2003-04-21 Andrew Cagney <cagney@redhat.com>

* infcall.c: New file.
	* infcall.h: New file.
	* valarith.c: Include "infcall.h".
	* scm-lang.c, objc-lang.cm, hppa-tdep.c, gcore.c: Ditto.
	* eval.c, ada-valprint.c, ada-lang.c: Ditto.
	* Makefile.in (valarith.o, scm-lang.o): Update dependencies.
	(objc-lang.o, hppa-tdep.o, gcore.o): Update dependencies.
	(eval.o, ada-valprint.o, ada-lang.o): Update dependencies.
	(SFILES): Add "infcall.c"
	(COMMON_OBS): Add "infcall.o".
	(infcall.o): Specify dependencies.
	* value.h (call_function_by_hand): Delete declaration.
	* inferior.h (run_stack_dummy): Delete declaration.
	* infcmd.c (breakpoint_auto_delete_contents): Move to "infcall.c".
	(run_stack_dummy): Move to "infcall.c", merged into
	call_function_by_hand.
	* valops.c (call_function_by_hand): Moved to "infcall.c".
	(find_function_addr, value_arg_coerce): Ditto.
	(unwindonsignal_p, coerce_float_to_double): Ditto.
	(_initialize_valops): Move "set/show coerce-float-to-double", and
	"set/show unwindonsignal" commands to "infcall.c".
	* v850-tdep.c, target.h: Update comments.
	* sparc-tdep.c (sparc_fix_call_dummy): Update comments.
	* sh-tdep.c (sh_init_extra_frame_info): Update comments.
	(sh64_init_extra_frame_info): Update comments.
	* mn10300-tdep.c: Update comments.
	* mcore-tdep.c (mcore_init_extra_frame_info): Update comments.
	* config/sparc/tm-sparc.h: Update comments.
	* breakpoint.h: Update comments.
	* avr-tdep.c (avr_init_extra_frame_info): Update comments.
	* arm-tdep.c: Update comment.
This commit is contained in:
Andrew Cagney 2003-04-21 16:48:41 +00:00
parent 6c6532f753
commit 04714b914f
27 changed files with 1119 additions and 985 deletions

View File

@ -1,3 +1,37 @@
2003-04-21 Andrew Cagney <cagney@redhat.com>
* infcall.c: New file.
* infcall.h: New file.
* valarith.c: Include "infcall.h".
* scm-lang.c, objc-lang.cm, hppa-tdep.c, gcore.c: Ditto.
* eval.c, ada-valprint.c, ada-lang.c: Ditto.
* Makefile.in (valarith.o, scm-lang.o): Update dependencies.
(objc-lang.o, hppa-tdep.o, gcore.o): Update dependencies.
(eval.o, ada-valprint.o, ada-lang.o): Update dependencies.
(SFILES): Add "infcall.c"
(COMMON_OBS): Add "infcall.o".
(infcall.o): Specify dependencies.
* value.h (call_function_by_hand): Delete declaration.
* inferior.h (run_stack_dummy): Delete declaration.
* infcmd.c (breakpoint_auto_delete_contents): Move to "infcall.c".
(run_stack_dummy): Move to "infcall.c", merged into
call_function_by_hand.
* valops.c (call_function_by_hand): Moved to "infcall.c".
(find_function_addr, value_arg_coerce): Ditto.
(unwindonsignal_p, coerce_float_to_double): Ditto.
(_initialize_valops): Move "set/show coerce-float-to-double", and
"set/show unwindonsignal" commands to "infcall.c".
* v850-tdep.c, target.h: Update comments.
* sparc-tdep.c (sparc_fix_call_dummy): Update comments.
* sh-tdep.c (sh_init_extra_frame_info): Update comments.
(sh64_init_extra_frame_info): Update comments.
* mn10300-tdep.c: Update comments.
* mcore-tdep.c (mcore_init_extra_frame_info): Update comments.
* config/sparc/tm-sparc.h: Update comments.
* breakpoint.h: Update comments.
* avr-tdep.c (avr_init_extra_frame_info): Update comments.
* arm-tdep.c: Update comment.
2003-04-19 Mark Kettenis <kettenis@gnu.org>
* i386-tdep.c (i386_num_register_names): New variable.

View File

@ -521,7 +521,9 @@ SFILES = ada-exp.y ada-lang.c ada-typeprint.c ada-valprint.c ada-tasks.c \
frame-unwind.c \
gdbarch.c arch-utils.c gdbtypes.c gnu-v2-abi.c gnu-v3-abi.c \
hpacc-abi.c \
inf-loop.c infcmd.c inflow.c infrun.c \
inf-loop.c \
infcall.c \
infcmd.c inflow.c infrun.c \
interps.c \
jv-exp.y jv-lang.c jv-valprint.c jv-typeprint.c \
kod.c kod-cisco.c \
@ -669,6 +671,7 @@ i386_linux_tdep_h = i386-linux-tdep.h
i386_tdep_h = i386-tdep.h
i387_tdep_h = i387-tdep.h
inf_loop_h = inf-loop.h
infcall_h = infcall.h
inferior_h = inferior.h $(breakpoint_h) $(target_h) $(frame_h)
inflow_h = inflow.h $(terminal_h)
interps_h = interps.h
@ -834,7 +837,9 @@ TAGFILES_WITH_SRCDIR = $(HFILES_WITH_SRCDIR)
COMMON_OBS = version.o blockframe.o breakpoint.o findvar.o regcache.o \
charset.o disasm.o dummy-frame.o \
source.o values.o eval.o valops.o valarith.o valprint.o printcmd.o \
block.o symtab.o symfile.o symmisc.o linespec.o infcmd.o infrun.o \
block.o symtab.o symfile.o symmisc.o linespec.o \
infcall.o \
infcmd.o infrun.o \
expprint.o environ.o stack.o thread.o \
interps.o \
macrotab.o macrocmd.o macroexp.o macroscope.o \
@ -1488,7 +1493,8 @@ abug-rom.o: abug-rom.c $(defs_h) $(gdbcore_h) $(target_h) $(monitor_h) \
ada-lang.o: ada-lang.c $(gdb_string_h) $(demangle_h) $(defs_h) $(symtab_h) \
$(gdbtypes_h) $(gdbcmd_h) $(expression_h) $(parser_defs_h) \
$(language_h) $(c_lang_h) $(inferior_h) $(symfile_h) $(objfiles_h) \
$(breakpoint_h) $(gdbcore_h) $(ada_lang_h) $(ui_out_h) $(block_h)
$(breakpoint_h) $(gdbcore_h) $(ada_lang_h) $(ui_out_h) $(block_h) \
$(infcall_h)
ada-tasks.o: ada-tasks.c $(defs_h) $(command_h) $(value_h) $(language_h) \
$(inferior_h) $(symtab_h) $(target_h) $(gdbcore_h) $(gregset_h) \
$(ada_lang_h)
@ -1498,7 +1504,7 @@ ada-typeprint.o: ada-typeprint.c $(defs_h) $(gdb_obstack_h) $(bfd_h) \
$(c_lang_h) $(typeprint_h) $(ada_lang_h) $(gdb_string_h)
ada-valprint.o: ada-valprint.c $(defs_h) $(symtab_h) $(gdbtypes_h) \
$(expression_h) $(value_h) $(demangle_h) $(valprint_h) $(language_h) \
$(annotate_h) $(ada_lang_h) $(c_lang_h)
$(annotate_h) $(ada_lang_h) $(c_lang_h) $(infcall_h)
aix-thread.o: aix-thread.c $(defs_h) $(gdb_assert_h) $(gdbthread_h) \
$(target_h) $(inferior_h) $(regcache_h) $(gdbcmd_h) $(language_h) \
$(ppc_tdep_h)
@ -1681,7 +1687,7 @@ elfread.o: elfread.c $(defs_h) $(bfd_h) $(gdb_string_h) $(elf_bfd_h) \
environ.o: environ.c $(defs_h) $(environ_h) $(gdb_string_h)
eval.o: eval.c $(defs_h) $(gdb_string_h) $(symtab_h) $(gdbtypes_h) \
$(value_h) $(expression_h) $(target_h) $(frame_h) $(language_h) \
$(f_lang_h) $(cp_abi_h)
$(f_lang_h) $(cp_abi_h) $(infcall_h)
event-loop.o: event-loop.c $(defs_h) $(event_loop_h) $(event_top_h) \
$(gdb_string_h)
event-top.o: event-top.c $(defs_h) $(top_h) $(inferior_h) $(target_h) \
@ -1723,7 +1729,7 @@ frame-unwind.o: frame-unwind.c $(defs_h) $(frame_h) $(frame_unwind_h) \
frv-tdep.o: frv-tdep.c $(defs_h) $(inferior_h) $(symfile_h) $(gdbcore_h) \
$(arch_utils_h) $(regcache_h)
gcore.o: gcore.c $(defs_h) $(cli_decode_h) $(inferior_h) $(gdbcore_h) \
$(elf_bfd_h) $(symfile_h) $(objfiles_h)
$(elf_bfd_h) $(symfile_h) $(objfiles_h) $(infcall_h)
gdb.o: gdb.c $(defs_h) $(main_h) $(gdb_string_h) $(interps_h)
gdb-events.o: gdb-events.c $(defs_h) $(gdb_events_h) $(gdbcmd_h)
gdbarch.o: gdbarch.c $(defs_h) $(arch_utils_h) $(gdbcmd_h) $(inferior_h) \
@ -1758,9 +1764,9 @@ hpacc-abi.o: hpacc-abi.c $(defs_h) $(value_h) $(gdb_regex_h) $(gdb_string_h) \
$(gdbtypes_h) $(gdbcore_h) $(cp_abi_h)
hppa-tdep.o: hppa-tdep.c $(defs_h) $(frame_h) $(bfd_h) $(inferior_h) \
$(value_h) $(regcache_h) $(completer_h) $(language_h) $(osabi_h) \
$(gdb_assert_h) $(infttrace_h) $(symtab_h) $(a_out_encap_h) \
$(gdb_stat_h) $(gdb_wait_h) $(gdbcore_h) $(gdbcmd_h) $(target_h) \
$(symfile_h) $(objfiles_h)
$(gdb_assert_h) $(infttrace_h) $(symtab_h) $(infcall_h) \
$(a_out_encap_h) $(gdb_stat_h) $(gdb_wait_h) $(gdbcore_h) \
$(gdbcmd_h) $(target_h) $(symfile_h) $(objfiles_h)
hppa-hpux-tdep.o: hppa-hpux-tdep.c $(defs_h) $(arch_utils_h) $(gdbcore_h) \
$(osabi_h) $(gdb_string_h)
hppab-nat.o: hppab-nat.c $(defs_h) $(inferior_h) $(target_h) $(regcache_h)
@ -1830,6 +1836,9 @@ ia64-tdep.o: ia64-tdep.c $(defs_h) $(inferior_h) $(symfile_h) $(gdbcore_h) \
$(value_h) $(objfiles_h) $(elf_common_h) $(elf_bfd_h)
inf-loop.o: inf-loop.c $(defs_h) $(inferior_h) $(target_h) $(event_loop_h) \
$(event_top_h) $(inf_loop_h) $(remote_h)
infcall.o: infcall.c $(defs_h) $(breakpoint_h) $(target_h) $(regcache_h) \
$(inferior_h) $(gdb_assert_h) $(block_h) $(gdbcore_h) $(language_h) \
$(symfile_h) $(gdbcmd_h) $(command_h) $(gdb_string_h)
infcmd.o: infcmd.c $(defs_h) $(gdb_string_h) $(symtab_h) $(gdbtypes_h) \
$(frame_h) $(inferior_h) $(environ_h) $(value_h) $(gdbcmd_h) \
$(symfile_h) $(gdbcore_h) $(target_h) $(language_h) $(symfile_h) \
@ -1995,9 +2004,9 @@ ns32knbsd-tdep.o: ns32knbsd-tdep.c $(defs_h) $(ns32k_tdep_h) $(gdb_string_h) \
$(osabi_h)
objc-lang.o: objc-lang.c $(defs_h) $(symtab_h) $(gdbtypes_h) $(expression_h) \
$(parser_defs_h) $(language_h) $(c_lang_h) $(objc_lang_h) \
$(complaints_h) $(value_h) $(symfile_h) $(objfiles_h) \
$(gdb_string_h) $(target_h) $(gdbcore_h) $(gdbcmd_h) $(frame_h) \
$(gdb_regex_h) $(regcache_h) $(block_h)
$(complaints_h) $(value_h) $(symfile_h) $(objfiles_h) $(gdb_string_h) \
$(target_h) $(gdbcore_h) $(gdbcmd_h) $(frame_h) $(gdb_regex_h) \
$(regcache_h) $(block_h) $(infcall_h)
objfiles.o: objfiles.c $(defs_h) $(bfd_h) $(symtab_h) $(symfile_h) \
$(objfiles_h) $(gdb_stabs_h) $(target_h) $(bcache_h) $(gdb_stat_h) \
$(gdb_obstack_h) $(gdb_string_h) $(breakpoint_h) $(mmalloc_h) \
@ -2150,7 +2159,7 @@ scm-exp.o: scm-exp.c $(defs_h) $(symtab_h) $(gdbtypes_h) $(expression_h) \
$(scm_tags_h)
scm-lang.o: scm-lang.c $(defs_h) $(symtab_h) $(gdbtypes_h) $(expression_h) \
$(parser_defs_h) $(language_h) $(value_h) $(c_lang_h) $(scm_lang_h) \
$(scm_tags_h) $(gdb_string_h) $(gdbcore_h) $(source_h)
$(scm_tags_h) $(source_h) $(gdb_string_h) $(gdbcore_h) $(infcall_h)
scm-valprint.o: scm-valprint.c $(defs_h) $(symtab_h) $(gdbtypes_h) \
$(expression_h) $(parser_defs_h) $(language_h) $(value_h) \
$(scm_lang_h) $(valprint_h) $(gdbcore_h)
@ -2308,7 +2317,7 @@ v850ice.o: v850ice.c $(defs_h) $(gdb_string_h) $(frame_h) $(symtab_h) \
$(gdbcore_h) $(value_h) $(command_h) $(regcache_h)
valarith.o: valarith.c $(defs_h) $(value_h) $(symtab_h) $(gdbtypes_h) \
$(expression_h) $(target_h) $(language_h) $(gdb_string_h) \
$(doublest_h)
$(doublest_h) $(infcall_h)
valops.o: valops.c $(defs_h) $(symtab_h) $(gdbtypes_h) $(value_h) $(frame_h) \
$(inferior_h) $(gdbcore_h) $(target_h) $(demangle_h) $(language_h) \
$(gdbcmd_h) $(regcache_h) $(cp_abi_h) $(gdb_string_h) \

View File

@ -39,6 +39,7 @@ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "ada-lang.h"
#include "ui-out.h"
#include "block.h"
#include "infcall.h"
struct cleanup *unresolved_names;

View File

@ -30,6 +30,7 @@ Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "annotate.h"
#include "ada-lang.h"
#include "c-lang.h"
#include "infcall.h"
/* Encapsulates arguments to ada_val_print. */
struct ada_val_print_args

View File

@ -1257,8 +1257,8 @@ static LONGEST arm_call_dummy_words[] =
FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an
optimal solution, but the call to arm_fix_call_dummy is immediately
followed by a call to run_stack_dummy, which is the only function
where call_dummy_breakpoint_offset is actually used. */
followed by a call to call_function_by_hand, which is the only
function where call_dummy_breakpoint_offset is actually used. */
static void

View File

@ -753,8 +753,8 @@ avr_init_extra_frame_info (int fromleaf, struct frame_info *fi)
if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
get_frame_base (fi)))
{
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
by assuming it's always FP. */
/* We need to setup fi->frame here because call_function_by_hand
gets it wrong by assuming it's always FP. */
deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi),
AVR_PC_REGNUM));
}

View File

@ -623,7 +623,7 @@ extern void set_longjmp_resume_breakpoint (CORE_ADDR, struct frame_id);
enabled watchpoints. When disabled, the watchpoints are marked
call_disabled. When reenabled, they are marked enabled.
The intended client of these functions is infcmd.c\run_stack_dummy.
The intended client of these functions is call_function_by_hand.
The inferior must be stopped, and all breakpoints removed, when
these functions are used.

View File

@ -545,9 +545,9 @@ extern CORE_ADDR init_frame_pc_noop (int fromleaf, struct frame_info *prev);
*
* call_function then writes CALL_DUMMY, pushes the args onto the
* stack, and adjusts the stack pointer.
*
* run_stack_dummy then starts execution (in the middle of
* CALL_DUMMY, as directed by call_function). */
call_function_by_hand then starts execution (in the middle of
CALL_DUMMY, as directed by call_function). */
#ifndef CALL_DUMMY
/* This sequence of words is the instructions

View File

@ -1216,8 +1216,8 @@ cris_init_extra_frame_info (int fromleaf, struct frame_info *fi)
get_frame_base (fi),
get_frame_base (fi)))
{
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
by assuming it's always FP. */
/* We need to setup fi->frame here because call_function_by_hand
gets it wrong by assuming it's always FP. */
deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi), SP_REGNUM));
get_frame_extra_info (fi)->return_pc =
deprecated_read_register_dummy (get_frame_pc (fi),

View File

@ -32,6 +32,7 @@
#include "language.h" /* For CAST_IS_CONVERSION */
#include "f-lang.h" /* for array bound stuff */
#include "cp-abi.h"
#include "infcall.h"
/* Defined in symtab.c */
extern int hp_som_som_object_present;

View File

@ -26,6 +26,7 @@
#include "elf-bfd.h"
#include "symfile.h"
#include "objfiles.h"
#include "infcall.h"
static char *default_gcore_target (void);
static enum bfd_architecture default_gcore_arch (void);

View File

@ -36,6 +36,7 @@
#include "infttrace.h"
/* For argument passing to the inferior */
#include "symtab.h"
#include "infcall.h"
#ifdef USG
#include <sys/types.h>

981
gdb/infcall.c Normal file
View File

@ -0,0 +1,981 @@
/* Perform an inferior function call, for GDB, the GNU debugger.
Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "breakpoint.h"
#include "target.h"
#include "regcache.h"
#include "inferior.h"
#include "gdb_assert.h"
#include "block.h"
#include "gdbcore.h"
#include "language.h"
#include "symfile.h"
#include "gdbcmd.h"
#include "command.h"
#include "gdb_string.h"
/* NOTE: cagney/2003-04-16: What's the future of this code?
GDB needs an asynchronous expression evaluator, that means an
asynchronous inferior function call implementation, and that in
turn means restructuring the code so that it is event driven. */
/* How you should pass arguments to a function depends on whether it
was defined in K&R style or prototype style. If you define a
function using the K&R syntax that takes a `float' argument, then
callers must pass that argument as a `double'. If you define the
function using the prototype syntax, then you must pass the
argument as a `float', with no promotion.
Unfortunately, on certain older platforms, the debug info doesn't
indicate reliably how each function was defined. A function type's
TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
defined in prototype style. When calling a function whose
TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
decide what to do.
For modern targets, it is proper to assume that, if the prototype
flag is clear, that can be trusted: `float' arguments should be
promoted to `double'. For some older targets, if the prototype
flag is clear, that doesn't tell us anything. The default is to
trust the debug information; the user can override this behavior
with "set coerce-float-to-double 0". */
static int coerce_float_to_double_p = 1;
/* This boolean tells what gdb should do if a signal is received while
in a function called from gdb (call dummy). If set, gdb unwinds
the stack and restore the context to what as it was before the
call.
The default is to stop in the frame where the signal was received. */
int unwind_on_signal_p = 0;
/* Perform the standard coercions that are specified
for arguments to be passed to C functions.
If PARAM_TYPE is non-NULL, it is the expected parameter type.
IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
static struct value *
value_arg_coerce (struct value *arg, struct type *param_type,
int is_prototyped)
{
register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
register struct type *type
= param_type ? check_typedef (param_type) : arg_type;
switch (TYPE_CODE (type))
{
case TYPE_CODE_REF:
if (TYPE_CODE (arg_type) != TYPE_CODE_REF
&& TYPE_CODE (arg_type) != TYPE_CODE_PTR)
{
arg = value_addr (arg);
VALUE_TYPE (arg) = param_type;
return arg;
}
break;
case TYPE_CODE_INT:
case TYPE_CODE_CHAR:
case TYPE_CODE_BOOL:
case TYPE_CODE_ENUM:
/* If we don't have a prototype, coerce to integer type if necessary. */
if (!is_prototyped)
{
if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
type = builtin_type_int;
}
/* Currently all target ABIs require at least the width of an integer
type for an argument. We may have to conditionalize the following
type coercion for future targets. */
if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
type = builtin_type_int;
break;
case TYPE_CODE_FLT:
if (!is_prototyped && coerce_float_to_double_p)
{
if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
type = builtin_type_double;
else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
type = builtin_type_long_double;
}
break;
case TYPE_CODE_FUNC:
type = lookup_pointer_type (type);
break;
case TYPE_CODE_ARRAY:
/* Arrays are coerced to pointers to their first element, unless
they are vectors, in which case we want to leave them alone,
because they are passed by value. */
if (current_language->c_style_arrays)
if (!TYPE_VECTOR (type))
type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
break;
case TYPE_CODE_UNDEF:
case TYPE_CODE_PTR:
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
case TYPE_CODE_VOID:
case TYPE_CODE_SET:
case TYPE_CODE_RANGE:
case TYPE_CODE_STRING:
case TYPE_CODE_BITSTRING:
case TYPE_CODE_ERROR:
case TYPE_CODE_MEMBER:
case TYPE_CODE_METHOD:
case TYPE_CODE_COMPLEX:
default:
break;
}
return value_cast (type, arg);
}
/* Determine a function's address and its return type from its value.
Calls error() if the function is not valid for calling. */
static CORE_ADDR
find_function_addr (struct value *function, struct type **retval_type)
{
register struct type *ftype = check_typedef (VALUE_TYPE (function));
register enum type_code code = TYPE_CODE (ftype);
struct type *value_type;
CORE_ADDR funaddr;
/* If it's a member function, just look at the function
part of it. */
/* Determine address to call. */
if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
{
funaddr = VALUE_ADDRESS (function);
value_type = TYPE_TARGET_TYPE (ftype);
}
else if (code == TYPE_CODE_PTR)
{
funaddr = value_as_address (function);
ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
|| TYPE_CODE (ftype) == TYPE_CODE_METHOD)
{
funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
value_type = TYPE_TARGET_TYPE (ftype);
}
else
value_type = builtin_type_int;
}
else if (code == TYPE_CODE_INT)
{
/* Handle the case of functions lacking debugging info.
Their values are characters since their addresses are char */
if (TYPE_LENGTH (ftype) == 1)
funaddr = value_as_address (value_addr (function));
else
/* Handle integer used as address of a function. */
funaddr = (CORE_ADDR) value_as_long (function);
value_type = builtin_type_int;
}
else
error ("Invalid data type for function to be called.");
*retval_type = value_type;
return funaddr;
}
/* Call breakpoint_auto_delete on the current contents of the bpstat
pointed to by arg (which is really a bpstat *). */
static void
breakpoint_auto_delete_contents (void *arg)
{
breakpoint_auto_delete (*(bpstat *) arg);
}
/* All this stuff with a dummy frame may seem unnecessarily complicated
(why not just save registers in GDB?). The purpose of pushing a dummy
frame which looks just like a real frame is so that if you call a
function and then hit a breakpoint (get a signal, etc), "backtrace"
will look right. Whether the backtrace needs to actually show the
stack at the time the inferior function was called is debatable, but
it certainly needs to not display garbage. So if you are contemplating
making dummy frames be different from normal frames, consider that. */
/* Perform a function call in the inferior.
ARGS is a vector of values of arguments (NARGS of them).
FUNCTION is a value, the function to be called.
Returns a value representing what the function returned.
May fail to return, if a breakpoint or signal is hit
during the execution of the function.
ARGS is modified to contain coerced values. */
struct value *
call_function_by_hand (struct value *function, int nargs, struct value **args)
{
register CORE_ADDR sp;
register int i;
int rc;
CORE_ADDR start_sp;
/* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
and remove any extra bytes which might exist because ULONGEST is
bigger than REGISTER_SIZE.
NOTE: This is pretty wierd, as the call dummy is actually a
sequence of instructions. But CISC machines will have
to pack the instructions into REGISTER_SIZE units (and
so will RISC machines for which INSTRUCTION_SIZE is not
REGISTER_SIZE).
NOTE: This is pretty stupid. CALL_DUMMY should be in strict
target byte order. */
static ULONGEST *dummy;
int sizeof_dummy1;
char *dummy1;
CORE_ADDR dummy_addr;
CORE_ADDR old_sp;
struct type *value_type;
unsigned char struct_return;
CORE_ADDR struct_addr = 0;
struct regcache *retbuf;
struct cleanup *retbuf_cleanup;
struct inferior_status *inf_status;
struct cleanup *inf_status_cleanup;
CORE_ADDR funaddr;
int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
CORE_ADDR real_pc;
struct type *param_type = NULL;
struct type *ftype = check_typedef (SYMBOL_TYPE (function));
int n_method_args = 0;
dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
dummy1 = alloca (sizeof_dummy1);
memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
if (!target_has_execution)
noprocess ();
/* Create a cleanup chain that contains the retbuf (buffer
containing the register values). This chain is create BEFORE the
inf_status chain so that the inferior status can cleaned up
(restored or discarded) without having the retbuf freed. */
retbuf = regcache_xmalloc (current_gdbarch);
retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
/* A cleanup for the inferior status. Create this AFTER the retbuf
so that this can be discarded or applied without interfering with
the regbuf. */
inf_status = save_inferior_status (1);
inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
if (DEPRECATED_PUSH_DUMMY_FRAME_P ())
{
/* DEPRECATED_PUSH_DUMMY_FRAME is responsible for saving the
inferior registers (and frame_pop() for restoring them). (At
least on most machines) they are saved on the stack in the
inferior. */
DEPRECATED_PUSH_DUMMY_FRAME;
}
else
{
/* FIXME: cagney/2003-02-26: Step zero of this little tinker is
to extract the generic dummy frame code from the architecture
vector. Hence this direct call.
A follow-on change is to modify this interface so that it takes
thread OR frame OR tpid as a parameter, and returns a dummy
frame handle. The handle can then be used further down as a
parameter SAVE_DUMMY_FRAME_TOS. Hmm, thinking about it, since
everything is ment to be using generic dummy frames, why not
even use some of the dummy frame code to here - do a regcache
dup and then pass the duped regcache, along with all the other
stuff, at one single point.
In fact, you can even save the structure's return address in the
dummy frame and fix one of those nasty lost struct return edge
conditions. */
generic_push_dummy_frame ();
}
old_sp = read_sp ();
/* Ensure that the initial SP is correctly aligned. */
if (gdbarch_frame_align_p (current_gdbarch))
{
/* NOTE: cagney/2002-09-18:
On a RISC architecture, a void parameterless generic dummy
frame (i.e., no parameters, no result) typically does not
need to push anything the stack and hence can leave SP and
FP. Similarly, a framelss (possibly leaf) function does not
push anything on the stack and, hence, that too can leave FP
and SP unchanged. As a consequence, a sequence of void
parameterless generic dummy frame calls to frameless
functions will create a sequence of effectively identical
frames (SP, FP and TOS and PC the same). This, not
suprisingly, results in what appears to be a stack in an
infinite loop --- when GDB tries to find a generic dummy
frame on the internal dummy frame stack, it will always find
the first one.
To avoid this problem, the code below always grows the stack.
That way, two dummy frames can never be identical. It does
burn a few bytes of stack but that is a small price to pay
:-). */
sp = gdbarch_frame_align (current_gdbarch, old_sp);
if (sp == old_sp)
{
if (INNER_THAN (1, 2))
/* Stack grows down. */
sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
else
/* Stack grows up. */
sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
}
gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
|| (INNER_THAN (2, 1) && sp >= old_sp));
}
else
/* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
aligned the SP is! Further, per comment above, if the generic
dummy frame ends up empty (because nothing is pushed) GDB won't
be able to correctly perform back traces. If a target is
having trouble with backtraces, first thing to do is add
FRAME_ALIGN() to its architecture vector. After that, try
adding SAVE_DUMMY_FRAME_TOS() and modifying
DEPRECATED_FRAME_CHAIN so that when the next outer frame is a
generic dummy, it returns the current frame's base. */
sp = old_sp;
if (INNER_THAN (1, 2))
{
/* Stack grows down */
sp -= sizeof_dummy1;
start_sp = sp;
}
else
{
/* Stack grows up */
start_sp = sp;
sp += sizeof_dummy1;
}
/* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
after allocating space for the call dummy. A target can specify
a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
alignment requirements are met. */
funaddr = find_function_addr (function, &value_type);
CHECK_TYPEDEF (value_type);
{
struct block *b = block_for_pc (funaddr);
/* If compiled without -g, assume GCC 2. */
using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
}
/* Are we returning a value using a structure return or a normal
value return? */
struct_return = using_struct_return (function, funaddr, value_type,
using_gcc);
/* Create a call sequence customized for this function
and the number of arguments for it. */
for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
REGISTER_SIZE,
(ULONGEST) dummy[i]);
#ifdef GDB_TARGET_IS_HPPA
real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
value_type, using_gcc);
#else
if (FIX_CALL_DUMMY_P ())
{
/* gdb_assert (CALL_DUMMY_LOCATION == ON_STACK) true? */
FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, value_type,
using_gcc);
}
real_pc = start_sp;
#endif
switch (CALL_DUMMY_LOCATION)
{
case ON_STACK:
dummy_addr = start_sp;
write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
break;
case AT_ENTRY_POINT:
real_pc = funaddr;
dummy_addr = CALL_DUMMY_ADDRESS ();
if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
/* NOTE: cagney/2002-04-13: The entry point is going to be
modified with a single breakpoint. */
generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
CALL_DUMMY_ADDRESS () + 1);
break;
default:
internal_error (__FILE__, __LINE__, "bad switch");
}
#ifdef lint
sp = old_sp; /* It really is used, for some ifdef's... */
#endif
if (nargs < TYPE_NFIELDS (ftype))
error ("too few arguments in function call");
for (i = nargs - 1; i >= 0; i--)
{
int prototyped;
/* FIXME drow/2002-05-31: Should just always mark methods as
prototyped. Can we respect TYPE_VARARGS? Probably not. */
if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
prototyped = 1;
else
prototyped = TYPE_PROTOTYPED (ftype);
if (i < TYPE_NFIELDS (ftype))
args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
prototyped);
else
args[i] = value_arg_coerce (args[i], NULL, 0);
/*elz: this code is to handle the case in which the function to be called
has a pointer to function as parameter and the corresponding actual argument
is the address of a function and not a pointer to function variable.
In aCC compiled code, the calls through pointers to functions (in the body
of the function called by hand) are made via $$dyncall_external which
requires some registers setting, this is taken care of if we call
via a function pointer variable, but not via a function address.
In cc this is not a problem. */
if (using_gcc == 0)
if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
/* if this parameter is a pointer to function */
if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
/* elz: FIXME here should go the test about the compiler used
to compile the target. We want to issue the error
message only if the compiler used was HP's aCC.
If we used HP's cc, then there is no problem and no need
to return at this point */
if (using_gcc == 0) /* && compiler == aCC */
/* go see if the actual parameter is a variable of type
pointer to function or just a function */
if (args[i]->lval == not_lval)
{
char *arg_name;
if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
error ("\
You cannot use function <%s> as argument. \n\
You must use a pointer to function type variable. Command ignored.", arg_name);
}
}
if (REG_STRUCT_HAS_ADDR_P ())
{
/* This is a machine like the sparc, where we may need to pass a
pointer to the structure, not the structure itself. */
for (i = nargs - 1; i >= 0; i--)
{
struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
|| TYPE_CODE (arg_type) == TYPE_CODE_UNION
|| TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
|| TYPE_CODE (arg_type) == TYPE_CODE_STRING
|| TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
|| TYPE_CODE (arg_type) == TYPE_CODE_SET
|| (TYPE_CODE (arg_type) == TYPE_CODE_FLT
&& TYPE_LENGTH (arg_type) > 8)
)
&& REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
{
CORE_ADDR addr;
int len; /* = TYPE_LENGTH (arg_type); */
int aligned_len;
arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
len = TYPE_LENGTH (arg_type);
if (STACK_ALIGN_P ())
/* MVS 11/22/96: I think at least some of this
stack_align code is really broken. Better to let
PUSH_ARGUMENTS adjust the stack in a target-defined
manner. */
aligned_len = STACK_ALIGN (len);
else
aligned_len = len;
if (INNER_THAN (1, 2))
{
/* stack grows downward */
sp -= aligned_len;
/* ... so the address of the thing we push is the
stack pointer after we push it. */
addr = sp;
}
else
{
/* The stack grows up, so the address of the thing
we push is the stack pointer before we push it. */
addr = sp;
sp += aligned_len;
}
/* Push the structure. */
write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
/* The value we're going to pass is the address of the
thing we just pushed. */
/*args[i] = value_from_longest (lookup_pointer_type (value_type),
(LONGEST) addr); */
args[i] = value_from_pointer (lookup_pointer_type (arg_type),
addr);
}
}
}
/* Reserve space for the return structure to be written on the
stack, if necessary. Make certain that the value is correctly
aligned. */
if (struct_return)
{
int len = TYPE_LENGTH (value_type);
if (STACK_ALIGN_P ())
/* NOTE: cagney/2003-03-22: Should rely on frame align, rather
than stack align to force the alignment of the stack. */
len = STACK_ALIGN (len);
if (INNER_THAN (1, 2))
{
/* Stack grows downward. Align STRUCT_ADDR and SP after
making space for the return value. */
sp -= len;
if (gdbarch_frame_align_p (current_gdbarch))
sp = gdbarch_frame_align (current_gdbarch, sp);
struct_addr = sp;
}
else
{
/* Stack grows upward. Align the frame, allocate space, and
then again, re-align the frame??? */
if (gdbarch_frame_align_p (current_gdbarch))
sp = gdbarch_frame_align (current_gdbarch, sp);
struct_addr = sp;
sp += len;
if (gdbarch_frame_align_p (current_gdbarch))
sp = gdbarch_frame_align (current_gdbarch, sp);
}
}
/* elz: on HPPA no need for this extra alignment, maybe it is needed
on other architectures. This is because all the alignment is
taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
in hppa_push_arguments */
/* NOTE: cagney/2003-03-24: The below code is very broken. Given an
odd sized parameter the below will mis-align the stack. As was
suggested back in '96, better to let PUSH_ARGUMENTS handle it. */
if (DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED)
{
/* MVS 11/22/96: I think at least some of this stack_align code
is really broken. Better to let push_dummy_call() adjust the
stack in a target-defined manner. */
if (STACK_ALIGN_P () && INNER_THAN (1, 2))
{
/* If stack grows down, we must leave a hole at the top. */
int len = 0;
for (i = nargs - 1; i >= 0; i--)
len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
len += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
sp -= STACK_ALIGN (len) - len;
}
}
/* Create the dummy stack frame. Pass in the call dummy address as,
presumably, the ABI code knows where, in the call dummy, the
return address should be pointed. */
if (gdbarch_push_dummy_call_p (current_gdbarch))
/* When there is no push_dummy_call method, should this code
simply error out. That would the implementation of this method
for all ABIs (which is probably a good thing). */
sp = gdbarch_push_dummy_call (current_gdbarch, current_regcache,
dummy_addr, nargs, args, sp, struct_return,
struct_addr);
else if (DEPRECATED_PUSH_ARGUMENTS_P ())
/* Keep old targets working. */
sp = DEPRECATED_PUSH_ARGUMENTS (nargs, args, sp, struct_return,
struct_addr);
else
sp = legacy_push_arguments (nargs, args, sp, struct_return, struct_addr);
if (DEPRECATED_PUSH_RETURN_ADDRESS_P ())
/* for targets that use no CALL_DUMMY */
/* There are a number of targets now which actually don't write
any CALL_DUMMY instructions into the target, but instead just
save the machine state, push the arguments, and jump directly
to the callee function. Since this doesn't actually involve
executing a JSR/BSR instruction, the return address must be set
up by hand, either by pushing onto the stack or copying into a
return-address register as appropriate. Formerly this has been
done in PUSH_ARGUMENTS, but that's overloading its
functionality a bit, so I'm making it explicit to do it here. */
sp = DEPRECATED_PUSH_RETURN_ADDRESS (real_pc, sp);
/* NOTE: cagney/2003-03-23: Diable this code when there is a
push_dummy_call() method. Since that method will have already
handled any alignment issues, the code below is entirely
redundant. */
if (!gdbarch_push_dummy_call_p (current_gdbarch)
&& STACK_ALIGN_P () && !INNER_THAN (1, 2))
{
/* If stack grows up, we must leave a hole at the bottom, note
that sp already has been advanced for the arguments! */
if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
sp += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
sp = STACK_ALIGN (sp);
}
/* XXX This seems wrong. For stacks that grow down we shouldn't do
anything here! */
/* MVS 11/22/96: I think at least some of this stack_align code is
really broken. Better to let PUSH_ARGUMENTS adjust the stack in
a target-defined manner. */
if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
if (INNER_THAN (1, 2))
{
/* stack grows downward */
sp -= DEPRECATED_CALL_DUMMY_STACK_ADJUST;
}
/* Store the address at which the structure is supposed to be
written. */
/* NOTE: 2003-03-24: Since PUSH_ARGUMENTS can (and typically does)
store the struct return address, this call is entirely redundant. */
if (struct_return && DEPRECATED_STORE_STRUCT_RETURN_P ())
DEPRECATED_STORE_STRUCT_RETURN (struct_addr, sp);
/* Write the stack pointer. This is here because the statements above
might fool with it. On SPARC, this write also stores the register
window into the right place in the new stack frame, which otherwise
wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
/* NOTE: cagney/2003-03-23: Disable this code when there is a
push_dummy_call() method. Since that method will have already
stored the stack pointer (as part of creating the fake call
frame), and none of the code following that code adjusts the
stack-pointer value, the below call is entirely redundant. */
if (DEPRECATED_DUMMY_WRITE_SP_P ())
DEPRECATED_DUMMY_WRITE_SP (sp);
if (SAVE_DUMMY_FRAME_TOS_P ())
SAVE_DUMMY_FRAME_TOS (sp);
{
char *name;
struct symbol *symbol;
name = NULL;
symbol = find_pc_function (funaddr);
if (symbol)
{
name = SYMBOL_PRINT_NAME (symbol);
}
else
{
/* Try the minimal symbols. */
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
if (msymbol)
{
name = SYMBOL_PRINT_NAME (msymbol);
}
}
if (name == NULL)
{
char format[80];
sprintf (format, "at %s", local_hex_format ());
name = alloca (80);
/* FIXME-32x64: assumes funaddr fits in a long. */
sprintf (name, format, (unsigned long) funaddr);
}
{
/* Execute a "stack dummy", a piece of code stored in the stack
by the debugger to be executed in the inferior.
The dummy's frame is automatically popped whenever that break
is hit. If that is the first time the program stops,
call_function_by_hand returns to its caller with that frame
already gone and sets RC to 0.
Otherwise, set RC to a non-zero value. If the called
function receives a random signal, we do not allow the user
to continue executing it as this may not work. The dummy
frame is poped and we return 1. If we hit a breakpoint, we
leave the frame in place and return 2 (the frame will
eventually be popped when we do hit the dummy end
breakpoint). */
CORE_ADDR addr = real_pc + CALL_DUMMY_START_OFFSET;
struct regcache *buffer = retbuf;
struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
int saved_async = 0;
struct breakpoint *bpt;
struct symtab_and_line sal;
/* Now proceed, having reached the desired place. */
clear_proceed_status ();
init_sal (&sal); /* initialize to zeroes */
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
{
sal.pc = CALL_DUMMY_ADDRESS ();
}
else
{
/* If defined, CALL_DUMMY_BREAKPOINT_OFFSET is where we need
to put a breakpoint instruction. If not, the call dummy
already has the breakpoint instruction in it.
ADDR IS THE ADDRESS of the call dummy plus the
CALL_DUMMY_START_OFFSET, so we need to subtract the
CALL_DUMMY_START_OFFSET. */
sal.pc = (addr - (CALL_DUMMY_START_OFFSET
+ CALL_DUMMY_BREAKPOINT_OFFSET));
}
sal.section = find_pc_overlay (sal.pc);
{
/* Set up a frame ID for the dummy frame so we can pass it to
set_momentary_breakpoint. We need to give the breakpoint a
frame ID so that the breakpoint code can correctly
re-identify the dummy breakpoint. */
struct frame_id frame = frame_id_build (read_fp (), sal.pc);
/* Create a momentary breakpoint at the return address of the
inferior. That way it breaks when it returns. */
bpt = set_momentary_breakpoint (sal, frame, bp_call_dummy);
bpt->disposition = disp_del;
}
/* If all error()s out of proceed ended up calling normal_stop
(and perhaps they should; it already does in the special case
of error out of resume()), then we wouldn't need this. */
make_cleanup (breakpoint_auto_delete_contents, &stop_bpstat);
disable_watchpoints_before_interactive_call_start ();
proceed_to_finish = 1; /* We want stop_registers, please... */
if (target_can_async_p ())
saved_async = target_async_mask (0);
proceed (addr, TARGET_SIGNAL_0, 0);
if (saved_async)
target_async_mask (saved_async);
enable_watchpoints_after_interactive_call_stop ();
discard_cleanups (old_cleanups);
if (stopped_by_random_signal)
/* We can stop during an inferior call because a signal is
received. */
rc = 1;
else if (!stop_stack_dummy)
/* We may also stop prematurely because we hit a breakpoint in
the called routine. */
rc = 2;
else
{
/* On normal return, the stack dummy has been popped
already. */
regcache_cpy_no_passthrough (buffer, stop_registers);
rc = 0;
}
}
if (rc == 1)
{
/* We stopped inside the FUNCTION because of a random signal.
Further execution of the FUNCTION is not allowed. */
if (unwind_on_signal_p)
{
/* The user wants the context restored. */
/* We must get back to the frame we were before the dummy
call. */
frame_pop (get_current_frame ());
/* FIXME: Insert a bunch of wrap_here; name can be very long if it's
a C++ name with arguments and stuff. */
error ("\
The program being debugged was signaled while in a function called from GDB.\n\
GDB has restored the context to what it was before the call.\n\
To change this behavior use \"set unwindonsignal off\"\n\
Evaluation of the expression containing the function (%s) will be abandoned.",
name);
}
else
{
/* The user wants to stay in the frame where we stopped (default).*/
/* If we restored the inferior status (via the cleanup),
we would print a spurious error message (Unable to
restore previously selected frame), would write the
registers from the inf_status (which is wrong), and
would do other wrong things. */
discard_cleanups (inf_status_cleanup);
discard_inferior_status (inf_status);
/* FIXME: Insert a bunch of wrap_here; name can be very long if it's
a C++ name with arguments and stuff. */
error ("\
The program being debugged was signaled while in a function called from GDB.\n\
GDB remains in the frame where the signal was received.\n\
To change this behavior use \"set unwindonsignal on\"\n\
Evaluation of the expression containing the function (%s) will be abandoned.",
name);
}
}
if (rc == 2)
{
/* We hit a breakpoint inside the FUNCTION. */
/* If we restored the inferior status (via the cleanup), we
would print a spurious error message (Unable to restore
previously selected frame), would write the registers from
the inf_status (which is wrong), and would do other wrong
things. */
discard_cleanups (inf_status_cleanup);
discard_inferior_status (inf_status);
/* The following error message used to say "The expression
which contained the function call has been discarded." It
is a hard concept to explain in a few words. Ideally, GDB
would be able to resume evaluation of the expression when
the function finally is done executing. Perhaps someday
this will be implemented (it would not be easy). */
/* FIXME: Insert a bunch of wrap_here; name can be very long if it's
a C++ name with arguments and stuff. */
error ("\
The program being debugged stopped while in a function called from GDB.\n\
When the function (%s) is done executing, GDB will silently\n\
stop (instead of continuing to evaluate the expression containing\n\
the function call).", name);
}
/* If we get here the called FUNCTION run to completion. */
/* Restore the inferior status, via its cleanup. At this stage,
leave the RETBUF alone. */
do_cleanups (inf_status_cleanup);
/* Figure out the value returned by the function. */
/* elz: I defined this new macro for the hppa architecture only.
this gives us a way to get the value returned by the function
from the stack, at the same address we told the function to put
it. We cannot assume on the pa that r28 still contains the
address of the returned structure. Usually this will be
overwritten by the callee. I don't know about other
architectures, so I defined this macro */
#ifdef VALUE_RETURNED_FROM_STACK
if (struct_return)
{
do_cleanups (retbuf_cleanup);
return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
}
#endif
/* NOTE: cagney/2002-09-10: Only when the stack has been correctly
aligned (using frame_align()) do we can trust STRUCT_ADDR and
fetch the return value direct from the stack. This lack of
trust comes about because legacy targets have a nasty habit of
silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
For such targets, just hope that value_being_returned() can
find the adjusted value. */
if (struct_return && gdbarch_frame_align_p (current_gdbarch))
{
struct value *retval = value_at (value_type, struct_addr, NULL);
do_cleanups (retbuf_cleanup);
return retval;
}
else
{
struct value *retval = value_being_returned (value_type, retbuf,
struct_return);
do_cleanups (retbuf_cleanup);
return retval;
}
}
}
void _initialize_infcall (void);
void
_initialize_infcall (void)
{
add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
&coerce_float_to_double_p, "\
Set coercion of floats to doubles when calling functions\n\
Variables of type float should generally be converted to doubles before\n\
calling an unprototyped function, and left alone when calling a prototyped\n\
function. However, some older debug info formats do not provide enough\n\
information to determine that a function is prototyped. If this flag is\n\
set, GDB will perform the conversion for a function it considers\n\
unprototyped.\n\
The default is to perform the conversion.\n", "\
Show coercion of floats to doubles when calling functions\n\
Variables of type float should generally be converted to doubles before\n\
calling an unprototyped function, and left alone when calling a prototyped\n\
function. However, some older debug info formats do not provide enough\n\
information to determine that a function is prototyped. If this flag is\n\
set, GDB will perform the conversion for a function it considers\n\
unprototyped.\n\
The default is to perform the conversion.\n",
NULL, NULL, &setlist, &showlist);
add_setshow_boolean_cmd ("unwindonsignal", no_class,
&unwind_on_signal_p, "\
Set unwinding of stack if a signal is received while in a call dummy.\n\
The unwindonsignal lets the user determine what gdb should do if a signal\n\
is received while in a function called from gdb (call dummy). If set, gdb\n\
unwinds the stack and restore the context to what as it was before the call.\n\
The default is to stop in the frame where the signal was received.", "\
Set unwinding of stack if a signal is received while in a call dummy.\n\
The unwindonsignal lets the user determine what gdb should do if a signal\n\
is received while in a function called from gdb (call dummy). If set, gdb\n\
unwinds the stack and restore the context to what as it was before the call.\n\
The default is to stop in the frame where the signal was received.",
NULL, NULL, &setlist, &showlist);
}

39
gdb/infcall.h Normal file
View File

@ -0,0 +1,39 @@
/* Perform an inferior function call, for GDB, the GNU debugger.
Copyright 2003 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#ifndef INFCALL_H
#define INFCALL_H
struct value;
/* Perform a function call in the inferior.
ARGS is a vector of values of arguments (NARGS of them). FUNCTION
is a value, the function to be called. Returns a value
representing what the function returned. May fail to return, if a
breakpoint or signal is hit during the execution of the function.
ARGS is modified to contain coerced values. */
extern struct value *call_function_by_hand (struct value *function, int nargs,
struct value **args);
#endif

View File

@ -115,8 +115,6 @@ void _initialize_infcmd (void);
#define GO_USAGE "Usage: go <location>\n"
static void breakpoint_auto_delete_contents (void *);
#define ERROR_NO_INFERIOR \
if (!target_has_execution) error ("The program is not being run.");
@ -950,112 +948,6 @@ signal_command (char *signum_exp, int from_tty)
proceed (oursig == TARGET_SIGNAL_0 ? (CORE_ADDR) -1 : stop_pc, oursig, 0);
}
/* Call breakpoint_auto_delete on the current contents of the bpstat
pointed to by arg (which is really a bpstat *). */
static void
breakpoint_auto_delete_contents (void *arg)
{
breakpoint_auto_delete (*(bpstat *) arg);
}
/* Execute a "stack dummy", a piece of code stored in the stack
by the debugger to be executed in the inferior.
To call: first, do PUSH_DUMMY_FRAME.
Then push the contents of the dummy. It should end with a breakpoint insn.
Then call here, passing address at which to start the dummy.
The contents of all registers are saved before the dummy frame is popped
and copied into the buffer BUFFER.
The dummy's frame is automatically popped whenever that break is hit.
If that is the first time the program stops, run_stack_dummy
returns to its caller with that frame already gone and returns 0.
Otherwise, run_stack-dummy returns a non-zero value.
If the called function receives a random signal, we do not allow the user
to continue executing it as this may not work. The dummy frame is poped
and we return 1.
If we hit a breakpoint, we leave the frame in place and return 2 (the frame
will eventually be popped when we do hit the dummy end breakpoint). */
int
run_stack_dummy (CORE_ADDR addr, struct regcache *buffer)
{
struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
int saved_async = 0;
struct breakpoint *bpt;
struct symtab_and_line sal;
/* Now proceed, having reached the desired place. */
clear_proceed_status ();
init_sal (&sal); /* initialize to zeroes */
if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
{
sal.pc = CALL_DUMMY_ADDRESS ();
}
else
{
/* If defined, CALL_DUMMY_BREAKPOINT_OFFSET is where we need to
put a breakpoint instruction. If not, the call dummy already
has the breakpoint instruction in it.
ADDR IS THE ADDRESS of the call dummy plus the
CALL_DUMMY_START_OFFSET, so we need to subtract the
CALL_DUMMY_START_OFFSET. */
sal.pc = addr - CALL_DUMMY_START_OFFSET + CALL_DUMMY_BREAKPOINT_OFFSET;
}
sal.section = find_pc_overlay (sal.pc);
{
/* Set up a frame ID for the dummy frame so we can pass it to
set_momentary_breakpoint. We need to give the breakpoint a
frame ID so that the breakpoint code can correctly re-identify
the dummy breakpoint. */
struct frame_id frame = frame_id_build (read_fp (), sal.pc);
/* Create a momentary breakpoint at the return address of the
inferior. That way it breaks when it returns. */
bpt = set_momentary_breakpoint (sal, frame, bp_call_dummy);
bpt->disposition = disp_del;
}
/* If all error()s out of proceed ended up calling normal_stop (and
perhaps they should; it already does in the special case of error
out of resume()), then we wouldn't need this. */
make_cleanup (breakpoint_auto_delete_contents, &stop_bpstat);
disable_watchpoints_before_interactive_call_start ();
proceed_to_finish = 1; /* We want stop_registers, please... */
if (target_can_async_p ())
saved_async = target_async_mask (0);
proceed (addr, TARGET_SIGNAL_0, 0);
if (saved_async)
target_async_mask (saved_async);
enable_watchpoints_after_interactive_call_stop ();
discard_cleanups (old_cleanups);
/* We can stop during an inferior call because a signal is received. */
if (stopped_by_random_signal)
return 1;
/* We may also stop prematurely because we hit a breakpoint in the
called routine. */
if (!stop_stack_dummy)
return 2;
/* On normal return, the stack dummy has been popped already. */
regcache_cpy_no_passthrough (buffer, stop_registers);
return 0;
}
/* Proceed until we reach a different source line with pc greater than
our current one or exit the function. We skip calls in both cases.

View File

@ -164,8 +164,6 @@ extern void terminal_save_ours (void);
extern void terminal_ours (void);
extern int run_stack_dummy (CORE_ADDR , struct regcache *);
extern CORE_ADDR read_pc (void);
extern CORE_ADDR read_pc_pid (ptid_t);

View File

@ -1058,8 +1058,8 @@ mcore_init_extra_frame_info (int fromleaf, struct frame_info *fi)
if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
get_frame_base (fi)))
{
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
by assuming it's always FP. */
/* We need to setup fi->frame here because call_function_by_hand
gets it wrong by assuming it's always FP. */
deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi), SP_REGNUM));
}
else

View File

@ -892,9 +892,10 @@ mn10300_frame_saved_pc (struct frame_info *fi)
always be correct. mn10300_analyze_prologue will fix fi->frame if
it's not valid.
We can be called with the PC in the call dummy under two circumstances.
First, during normal backtracing, second, while figuring out the frame
pointer just prior to calling the target function (see run_stack_dummy). */
We can be called with the PC in the call dummy under two
circumstances. First, during normal backtracing, second, while
figuring out the frame pointer just prior to calling the target
function (see call_function_by_hand). */
static void
mn10300_init_extra_frame_info (int fromleaf, struct frame_info *fi)

View File

@ -42,6 +42,7 @@
#include "gdb_regex.h"
#include "regcache.h"
#include "block.h"
#include "infcall.h"
#include <ctype.h>

View File

@ -33,6 +33,7 @@
#include "source.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "infcall.h"
extern void _initialize_scheme_language (void);
static struct value *evaluate_subexp_scm (struct type *, struct expression *,

View File

@ -1763,8 +1763,8 @@ sh_init_extra_frame_info (int fromleaf, struct frame_info *fi)
if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
get_frame_base (fi)))
{
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
by assuming it's always FP. */
/* We need to setup fi->frame here because call_function_by_hand
gets it wrong by assuming it's always FP. */
deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi),
SP_REGNUM));
get_frame_extra_info (fi)->return_pc = deprecated_read_register_dummy (get_frame_pc (fi),
@ -1795,8 +1795,8 @@ sh64_init_extra_frame_info (int fromleaf, struct frame_info *fi)
if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), get_frame_base (fi),
get_frame_base (fi)))
{
/* We need to setup fi->frame here because run_stack_dummy gets it wrong
by assuming it's always FP. */
/* We need to setup fi->frame here because call_function_by_hand
gets it wrong by assuming it's always FP. */
deprecated_update_frame_base_hack (fi, deprecated_read_register_dummy (get_frame_pc (fi), get_frame_base (fi), SP_REGNUM));
get_frame_extra_info (fi)->return_pc =
deprecated_read_register_dummy (get_frame_pc (fi),

View File

@ -2379,10 +2379,11 @@ sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
Adjust the call_dummy_breakpoint_offset for the bp_call_dummy breakpoint
to the proper address in the call dummy, so that `finish' after a stop
in a call dummy works.
Tweeking current_gdbarch is not an optimal solution, but the call to
sparc_fix_call_dummy is immediately followed by a call to run_stack_dummy,
which is the only function where dummy_breakpoint_offset is actually
used, if it is non-zero. */
Tweeking current_gdbarch is not an optimal solution, but the call
to sparc_fix_call_dummy is immediately followed by a call to
call_function_by_hand, which is the only function where
dummy_breakpoint_offset is actually used, if it is non-zero. */
if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
|| TYPE_CODE (value_type) == TYPE_CODE_UNION)
{

View File

@ -836,15 +836,15 @@ extern void target_load (char *arg, int from_tty);
#define target_async(CALLBACK,CONTEXT) \
(current_target.to_async((CALLBACK), (CONTEXT)))
/* This is to be used ONLY within run_stack_dummy(). It
provides a workaround, to have inferior function calls done in
sychronous mode, even though the target is asynchronous. After
/* This is to be used ONLY within call_function_by_hand(). It provides
a workaround, to have inferior function calls done in sychronous
mode, even though the target is asynchronous. After
target_async_mask(0) is called, calls to target_can_async_p() will
return FALSE , so that target_resume() will not try to start the
target asynchronously. After the inferior stops, we IMMEDIATELY
restore the previous nature of the target, by calling
target_async_mask(1). After that, target_can_async_p() will return
TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
FIXME ezannoni 1999-12-13: we won't need this once we move
the turning async on and off to the single execution commands,

View File

@ -1155,9 +1155,10 @@ v850_frame_init_saved_regs (struct frame_info *fi)
be valid only if this routine uses FP. For previous frames, fi-frame will
always be correct (since that is derived from v850_frame_chain ()).
We can be called with the PC in the call dummy under two circumstances.
First, during normal backtracing, second, while figuring out the frame
pointer just prior to calling the target function (see run_stack_dummy). */
We can be called with the PC in the call dummy under two
circumstances. First, during normal backtracing, second, while
figuring out the frame pointer just prior to calling the target
function (see call_function_by_hand). */
static void
v850_init_extra_frame_info (int fromleaf, struct frame_info *fi)

View File

@ -31,6 +31,7 @@
#include "gdb_string.h"
#include "doublest.h"
#include <math.h>
#include "infcall.h"
/* Define whether or not the C operator '/' truncates towards zero for
differently signed operands (truncation direction is undefined in C). */

View File

@ -34,6 +34,7 @@
#include "regcache.h"
#include "cp-abi.h"
#include "block.h"
#include "infcall.h"
#include <errno.h>
#include "gdb_string.h"
@ -49,10 +50,6 @@ extern int overload_debug;
static int typecmp (int staticp, int varargs, int nargs,
struct field t1[], struct value *t2[]);
static CORE_ADDR find_function_addr (struct value *, struct type **);
static struct value *value_arg_coerce (struct value *, struct type *, int);
static CORE_ADDR value_push (CORE_ADDR, struct value *);
static struct value *search_struct_field (char *, struct value *, int,
@ -84,37 +81,6 @@ static int auto_abandon = 0;
int overload_resolution = 0;
/* This boolean tells what gdb should do if a signal is received while in
a function called from gdb (call dummy). If set, gdb unwinds the stack
and restore the context to what as it was before the call.
The default is to stop in the frame where the signal was received. */
int unwind_on_signal_p = 0;
/* How you should pass arguments to a function depends on whether it
was defined in K&R style or prototype style. If you define a
function using the K&R syntax that takes a `float' argument, then
callers must pass that argument as a `double'. If you define the
function using the prototype syntax, then you must pass the
argument as a `float', with no promotion.
Unfortunately, on certain older platforms, the debug info doesn't
indicate reliably how each function was defined. A function type's
TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
defined in prototype style. When calling a function whose
TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to decide
what to do.
For modern targets, it is proper to assume that, if the prototype
flag is clear, that can be trusted: `float' arguments should be
promoted to `double'. For some older targets, if the prototype
flag is clear, that doesn't tell us anything. The default is to
trust the debug information; the user can override this behavior
with "set coerce-float-to-double 0". */
static int coerce_float_to_double;
/* Find the address of function name NAME in the inferior. */
struct value *
@ -1089,774 +1055,6 @@ legacy_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
return sp;
}
/* Perform the standard coercions that are specified
for arguments to be passed to C functions.
If PARAM_TYPE is non-NULL, it is the expected parameter type.
IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
static struct value *
value_arg_coerce (struct value *arg, struct type *param_type,
int is_prototyped)
{
register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
register struct type *type
= param_type ? check_typedef (param_type) : arg_type;
switch (TYPE_CODE (type))
{
case TYPE_CODE_REF:
if (TYPE_CODE (arg_type) != TYPE_CODE_REF
&& TYPE_CODE (arg_type) != TYPE_CODE_PTR)
{
arg = value_addr (arg);
VALUE_TYPE (arg) = param_type;
return arg;
}
break;
case TYPE_CODE_INT:
case TYPE_CODE_CHAR:
case TYPE_CODE_BOOL:
case TYPE_CODE_ENUM:
/* If we don't have a prototype, coerce to integer type if necessary. */
if (!is_prototyped)
{
if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
type = builtin_type_int;
}
/* Currently all target ABIs require at least the width of an integer
type for an argument. We may have to conditionalize the following
type coercion for future targets. */
if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
type = builtin_type_int;
break;
case TYPE_CODE_FLT:
if (!is_prototyped && coerce_float_to_double)
{
if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
type = builtin_type_double;
else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
type = builtin_type_long_double;
}
break;
case TYPE_CODE_FUNC:
type = lookup_pointer_type (type);
break;
case TYPE_CODE_ARRAY:
/* Arrays are coerced to pointers to their first element, unless
they are vectors, in which case we want to leave them alone,
because they are passed by value. */
if (current_language->c_style_arrays)
if (!TYPE_VECTOR (type))
type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
break;
case TYPE_CODE_UNDEF:
case TYPE_CODE_PTR:
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
case TYPE_CODE_VOID:
case TYPE_CODE_SET:
case TYPE_CODE_RANGE:
case TYPE_CODE_STRING:
case TYPE_CODE_BITSTRING:
case TYPE_CODE_ERROR:
case TYPE_CODE_MEMBER:
case TYPE_CODE_METHOD:
case TYPE_CODE_COMPLEX:
default:
break;
}
return value_cast (type, arg);
}
/* Determine a function's address and its return type from its value.
Calls error() if the function is not valid for calling. */
static CORE_ADDR
find_function_addr (struct value *function, struct type **retval_type)
{
register struct type *ftype = check_typedef (VALUE_TYPE (function));
register enum type_code code = TYPE_CODE (ftype);
struct type *value_type;
CORE_ADDR funaddr;
/* If it's a member function, just look at the function
part of it. */
/* Determine address to call. */
if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
{
funaddr = VALUE_ADDRESS (function);
value_type = TYPE_TARGET_TYPE (ftype);
}
else if (code == TYPE_CODE_PTR)
{
funaddr = value_as_address (function);
ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
|| TYPE_CODE (ftype) == TYPE_CODE_METHOD)
{
funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
value_type = TYPE_TARGET_TYPE (ftype);
}
else
value_type = builtin_type_int;
}
else if (code == TYPE_CODE_INT)
{
/* Handle the case of functions lacking debugging info.
Their values are characters since their addresses are char */
if (TYPE_LENGTH (ftype) == 1)
funaddr = value_as_address (value_addr (function));
else
/* Handle integer used as address of a function. */
funaddr = (CORE_ADDR) value_as_long (function);
value_type = builtin_type_int;
}
else
error ("Invalid data type for function to be called.");
*retval_type = value_type;
return funaddr;
}
/* All this stuff with a dummy frame may seem unnecessarily complicated
(why not just save registers in GDB?). The purpose of pushing a dummy
frame which looks just like a real frame is so that if you call a
function and then hit a breakpoint (get a signal, etc), "backtrace"
will look right. Whether the backtrace needs to actually show the
stack at the time the inferior function was called is debatable, but
it certainly needs to not display garbage. So if you are contemplating
making dummy frames be different from normal frames, consider that. */
/* Perform a function call in the inferior.
ARGS is a vector of values of arguments (NARGS of them).
FUNCTION is a value, the function to be called.
Returns a value representing what the function returned.
May fail to return, if a breakpoint or signal is hit
during the execution of the function.
ARGS is modified to contain coerced values. */
struct value *
call_function_by_hand (struct value *function, int nargs, struct value **args)
{
register CORE_ADDR sp;
register int i;
int rc;
CORE_ADDR start_sp;
/* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
and remove any extra bytes which might exist because ULONGEST is
bigger than REGISTER_SIZE.
NOTE: This is pretty wierd, as the call dummy is actually a
sequence of instructions. But CISC machines will have
to pack the instructions into REGISTER_SIZE units (and
so will RISC machines for which INSTRUCTION_SIZE is not
REGISTER_SIZE).
NOTE: This is pretty stupid. CALL_DUMMY should be in strict
target byte order. */
static ULONGEST *dummy;
int sizeof_dummy1;
char *dummy1;
CORE_ADDR dummy_addr;
CORE_ADDR old_sp;
struct type *value_type;
unsigned char struct_return;
CORE_ADDR struct_addr = 0;
struct regcache *retbuf;
struct cleanup *retbuf_cleanup;
struct inferior_status *inf_status;
struct cleanup *inf_status_cleanup;
CORE_ADDR funaddr;
int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
CORE_ADDR real_pc;
struct type *param_type = NULL;
struct type *ftype = check_typedef (SYMBOL_TYPE (function));
int n_method_args = 0;
dummy = alloca (SIZEOF_CALL_DUMMY_WORDS);
sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST);
dummy1 = alloca (sizeof_dummy1);
memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS);
if (!target_has_execution)
noprocess ();
/* Create a cleanup chain that contains the retbuf (buffer
containing the register values). This chain is create BEFORE the
inf_status chain so that the inferior status can cleaned up
(restored or discarded) without having the retbuf freed. */
retbuf = regcache_xmalloc (current_gdbarch);
retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
/* A cleanup for the inferior status. Create this AFTER the retbuf
so that this can be discarded or applied without interfering with
the regbuf. */
inf_status = save_inferior_status (1);
inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
if (DEPRECATED_PUSH_DUMMY_FRAME_P ())
{
/* DEPRECATED_PUSH_DUMMY_FRAME is responsible for saving the
inferior registers (and frame_pop() for restoring them). (At
least on most machines) they are saved on the stack in the
inferior. */
DEPRECATED_PUSH_DUMMY_FRAME;
}
else
{
/* FIXME: cagney/2003-02-26: Step zero of this little tinker is
to extract the generic dummy frame code from the architecture
vector. Hence this direct call.
A follow-on change is to modify this interface so that it takes
thread OR frame OR tpid as a parameter, and returns a dummy
frame handle. The handle can then be used further down as a
parameter SAVE_DUMMY_FRAME_TOS. Hmm, thinking about it, since
everything is ment to be using generic dummy frames, why not
even use some of the dummy frame code to here - do a regcache
dup and then pass the duped regcache, along with all the other
stuff, at one single point.
In fact, you can even save the structure's return address in the
dummy frame and fix one of those nasty lost struct return edge
conditions. */
generic_push_dummy_frame ();
}
old_sp = read_sp ();
/* Ensure that the initial SP is correctly aligned. */
if (gdbarch_frame_align_p (current_gdbarch))
{
/* NOTE: cagney/2002-09-18:
On a RISC architecture, a void parameterless generic dummy
frame (i.e., no parameters, no result) typically does not
need to push anything the stack and hence can leave SP and
FP. Similarly, a framelss (possibly leaf) function does not
push anything on the stack and, hence, that too can leave FP
and SP unchanged. As a consequence, a sequence of void
parameterless generic dummy frame calls to frameless
functions will create a sequence of effectively identical
frames (SP, FP and TOS and PC the same). This, not
suprisingly, results in what appears to be a stack in an
infinite loop --- when GDB tries to find a generic dummy
frame on the internal dummy frame stack, it will always find
the first one.
To avoid this problem, the code below always grows the stack.
That way, two dummy frames can never be identical. It does
burn a few bytes of stack but that is a small price to pay
:-). */
sp = gdbarch_frame_align (current_gdbarch, old_sp);
if (sp == old_sp)
{
if (INNER_THAN (1, 2))
/* Stack grows down. */
sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
else
/* Stack grows up. */
sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
}
gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
|| (INNER_THAN (2, 1) && sp >= old_sp));
}
else
/* FIXME: cagney/2002-09-18: Hey, you loose! Who knows how badly
aligned the SP is! Further, per comment above, if the generic
dummy frame ends up empty (because nothing is pushed) GDB won't
be able to correctly perform back traces. If a target is
having trouble with backtraces, first thing to do is add
FRAME_ALIGN() to its architecture vector. After that, try
adding SAVE_DUMMY_FRAME_TOS() and modifying
DEPRECATED_FRAME_CHAIN so that when the next outer frame is a
generic dummy, it returns the current frame's base. */
sp = old_sp;
if (INNER_THAN (1, 2))
{
/* Stack grows down */
sp -= sizeof_dummy1;
start_sp = sp;
}
else
{
/* Stack grows up */
start_sp = sp;
sp += sizeof_dummy1;
}
/* NOTE: cagney/2002-09-10: Don't bother re-adjusting the stack
after allocating space for the call dummy. A target can specify
a SIZEOF_DUMMY1 (via SIZEOF_CALL_DUMMY_WORDS) such that all local
alignment requirements are met. */
funaddr = find_function_addr (function, &value_type);
CHECK_TYPEDEF (value_type);
{
struct block *b = block_for_pc (funaddr);
/* If compiled without -g, assume GCC 2. */
using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
}
/* Are we returning a value using a structure return or a normal
value return? */
struct_return = using_struct_return (function, funaddr, value_type,
using_gcc);
/* Create a call sequence customized for this function
and the number of arguments for it. */
for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++)
store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
REGISTER_SIZE,
(ULONGEST) dummy[i]);
#ifdef GDB_TARGET_IS_HPPA
real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
value_type, using_gcc);
#else
if (FIX_CALL_DUMMY_P ())
{
/* gdb_assert (CALL_DUMMY_LOCATION == ON_STACK) true? */
FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, value_type,
using_gcc);
}
real_pc = start_sp;
#endif
switch (CALL_DUMMY_LOCATION)
{
case ON_STACK:
dummy_addr = start_sp;
write_memory (start_sp, (char *) dummy1, sizeof_dummy1);
if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
generic_save_call_dummy_addr (start_sp, start_sp + sizeof_dummy1);
break;
case AT_ENTRY_POINT:
real_pc = funaddr;
dummy_addr = CALL_DUMMY_ADDRESS ();
if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES)
/* NOTE: cagney/2002-04-13: The entry point is going to be
modified with a single breakpoint. */
generic_save_call_dummy_addr (CALL_DUMMY_ADDRESS (),
CALL_DUMMY_ADDRESS () + 1);
break;
default:
internal_error (__FILE__, __LINE__, "bad switch");
}
#ifdef lint
sp = old_sp; /* It really is used, for some ifdef's... */
#endif
if (nargs < TYPE_NFIELDS (ftype))
error ("too few arguments in function call");
for (i = nargs - 1; i >= 0; i--)
{
int prototyped;
/* FIXME drow/2002-05-31: Should just always mark methods as
prototyped. Can we respect TYPE_VARARGS? Probably not. */
if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
prototyped = 1;
else
prototyped = TYPE_PROTOTYPED (ftype);
if (i < TYPE_NFIELDS (ftype))
args[i] = value_arg_coerce (args[i], TYPE_FIELD_TYPE (ftype, i),
prototyped);
else
args[i] = value_arg_coerce (args[i], NULL, 0);
/*elz: this code is to handle the case in which the function to be called
has a pointer to function as parameter and the corresponding actual argument
is the address of a function and not a pointer to function variable.
In aCC compiled code, the calls through pointers to functions (in the body
of the function called by hand) are made via $$dyncall_external which
requires some registers setting, this is taken care of if we call
via a function pointer variable, but not via a function address.
In cc this is not a problem. */
if (using_gcc == 0)
if (param_type && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
/* if this parameter is a pointer to function */
if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
/* elz: FIXME here should go the test about the compiler used
to compile the target. We want to issue the error
message only if the compiler used was HP's aCC.
If we used HP's cc, then there is no problem and no need
to return at this point */
if (using_gcc == 0) /* && compiler == aCC */
/* go see if the actual parameter is a variable of type
pointer to function or just a function */
if (args[i]->lval == not_lval)
{
char *arg_name;
if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
error ("\
You cannot use function <%s> as argument. \n\
You must use a pointer to function type variable. Command ignored.", arg_name);
}
}
if (REG_STRUCT_HAS_ADDR_P ())
{
/* This is a machine like the sparc, where we may need to pass a
pointer to the structure, not the structure itself. */
for (i = nargs - 1; i >= 0; i--)
{
struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
|| TYPE_CODE (arg_type) == TYPE_CODE_UNION
|| TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
|| TYPE_CODE (arg_type) == TYPE_CODE_STRING
|| TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
|| TYPE_CODE (arg_type) == TYPE_CODE_SET
|| (TYPE_CODE (arg_type) == TYPE_CODE_FLT
&& TYPE_LENGTH (arg_type) > 8)
)
&& REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
{
CORE_ADDR addr;
int len; /* = TYPE_LENGTH (arg_type); */
int aligned_len;
arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
len = TYPE_LENGTH (arg_type);
if (STACK_ALIGN_P ())
/* MVS 11/22/96: I think at least some of this
stack_align code is really broken. Better to let
PUSH_ARGUMENTS adjust the stack in a target-defined
manner. */
aligned_len = STACK_ALIGN (len);
else
aligned_len = len;
if (INNER_THAN (1, 2))
{
/* stack grows downward */
sp -= aligned_len;
/* ... so the address of the thing we push is the
stack pointer after we push it. */
addr = sp;
}
else
{
/* The stack grows up, so the address of the thing
we push is the stack pointer before we push it. */
addr = sp;
sp += aligned_len;
}
/* Push the structure. */
write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
/* The value we're going to pass is the address of the
thing we just pushed. */
/*args[i] = value_from_longest (lookup_pointer_type (value_type),
(LONGEST) addr); */
args[i] = value_from_pointer (lookup_pointer_type (arg_type),
addr);
}
}
}
/* Reserve space for the return structure to be written on the
stack, if necessary. Make certain that the value is correctly
aligned. */
if (struct_return)
{
int len = TYPE_LENGTH (value_type);
if (STACK_ALIGN_P ())
/* NOTE: cagney/2003-03-22: Should rely on frame align, rather
than stack align to force the alignment of the stack. */
len = STACK_ALIGN (len);
if (INNER_THAN (1, 2))
{
/* Stack grows downward. Align STRUCT_ADDR and SP after
making space for the return value. */
sp -= len;
if (gdbarch_frame_align_p (current_gdbarch))
sp = gdbarch_frame_align (current_gdbarch, sp);
struct_addr = sp;
}
else
{
/* Stack grows upward. Align the frame, allocate space, and
then again, re-align the frame??? */
if (gdbarch_frame_align_p (current_gdbarch))
sp = gdbarch_frame_align (current_gdbarch, sp);
struct_addr = sp;
sp += len;
if (gdbarch_frame_align_p (current_gdbarch))
sp = gdbarch_frame_align (current_gdbarch, sp);
}
}
/* elz: on HPPA no need for this extra alignment, maybe it is needed
on other architectures. This is because all the alignment is
taken care of in the above code (ifdef REG_STRUCT_HAS_ADDR) and
in hppa_push_arguments */
/* NOTE: cagney/2003-03-24: The below code is very broken. Given an
odd sized parameter the below will mis-align the stack. As was
suggested back in '96, better to let PUSH_ARGUMENTS handle it. */
if (DEPRECATED_EXTRA_STACK_ALIGNMENT_NEEDED)
{
/* MVS 11/22/96: I think at least some of this stack_align code
is really broken. Better to let push_dummy_call() adjust the
stack in a target-defined manner. */
if (STACK_ALIGN_P () && INNER_THAN (1, 2))
{
/* If stack grows down, we must leave a hole at the top. */
int len = 0;
for (i = nargs - 1; i >= 0; i--)
len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
len += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
sp -= STACK_ALIGN (len) - len;
}
}
/* Create the dummy stack frame. Pass in the call dummy address as,
presumably, the ABI code knows where, in the call dummy, the
return address should be pointed. */
if (gdbarch_push_dummy_call_p (current_gdbarch))
/* When there is no push_dummy_call method, should this code
simply error out. That would the implementation of this method
for all ABIs (which is probably a good thing). */
sp = gdbarch_push_dummy_call (current_gdbarch, current_regcache,
dummy_addr, nargs, args, sp, struct_return,
struct_addr);
else if (DEPRECATED_PUSH_ARGUMENTS_P ())
/* Keep old targets working. */
sp = DEPRECATED_PUSH_ARGUMENTS (nargs, args, sp, struct_return,
struct_addr);
else
sp = legacy_push_arguments (nargs, args, sp, struct_return, struct_addr);
if (DEPRECATED_PUSH_RETURN_ADDRESS_P ())
/* for targets that use no CALL_DUMMY */
/* There are a number of targets now which actually don't write
any CALL_DUMMY instructions into the target, but instead just
save the machine state, push the arguments, and jump directly
to the callee function. Since this doesn't actually involve
executing a JSR/BSR instruction, the return address must be set
up by hand, either by pushing onto the stack or copying into a
return-address register as appropriate. Formerly this has been
done in PUSH_ARGUMENTS, but that's overloading its
functionality a bit, so I'm making it explicit to do it here. */
sp = DEPRECATED_PUSH_RETURN_ADDRESS (real_pc, sp);
/* NOTE: cagney/2003-03-23: Diable this code when there is a
push_dummy_call() method. Since that method will have already
handled any alignment issues, the code below is entirely
redundant. */
if (!gdbarch_push_dummy_call_p (current_gdbarch)
&& STACK_ALIGN_P () && !INNER_THAN (1, 2))
{
/* If stack grows up, we must leave a hole at the bottom, note
that sp already has been advanced for the arguments! */
if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
sp += DEPRECATED_CALL_DUMMY_STACK_ADJUST;
sp = STACK_ALIGN (sp);
}
/* XXX This seems wrong. For stacks that grow down we shouldn't do
anything here! */
/* MVS 11/22/96: I think at least some of this stack_align code is
really broken. Better to let PUSH_ARGUMENTS adjust the stack in
a target-defined manner. */
if (DEPRECATED_CALL_DUMMY_STACK_ADJUST_P ())
if (INNER_THAN (1, 2))
{
/* stack grows downward */
sp -= DEPRECATED_CALL_DUMMY_STACK_ADJUST;
}
/* Store the address at which the structure is supposed to be
written. */
/* NOTE: 2003-03-24: Since PUSH_ARGUMENTS can (and typically does)
store the struct return address, this call is entirely redundant. */
if (struct_return && DEPRECATED_STORE_STRUCT_RETURN_P ())
DEPRECATED_STORE_STRUCT_RETURN (struct_addr, sp);
/* Write the stack pointer. This is here because the statements above
might fool with it. On SPARC, this write also stores the register
window into the right place in the new stack frame, which otherwise
wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
/* NOTE: cagney/2003-03-23: Disable this code when there is a
push_dummy_call() method. Since that method will have already
stored the stack pointer (as part of creating the fake call
frame), and none of the code following that code adjusts the
stack-pointer value, the below call is entirely redundant. */
if (DEPRECATED_DUMMY_WRITE_SP_P ())
DEPRECATED_DUMMY_WRITE_SP (sp);
if (SAVE_DUMMY_FRAME_TOS_P ())
SAVE_DUMMY_FRAME_TOS (sp);
{
char *name;
struct symbol *symbol;
name = NULL;
symbol = find_pc_function (funaddr);
if (symbol)
{
name = SYMBOL_PRINT_NAME (symbol);
}
else
{
/* Try the minimal symbols. */
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
if (msymbol)
{
name = SYMBOL_PRINT_NAME (msymbol);
}
}
if (name == NULL)
{
char format[80];
sprintf (format, "at %s", local_hex_format ());
name = alloca (80);
/* FIXME-32x64: assumes funaddr fits in a long. */
sprintf (name, format, (unsigned long) funaddr);
}
/* Execute the stack dummy routine, calling FUNCTION.
When it is done, discard the empty frame
after storing the contents of all regs into retbuf. */
rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf);
if (rc == 1)
{
/* We stopped inside the FUNCTION because of a random signal.
Further execution of the FUNCTION is not allowed. */
if (unwind_on_signal_p)
{
/* The user wants the context restored. */
/* We must get back to the frame we were before the dummy
call. */
frame_pop (get_current_frame ());
/* FIXME: Insert a bunch of wrap_here; name can be very long if it's
a C++ name with arguments and stuff. */
error ("\
The program being debugged was signaled while in a function called from GDB.\n\
GDB has restored the context to what it was before the call.\n\
To change this behavior use \"set unwindonsignal off\"\n\
Evaluation of the expression containing the function (%s) will be abandoned.",
name);
}
else
{
/* The user wants to stay in the frame where we stopped (default).*/
/* If we restored the inferior status (via the cleanup),
we would print a spurious error message (Unable to
restore previously selected frame), would write the
registers from the inf_status (which is wrong), and
would do other wrong things. */
discard_cleanups (inf_status_cleanup);
discard_inferior_status (inf_status);
/* FIXME: Insert a bunch of wrap_here; name can be very long if it's
a C++ name with arguments and stuff. */
error ("\
The program being debugged was signaled while in a function called from GDB.\n\
GDB remains in the frame where the signal was received.\n\
To change this behavior use \"set unwindonsignal on\"\n\
Evaluation of the expression containing the function (%s) will be abandoned.",
name);
}
}
if (rc == 2)
{
/* We hit a breakpoint inside the FUNCTION. */
/* If we restored the inferior status (via the cleanup), we
would print a spurious error message (Unable to restore
previously selected frame), would write the registers from
the inf_status (which is wrong), and would do other wrong
things. */
discard_cleanups (inf_status_cleanup);
discard_inferior_status (inf_status);
/* The following error message used to say "The expression
which contained the function call has been discarded." It
is a hard concept to explain in a few words. Ideally, GDB
would be able to resume evaluation of the expression when
the function finally is done executing. Perhaps someday
this will be implemented (it would not be easy). */
/* FIXME: Insert a bunch of wrap_here; name can be very long if it's
a C++ name with arguments and stuff. */
error ("\
The program being debugged stopped while in a function called from GDB.\n\
When the function (%s) is done executing, GDB will silently\n\
stop (instead of continuing to evaluate the expression containing\n\
the function call).", name);
}
/* If we get here the called FUNCTION run to completion. */
/* Restore the inferior status, via its cleanup. At this stage,
leave the RETBUF alone. */
do_cleanups (inf_status_cleanup);
/* Figure out the value returned by the function. */
/* elz: I defined this new macro for the hppa architecture only.
this gives us a way to get the value returned by the function
from the stack, at the same address we told the function to put
it. We cannot assume on the pa that r28 still contains the
address of the returned structure. Usually this will be
overwritten by the callee. I don't know about other
architectures, so I defined this macro */
#ifdef VALUE_RETURNED_FROM_STACK
if (struct_return)
{
do_cleanups (retbuf_cleanup);
return VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
}
#endif
/* NOTE: cagney/2002-09-10: Only when the stack has been correctly
aligned (using frame_align()) do we can trust STRUCT_ADDR and
fetch the return value direct from the stack. This lack of
trust comes about because legacy targets have a nasty habit of
silently, and local to PUSH_ARGUMENTS(), moving STRUCT_ADDR.
For such targets, just hope that value_being_returned() can
find the adjusted value. */
if (struct_return && gdbarch_frame_align_p (current_gdbarch))
{
struct value *retval = value_at (value_type, struct_addr, NULL);
do_cleanups (retbuf_cleanup);
return retval;
}
else
{
struct value *retval = value_being_returned (value_type, retbuf,
struct_return);
do_cleanups (retbuf_cleanup);
return retval;
}
}
}
/* Create a value for an array by allocating space in the inferior, copying
the data into that space, and then setting up an array value.
@ -3485,29 +2683,4 @@ _initialize_valops (void)
&setlist),
&showlist);
overload_resolution = 1;
add_show_from_set (
add_set_cmd ("unwindonsignal", no_class, var_boolean,
(char *) &unwind_on_signal_p,
"Set unwinding of stack if a signal is received while in a call dummy.\n\
The unwindonsignal lets the user determine what gdb should do if a signal\n\
is received while in a function called from gdb (call dummy). If set, gdb\n\
unwinds the stack and restore the context to what as it was before the call.\n\
The default is to stop in the frame where the signal was received.", &setlist),
&showlist);
add_show_from_set
(add_set_cmd ("coerce-float-to-double", class_obscure, var_boolean,
(char *) &coerce_float_to_double,
"Set coercion of floats to doubles when calling functions\n"
"Variables of type float should generally be converted to doubles before\n"
"calling an unprototyped function, and left alone when calling a prototyped\n"
"function. However, some older debug info formats do not provide enough\n"
"information to determine that a function is prototyped. If this flag is\n"
"set, GDB will perform the conversion for a function it considers\n"
"unprototyped.\n"
"The default is to perform the conversion.\n",
&setlist),
&showlist);
coerce_float_to_double = 1;
}

View File

@ -549,9 +549,6 @@ extern struct value *varying_to_slice (struct value *);
extern struct value *value_slice (struct value *, int, int);
extern struct value *call_function_by_hand (struct value *, int,
struct value **);
extern struct value *value_literal_complex (struct value *, struct value *,
struct type *);