Remote protocol for d10v. Mainly responsible for translating GDB d10v

addresses into those expected by the remote d10v monitor.
This commit is contained in:
Andrew Cagney 1998-02-12 04:20:07 +00:00
parent fc3c25b9e0
commit 0c3ab0a169
2 changed files with 280 additions and 0 deletions

View File

@ -331,6 +331,7 @@ rdi-share
remote-adapt.c
remote-array.c
remote-bug.c
remote-d10v.c
remote-e7000.c
remote-eb.c
remote-es.c

279
gdb/remote-d10v.c Normal file
View File

@ -0,0 +1,279 @@
/* Remote target communications for d10v connected via a serial line.
Copyright 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997 Free
Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#include "defs.h"
#include "gdb_string.h"
#include <fcntl.h>
#include "frame.h"
#include "inferior.h"
#include "bfd.h"
#include "symfile.h"
#include "target.h"
#include "wait.h"
/*#include "terminal.h"*/
#include "gdbcmd.h"
#include "objfiles.h"
#include "gdb-stabs.h"
#include "gdbthread.h"
#include "dcache.h"
#ifdef USG
#include <sys/types.h>
#endif
#include <signal.h>
#include "serial.h"
/* Prototypes for local functions */
static int remote_d10v_xfer_memory PARAMS ((CORE_ADDR memaddr, char *myaddr,
int len, int should_write,
struct target_ops *target));
static void remote_d10v_open PARAMS ((char *name, int from_tty));
static void remote_d10v_mourn PARAMS ((void));
static void initialize_remote_d10v_ops PARAMS ((int copy_remote));
/* Define the target subroutine names */
struct target_ops remote_d10v_ops;
extern struct target_ops remote_ops;
extern struct target_ops extended_remote_ops;
struct target_ops *inherited_ops = &extended_remote_ops;
void
init_remote_d10v_ops (copy_remote)
int copy_remote;
{
printf_filtered ("Opening d10v ...\n");
if (copy_remote)
memcpy (&remote_d10v_ops, inherited_ops, sizeof remote_d10v_ops);
remote_d10v_ops.to_shortname = "d10v";
remote_d10v_ops.to_longname = "Remote d10v serial target in gdb-specific protocol";
remote_d10v_ops.to_doc = "Use a remote d10v via a serial line, using a gdb-specific protocol.\n\
Specify the serial device it is connected to (e.g. /dev/ttya).";
remote_d10v_ops.to_open = remote_d10v_open;
remote_d10v_ops.to_xfer_memory = remote_d10v_xfer_memory;
remote_d10v_ops.to_mourn_inferior = remote_d10v_mourn;
remote_d10v_ops.to_magic = OPS_MAGIC;
}
/* Open a connection to a remote debugger.
NAME is the filename used for communication. */
static void
remote_d10v_open (name, from_tty)
char *name;
int from_tty;
{
init_remote_d10v_ops (1);
open_remote_target (name, from_tty, &remote_d10v_ops,
inherited_ops == &extended_remote_ops);
}
/* Worker function for remote_mourn. */
static void
remote_d10v_mourn ()
{
if (inherited_ops == &remote_ops)
{
unpush_target (&remote_d10v_ops);
generic_mourn_inferior ();
}
/* see remote.c:extended_remote_mourn() for why an extended remote
target doesn't mourn */
}
/* Read or write LEN bytes from inferior memory at MEMADDR, transferring
to or from debugger address MYADDR. Write to inferior if SHOULD_WRITE is
nonzero. Returns length of data written or read; 0 for error. */
/* ARGSUSED */
static int
remote_d10v_xfer_memory(memaddr, myaddr, nr_bytes, write_p, target)
CORE_ADDR memaddr;
char *myaddr;
int nr_bytes;
int write_p;
struct target_ops *target; /* ignored */
{
CORE_ADDR phys;
CORE_ADDR seg;
CORE_ADDR off;
char *from = "unknown";
char *to = "unknown";
unsigned short imap0 = read_register (IMAP0_REGNUM);
unsigned short imap1 = read_register (IMAP1_REGNUM);
unsigned short dmap = read_register (DMAP_REGNUM);
/* GDB interprets addresses as:
0x00xxxxxx: Logical data address segment (DMAP translated memory)
0x01xxxxxx: Logical instruction address segment (IMAP translated memory)
0x10xxxxxx: Physical data memory segment (On-chip data memory)
0x11xxxxxx: Physical instruction memory segment (On-chip insn memory)
0x12xxxxxx: Phisical unified memory segment (Unified memory)
The remote d10v board interprets addresses as:
0x00xxxxxx: Phisical unified memory segment (Unified memory)
0x01xxxxxx: Physical instruction memory segment (On-chip insn memory)
0x02xxxxxx: Physical data memory segment (On-chip data memory)
Translate according to current IMAP/dmap registers */
enum {
targ_unified = 0x00000000,
targ_insn = 0x01000000,
targ_data = 0x02000000,
};
seg = (memaddr >> 24);
off = (memaddr & 0xffffffL);
switch (seg)
{
case 0x00: /* in logical data address segment */
{
from = "logical-data";
if (off <= 0x7fffL)
{
/* On chip data */
phys = targ_data + off;
if (off + nr_bytes > 0x7fffL)
/* don't cross VM boundary */
nr_bytes = 0x7fffL - off + 1;
to = "chip-data";
}
else if (off <= 0xbfffL)
{
short map = dmap;
if (map & 0x1000)
{
/* Instruction memory */
phys = targ_insn | ((map & 0xf) << 14) | (off & 0x3fff);
to = "chip-insn";
}
else
{
/* Unified memory */
phys = targ_unified | ((map & 0x3ff) << 14) | (off & 0x3fff);
to = "unified";
}
if (off + nr_bytes > 0xbfffL)
/* don't cross VM boundary */
nr_bytes = (0xbfffL - off + 1);
}
else
{
/* Logical address out side of data segments, not supported */
return (0);
}
break;
}
case 0x01: /* in logical instruction address segment */
{
short map;
from = "logical-insn";
if (off <= 0x1ffffL)
{
map = imap0;
}
else if (off <= 0x3ffffL)
{
map = imap1;
}
else
{
/* Logical address outside of IMAP[01] segment, not
supported */
return (0);
}
if ((off & 0x1ffff) + nr_bytes > 0x1ffffL)
{
/* don't cross VM boundary */
nr_bytes = 0x1ffffL - (off & 0x1ffffL) + 1;
}
if (map & 0x1000)
/* Instruction memory */
{
phys = targ_insn | off;
to = "chip-insn";
}
else
{
phys = ((map & 0x7fL) << 17) + (off & 0x1ffffL);
if (phys > 0xffffffL)
/* Address outside of unified address segment */
return (0);
phys |= targ_unified;
to = "unified";
}
break;
}
case 0x10: /* Physical data memory segment */
from = "phys-data";
phys = targ_data | off;
to = "chip-data";
break;
case 0x11: /* Physical instruction memory */
from = "phys-insn";
phys = targ_insn | off;
to = "chip-insn";
break;
case 0x12: /* Physical unified memory */
from = "phys-unified";
phys = targ_unified | off;
to = "unified";
break;
default:
return (0);
}
printf_unfiltered ("%s-xfer: 0x%08lx -> 0x%08lx imap0=%04x imap1=%04x, dmap=%04x, %s->%s, %d bytes\n",
(write_p ? "wr" : "rd"),
(long) memaddr,
(long) phys,
(int) imap0, (int) imap1, (int) dmap,
from, to,
(int) nr_bytes);
return inherited_ops->to_xfer_memory (phys, myaddr, nr_bytes, write_p, target);
}
void
_initialize_remote_d10v ()
{
init_remote_d10v_ops (0);
add_target (&remote_d10v_ops);
}