE (GET_BIT (y, 13), 1,
(GET_BIT (y, 13) ^ GET_BIT (x, 0)), 1), 2,
CATENATE ((GET_BIT (y, 13) ^ GET_BIT (x, 1)), 1,
GET_FIELD (y, 0, 12), 13), 14);
else
temp = CATENATE (CATENATE (GET_BIT (y, 13), 1, GET_BIT (y, 13), 1), 2,
CATENATE (GET_BIT (y, 13), 1, GET_FIELD (y, 0, 12), 13), 14);
return sign_extend (temp, 16);
1999-05-03 09:29:11 +02:00
}
static INLINE unsigned int
1999-05-03 09:29:11 +02:00
assemble_16a (x, y, z)
unsigned int x, y, z;
{
/* Depends on PSW W-bit !*/
unsigned int temp;
if (HPPA_WIDE)
temp = CATENATE (CATENATE (z, 1, (z ^ GET_BIT (x, 0)), 1), 2,
CATENATE ((z ^ GET_BIT (x, 1)), 1, y, 11), 12);
else
temp = CATENATE (CATENATE (z, 1, z, 1), 2, CATENATE (z, 1, y, 11), 12);
return sign_extend ((temp << 2), 16);
1999-05-03 09:29:11 +02:00
}
static INLINE unsigned int
1999-05-03 09:29:11 +02:00
assemble_17 (x, y, z)
unsigned int x, y, z;
{
unsigned int temp;
1999-05-03 09:29:11 +02:00
temp = CATENATE (CATENATE (z, 1, x, 5), 6,
CATENATE (GET_BIT (y, 10), 1, GET_FIELD (y, 0, 9), 10), 11);
1999-05-03 09:29:11 +02:00
return temp;
}
static INLINE unsigned int
1999-05-03 09:29:11 +02:00
assemble_21 (x)
unsigned int x;
{
unsigned int temp;
temp = (( (x & 0x000001) << 20)
| ((x & 0x000ffe) << 8)
| ((x & 0x003000) >> 12)
| ((x & 0x00c000) >> 7)
| ((x & 0x1f0000) >> 14));
return temp;
1999-05-03 09:29:11 +02:00
}
static INLINE unsigned int
1999-05-03 09:29:11 +02:00
assemble_22 (a,b,c,d)
unsigned int a,b,c,d;
{
unsigned int temp;
temp = CATENATE (CATENATE (d, 1, a, 5), 6,
CATENATE (b, 5, ELEVEN (c), 11), 16);
1999-05-03 09:29:11 +02:00
return sign_extend (temp, 22);
1999-05-03 09:29:11 +02:00
}
/* The re_assemble_* functions splice together an opcode and an
immediate value. pa-risc uses all sorts of weird bitfields in the
instruction to hold the value. */
1999-05-03 09:29:11 +02:00
static INLINE unsigned int
sign_unext (x, len)
unsigned int x, len;
1999-05-03 09:29:11 +02:00
{
unsigned int len_ones;
len_ones = ((unsigned int) 1 << len) - 1;
1999-05-03 09:29:11 +02:00
return x & len_ones;
1999-05-03 09:29:11 +02:00
}
static INLINE unsigned int
low_sign_unext (x, len)
1999-05-03 09:29:11 +02:00
unsigned int x, len;
{
unsigned int temp;
unsigned int sign;
1999-05-03 09:29:11 +02:00
sign = (x >> (len-1)) & 1;
1999-05-03 09:29:11 +02:00
temp = sign_unext (x, len-1);
return (temp << 1) | sign;
1999-05-03 09:29:11 +02:00
}
static INLINE unsigned int
re_assemble_3 (insn, as3)
unsigned int insn;
unsigned int as3;
1999-05-03 09:29:11 +02:00
{
return (insn
| ((as3 & 4) << (13-2))
| ((as3 & 3) << (13+1)));
1999-05-03 09:29:11 +02:00
}
static INLINE unsigned int
re_assemble_12 (insn, as12)
unsigned int insn;
unsigned int as12;
1999-05-03 09:29:11 +02:00
{
return (insn
| ((as12 & 0x800) >> 11)
| ((as12 & 0x400) >> (10 - 2))
| ((as12 & 0x3ff) << (1 + 2)));
}
static INLINE unsigned int
re_assemble_16 (insn, as16, wide)
unsigned int insn;
unsigned int as16;
int wide;
{
unsigned int s, t;
1999-05-03 09:29:11 +02:00
if (wide)
{
/* Unusual 16-bit encoding. */
t = (as16 << 1) & 0xffff;
s = (as16 & 0x8000);
return insn | (t ^ s ^ (s >> 1)) | (s >> 15);
}
else
{
/* Standard 14-bit encoding. */
t = (as16 << 1) & 0x3fff;
s = (as16 & 0x2000);
return insn | t | (s >> 13);
}
}
1999-05-03 09:29:11 +02:00
static INLINE unsigned int
re_assemble_17 (insn, as17)
unsigned int insn;
unsigned int as17;
{
return (insn
| ((as17 & 0x10000) >> 16)
| ((as17 & 0x0f800) << (16 - 11))
| ((as17 & 0x00400) >> (10 - 2))
| ((as17 & 0x003ff) << (1 + 2)));
}
1999-05-03 09:29:11 +02:00
static INLINE unsigned int
re_assemble_21 (insn, as21)
unsigned int insn;
unsigned int as21;
{
return (insn
| ((as21 & 0x100000) >> 20)
| ((as21 & 0x0ffe00) >> 8)
| ((as21 & 0x000180) << 7)
| ((as21 & 0x00007c) << 14)
| ((as21 & 0x000003) << 12));
}
1999-05-03 09:29:11 +02:00
static INLINE unsigned int
re_assemble_22 (insn, as22)
unsigned int insn;
unsigned int as22;
{
return (insn
| ((as22 & 0x200000) >> 21)
| ((as22 & 0x1f0000) << (21 - 16))
| ((as22 & 0x00f800) << (16 - 11))
| ((as22 & 0x000400) >> (10 - 2))
| ((as22 & 0x0003ff) << (1 + 2)));
1999-05-03 09:29:11 +02:00
}
/* Handle field selectors for PA instructions.
The L and R (and LS, RS etc.) selectors are used in pairs to form a
full 32 bit address. eg.
LDIL L'start,%r1 ; put left part into r1
LDW R'start(%r1),%r2 ; add r1 and right part to form address
This function returns sign extended values in all cases.
*/
static INLINE bfd_signed_vma
hppa_field_adjust (sym_val, addend, r_field)
bfd_signed_vma sym_val;
bfd_signed_vma addend;
enum hppa_reloc_field_selector_type_alt r_field;
1999-05-03 09:29:11 +02:00
{
bfd_signed_vma value;
value = sym_val + addend;
1999-05-03 09:29:11 +02:00
switch (r_field)
{
case e_fsel:
case e_nsel:
/* F: No change. */
1999-05-03 09:29:11 +02:00
break;
case e_lsel:
case e_nlsel:
/* L: Select top 21 bits. */
value = value >> 11;
1999-05-03 09:29:11 +02:00
break;
case e_rsel:
/* R: Select bottom 11 bits. */
value = value & 0x7ff;
1999-05-03 09:29:11 +02:00
break;
case e_lssel:
/* LS: Round to nearest multiple of 2048 then select top 21 bits. */
value = value + 0x400;
value = value >> 11;
1999-05-03 09:29:11 +02:00
break;
case e_rssel:
/* RS: Select bottom 11 bits for LS.
We need to return a value such that 2048 * LS'x + RS'x == x.
ie. RS'x = x - ((x + 0x400) & -0x800)
this is just a sign extension from bit 21. */
value = ((value & 0x7ff) ^ 0x400) - 0x400;
1999-05-03 09:29:11 +02:00
break;
case e_ldsel:
/* LD: Round to next multiple of 2048 then select top 21 bits.
Yes, if we are already on a multiple of 2048, we go up to the
next one. RD in this case will be -2048. */
value = value + 0x800;
value = value >> 11;
1999-05-03 09:29:11 +02:00
break;
case e_rdsel:
/* RD: Set bits 0-20 to one. */
value = value | -0x800;
1999-05-03 09:29:11 +02:00
break;
case e_lrsel:
case e_nlrsel:
/* LR: L with rounding of the addend to nearest 8k. */
value = sym_val + ((addend + 0x1000) & -0x2000);
value = value >> 11;
1999-05-03 09:29:11 +02:00
break;
case e_rrsel:
/* RR: R with rounding of the addend to nearest 8k.
We need to return a value such that 2048 * LR'x + RR'x == x
ie. RR'x = s+a - (s + (((a + 0x1000) & -0x2000) & -0x800))
. = s+a - ((s & -0x800) + ((a + 0x1000) & -0x2000))
. = (s & 0x7ff) + a - ((a + 0x1000) & -0x2000) */
value = (sym_val & 0x7ff) + (((addend & 0x1fff) ^ 0x1000) - 0x1000);
1999-05-03 09:29:11 +02:00
break;
default:
abort ();
}
return value;
}
/* PA-RISC OPCODES */
#define get_opcode(insn) (((insn) >> 26) & 0x3f)
1999-05-03 09:29:11 +02:00
/* FIXME: this list is incomplete. It should also be an enumerated
type rather than #defines. */
#define LDO 0x0d
#define LDB 0x10
#define LDH 0x11
#define LDW 0x12
#define LDWM 0x13
#define STB 0x18
#define STH 0x19
#define STW 0x1a
#define STWM 0x1b
#define COMICLR 0x24
#define SUBI 0x25
#define SUBIO 0x25
#define ADDIT 0x2c
#define ADDITO 0x2c
#define ADDI 0x2d
#define ADDIO 0x2d
#define LDIL 0x08
#define ADDIL 0x0a
#define MOVB 0x32
#define MOVIB 0x33
#define COMBT 0x20
#define COMBF 0x22
#define COMIBT 0x21
#define COMIBF 0x23
#define ADDBT 0x28
#define ADDBF 0x2a
#define ADDIBT 0x29
#define ADDIBF 0x2b
#define BVB 0x30
#define BB 0x31
#define BL 0x3a
#define BLE 0x39
#define BE 0x38
#define CMPBDT 0x27
#define CMPBDF 0x2f
#define CMPIBD 0x3b
#define LDD 0x14
#define STD 0x1c
#define LDWL 0x17
#define STWL 0x1f
#define FLDW 0x16
#define FSTW 0x1e
1999-05-03 09:29:11 +02:00
/* Given a machine instruction, return its format.
FIXME: opcodes which do not map to a known format
should return an error of some sort. */
static INLINE int
1999-05-03 09:29:11 +02:00
bfd_hppa_insn2fmt (insn)
unsigned int insn;
1999-05-03 09:29:11 +02:00
{
unsigned char op = get_opcode (insn);
1999-05-03 09:29:11 +02:00
switch (op)
{
case ADDI:
case ADDIT:
case SUBI:
return 11;
1999-05-03 09:29:11 +02:00
case MOVB:
case MOVIB:
case COMBT:
case COMBF:
case COMIBT:
case COMIBF:
case ADDBT:
case ADDBF:
case ADDIBT:
case ADDIBF:
case BVB:
case BB:
case CMPBDT:
case CMPBDF:
case CMPIBD:
return 12;
1999-05-03 09:29:11 +02:00
case LDO:
case LDB:
case LDH:
case LDW:
case LDWM:
case STB:
case STH:
case STW:
case STWM:
return 14;
case LDWL:
case STWL:
case FLDW:
case FSTW:
/* This is a hack. Unfortunately, format 11 is already taken
and we're using integers rather than an enum, so it's hard
to describe the 11a format. */
return -11;
case LDD:
case STD:
return 10;
1999-05-03 09:29:11 +02:00
case BL:
case BE:
case BLE:
if ((insn & 0x00008000) != 0)
return 22;
return 17;
1999-05-03 09:29:11 +02:00
case LDIL:
case ADDIL:
return 21;
1999-05-03 09:29:11 +02:00
default:
break;
}
return 32;
1999-05-03 09:29:11 +02:00
}
/* Insert VALUE into INSN using R_FORMAT to determine exactly what
bits to change. */
static INLINE unsigned int
1999-05-03 09:29:11 +02:00
hppa_rebuild_insn (abfd, insn, value, r_format)
bfd *abfd ATTRIBUTE_UNUSED;
unsigned int insn;
unsigned int value;
unsigned int r_format;
1999-05-03 09:29:11 +02:00
{
switch (r_format)
{
case 11: return (insn & ~ 0x7ff) | low_sign_unext (value, 11);
case 12: return re_assemble_12 (insn & ~ 0x1ffd, value);
case 14: return (insn & ~ 0x3fff) | low_sign_unext (value, 14);
case 17: return re_assemble_17 (insn & ~ 0x1f1ffd, value);
case 21: return re_assemble_21 (insn & ~ 0x1fffff, value);
case 32: return value;
1999-05-03 09:29:11 +02:00
default:
abort ();
}
return insn;
}
#endif /* _HPPA_H */